
Advanced Data Management Technologies
Unit 14 — Bitmap Indexes

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

Acknowledgements: I am indebted to M. Böhlen for providing me the lecture
notes.

ADMT 2018/19 — Unit 14 J. Gamper 1/30

Outline

1 Bitmap Indexes and Bitmap Compression

2 Advanced Bitmap Indexes
Bit-Sliced Index
Bitmap-Encoded Index
Bitmapped Join Index

3 Physical Storage and Indexes

ADMT 2018/19 — Unit 14 J. Gamper 2/30

Bitmap Indexes and Bitmap Compression

Outline

1 Bitmap Indexes and Bitmap Compression

2 Advanced Bitmap Indexes
Bit-Sliced Index
Bitmap-Encoded Index
Bitmapped Join Index

3 Physical Storage and Indexes

ADMT 2018/19 — Unit 14 J. Gamper 3/30

Bitmap Indexes and Bitmap Compression

Indexing

Index used in combination with pre-aggregates to improve performance

Index can be on dimension tables and on materialized views.

Fact table

Build primary B-tree index on dim keys (primary key)?
Build indexes on each dimension key separately (index intersection)?
Indexes on combinations of dimension keys? (many!)

Sort order is important (index-organized tables)

Compressing data can be possible (values not repeated).
Can save aggregates due to fast sequential scan.
Best sort order (almost) always time!

Dimension tables

Build indexes on many/all individual columns.
Build indexes on common combinations.

Hash indexes

Efficient for un-sorted data.

ADMT 2018/19 — Unit 14 J. Gamper 4/30

Bitmap Indexes and Bitmap Compression

Bitmap Indexes/1

A B-tree index stores a list of RowIDs for each value.

A RowID takes ≈ 8 bytes
Large space use for columns with low cardinality (gender, color).

e.g., index for 1 Bio. rows with gender takes 8 GB!

Not efficient to do “index intersection” for these columns.

ADMT 2018/19 — Unit 14 J. Gamper 5/30

Bitmap Indexes and Bitmap Compression

Bitmap Indexes/2

Bitmap index: make a “position bitmap” for each value of the column for
which the index is created.

Example: Bitmap index for gender

Female: 01110010101010. . .
Male: 10001101010101. . .

Takes only (number of values)*(number of rows) * 1 bit

Bitmap index on gender with 1 bio. rows takes only 256 MB

Very efficient to do “index intersection” (AND/OR) on bitmaps.

Can be improved for higher cardinality using compression techniques.

Supported by some RDBMSs, e.g, DB2, Oracle.

ADMT 2018/19 — Unit 14 J. Gamper 6/30

Bitmap Indexes and Bitmap Compression

Using Bitmap Indexes

Query: Find male customers in South Tyrol with blond hair and blue eyes

Male: 01010101010

South Tyrol: 00000011111

Blond 10110110110

Blue 01101101111

Result (AND) 00000000010 (only one such customer)

Range queries can also be handled

Bitmap vector for ranges of values.
Used as regular bitmaps.

Query: . . . and Salary BETWEEN 200,000 AND 300,000

200-250,000: 001001001

250-300,000: 010010010

OR together: 011011011

ADMT 2018/19 — Unit 14 J. Gamper 7/30

Bitmap Indexes and Bitmap Compression

Compressed Bitmaps – Run-length Encoding

Space use might be a problem of bitmaps

With m possible values and n records, n ·m bits are required.
However, the probability of a 1 is 1/m ⇒ very few 1’s in each vector.

Compress bitmaps using run-length encoding

A run is composed of i 0’s followed by a 1.
Determine

the binary representation of i and
the number j of bits in the binary representation of i .

If j > 1, the first bit of i is 1 and can be saved in the binary representation.

Run encoding: “〈j-1 1’s〉” + “0” + “〈bit 2. . . j of i in binary〉”
0 is a delimiter bit.

Encode next run similarly, trailing 0’s not encoded.
Special encoding of runs of length 0 and 1.

Concatenating length of run as binary numbers i won’t work, since
decoding is not unique.

ADMT 2018/19 — Unit 14 J. Gamper 8/30

Bitmap Indexes and Bitmap Compression

Run-length Encoding Example

Encoding of single runs

Run Run length i # bits j Encoding
0 0’s: 1 i = 0 = (0) j = 1 00

1 0’s: 01 i = 1 = (1) j = 1 01

2 0’s: 001 i = 2 = (1)0 j = 2 100

3 0’s: 0001 i = 3 = (1)1 j = 2 101

4 0’s: 00001 i = 4 = (1)00 j = 3 11000

Bitmap 000000010000 is encoded as 11011

1110111 without saving the first bit.

ADMT 2018/19 — Unit 14 J. Gamper 9/30

Bitmap Indexes and Bitmap Compression

Decoding Compressed Bitmaps

Decoding

Scan bits to find j : count 1s till first delimiter 0 and add 1;
Scan next j − 1 bits to find i binary: add leading ’1’ to j − 1 bits
Find next delimiter 0, etc.
Add trailing 0’s.

Example: Bitmap encoding: 11011; bitmap length = 12

j = 2 + 1 = 3
i = 7 (11 + leading 1 → 111)
Add trailing 0’s ⇒ bitmap = 00000001 + 0000

ADMT 2018/19 — Unit 14 J. Gamper 10/30

Bitmap Indexes and Bitmap Compression

Encoding/Decoding Bitmaps Example

Bitmap 0000001 01 1 00001 000...0 (n=40)

Encode:

0000001 ⇒ 11010 (i = 6 = ’110’, j = 3)
01 ⇒ 01 (i = 1 = ’1’, j = 1)
1 ⇒ 00 (i = 0 = ’0’, j = 1)
00001 ⇒ 11000 (i = 4 = ’100’, j = 3)
Final encoding: 11010010011000

Decode:

11010 ⇒ 0000001 (j = 3, i = 6 = ’(1)10’)
01 ⇒ 01 (j = 1, i = 1 = ’1’)
00 ⇒ 1 (j = 1, i = 0 = ’0’)
11000 ⇒ 00001 (j = 3, i = 4 = ’(1)00’)
Fill up remaining 0’s
Final bitmap: 0000001 01 1 00001 000...0

ADMT 2018/19 — Unit 14 J. Gamper 11/30

Bitmap Indexes and Bitmap Compression

Managing Bitmaps

Compression factor

Assume m = n (i.e., unique values)
Each value has just one run of length i < n
Each run takes at most 2 log2 n bits (j ≤ log2 n)
Total space consumption: 2n log2 n bits (compared to n2)

Operations on compressed bitmaps

Decompress one run at a time and produce relevant 1’s in output.

Storing bit vectors

Index with B-trees + store in blocks/block chains

Handling modifications

Deletion: “retire” record number + update bitmaps with 1’s
Insertion: add new record to file + update bitmaps with 1’s (trail 0’s)
Updates: update bitmaps with old and new 1’s

ADMT 2018/19 — Unit 14 J. Gamper 12/30

Advanced Bitmap Indexes

Outline

1 Bitmap Indexes and Bitmap Compression

2 Advanced Bitmap Indexes
Bit-Sliced Index
Bitmap-Encoded Index
Bitmapped Join Index

3 Physical Storage and Indexes

ADMT 2018/19 — Unit 14 J. Gamper 13/30

Advanced Bitmap Indexes Bit-Sliced Index

Bit-Sliced Index/1

A bit-sliced index for a numeric attribute C of a relation R consists of a
bit matrix B with n columns B0, . . . ,Bn−1 and as many rows as tuples in
R.

Row i represents the binary representation of the C -value of tuple i .
n is the number of bits needed by the binary representation of the maximum
value of C , i.e., log2 MaxVal .

Each column (slice) is stored separately.

Example: Bit-sliced index for Quantity with values ranging from 1-100

dlog2 100e = 7 bits are needed.

B

RID B6 B5 B4 B3 B2 B1 B0

1 0 1 0 1 1 1 1
2 0 1 0 0 0 0 0
3 1 0 1 1 0 0 1
4 0 1 1 0 1 1 0
5 0 0 1 0 0 0 0

Sales

. . . Quantity . . .

. . . 47 . . .

. . . 32 . . .

. . . 89 . . .

. . . 54 . . .

. . . 16 . . .

ADMT 2018/19 — Unit 14 J. Gamper 14/30

Advanced Bitmap Indexes Bit-Sliced Index

Bit-Sliced Index/2

Bit-sliced indexes are possible for attributes with large domains

Standard bitmap indexes grow linearly with the number of distinct attribute
values.

1 column for each value

Bit-sliced indexes have only a logarithmic grow in the size of the domain.

Boolean operators can still be applied.

To get all tuples with quantity > 63, retrieve all RIDs with B6 = 1.

B

RID B6 B5 B4 B3 B2 B1 B0

1 0 1 0 1 1 1 1
2 0 1 0 0 0 0 0
3 1 0 1 1 0 0 1
4 0 1 1 0 1 1 0
5 0 0 1 0 0 0 0

Sales

. . . Quantity . . .

. . . 47 . . .

. . . 32 . . .

. . . 89 . . .

. . . 54 . . .

. . . 16 . . .

ADMT 2018/19 — Unit 14 J. Gamper 15/30

Advanced Bitmap Indexes Bit-Sliced Index

Bit-Sliced Index/3

Bit-sliced indexes can be used to compute some aggregates without
accessing the data, e.g., SUM, AVG

Compute the sum of the binary values

Algorithm: SUM(B0, . . . ,Bn)

Input: bit-sliced index B consisting of n slices built on an integer key
Sum := 0;
for i = 0 to n do

Sum = Sum + 2i ∗# of 1’s inBi ;

return Sum;

B
RID B6 B5 B4 B3 B2 B1 B0

1 0 1 0 1 1 1 1
2 0 1 0 0 0 0 0
3 1 0 1 1 0 0 1
4 0 1 1 0 1 1 0
5 0 0 1 0 0 0 0

Sales
. . . Quantity . . .
. . . 47 . . .
. . . 32 . . .
. . . 89 . . .
. . . 54 . . .
. . . 16 . . .

ADMT 2018/19 — Unit 14 J. Gamper 16/30

Advanced Bitmap Indexes Bitmap-Encoded Index

Bitmap-Encoded Index/1

The idea of storing a binary encoding of numeric values has been applied to
non-numeric domains.

A bitmap-encoded index on an attribute C with k distinct values or a
relation R consists of a bit matrix B and a conversion table T .

B contains log2 k columns and has as many rows as tuples in R.
T contains k rows; the i-th row shows the binary coding of value ci .

Example: Bitmap encoded index for position attribute.

Employees
. . . Position . . .
. . . Adm. . . .
. . . Prog. . . .
. . . Adm. . . .
. . . Tec. . . .
. . . Prog. . . .
. . . Ass. . . .
. . . Cons. . . .
. . . Cons. . . .

B
B2 B1 B0

0 0 0
1 0 0
0 0 0
1 0 1
1 0 0
0 0 1
0 1 0
0 1 0

T
Value Coding
Adm. 000
Ass. 001
Cons. 010
Man. 011
Prog. 100
Tec. 101

ADMT 2018/19 — Unit 14 J. Gamper 17/30

Advanced Bitmap Indexes Bitmap-Encoded Index

Bitmap-Encoded Index/2

Though an additional conversion table T is needed to translate the values
encoded in the index, the index size can be considerably reduced (compared
to a bitmap index).

Bitmap-encoded index grows logarithmically in the size of the domain,
while the bitmap index grows linearly.

Boolean operators can be applied to bitmap-encoded indexes.

Any selection predicate on key values can be represented by a Boolean
expression, which selects intervals of valid binary values.

To minimize the number of bitmap vectors that need to be accessed, a
“good” encoding is crucial.

ADMT 2018/19 — Unit 14 J. Gamper 18/30

Advanced Bitmap Indexes Bitmap-Encoded Index

Coding Function

A coding function of a bitmap-encoded index is well defined for a set of
selection predicates if it minimizes the number of bit vectors to be accessed
to check for the selection predicates.

Example: Attribute with values a, b, . . . , h

Assume key ∈ {a, b, c , d} and
key ∈ {c , d , e, f } are the most frequent
predicates.

The encoding is well-defined since

the first predicate is true if the B1 vector
is 0,
the second predicate is true if the B0

vector is 1.

Value Coding (B2B1B0)
a 000
c 001
g 010
e 011
b 100
d 101
h 110
f 111

How to verify a well-defined coding?

ADMT 2018/19 — Unit 14 J. Gamper 19/30

Advanced Bitmap Indexes Bitmap-Encoded Index

Verifying Well Defined Coding Functions

Example: (contd.)

Construct a Boolean expressions for the query predicates:

key ∈ {a, b, c , d} B̄2B̄1B̄0 ∨ B2B̄1B̄0 ∨ B̄2B̄1B0 ∨ B2B̄1B0

key ∈ {c , d , e, f } B̄2B̄1B0 ∨ B2B̄1B0 ∨ B̄2B1B0 ∨ B2B1B0

Using rules of Boolean algebra, these expressions can be simplified to B̄1

(i.e., B1 = 0) and B0; only one bit vector need to be accessed.

Value Coding (B2B1B0)
a 000
c 001
g 010
e 011
b 100
d 101
h 110
f 111

ADMT 2018/19 — Unit 14 J. Gamper 20/30

Advanced Bitmap Indexes Bitmap-Encoded Index

Bitmap-Encoded Index and Hierarchies/1

Main OLAP operators are based on functional dependencies between
dimensional attributes in hierarchies.

Coding function for bitmap-encoded indexes allows to encode hierarchies.

In general, the coding function allows you to encode both many-to-one and
many-to-many associations.

ADMT 2018/19 — Unit 14 J. Gamper 21/30

Advanced Bitmap Indexes Bitmap-Encoded Index

Bitmap-Encoded Index and Hierarchies/2

Example: Product dimension with hierarchy category → type → product

Coding table on the product attribute.
Only B2 is needed to retrieve all products of a specific category.

B2 = 0 → category = Food
B2 = 1 → category = Clothes

Likewise, B2 and B1 are needed to retrieve a specific type

e.g., B2B1 = 00 represents type Cookies, B2B1 = 10 represents type Shirt.

Product Dim

Category Type Product
Food Soft dring Coca Cola
Food Cookies Chockly
Food Cookies Dippy

Clothes Shirt Button up
Clothes Shirt Classic
Clothes Necktie Imperial

Coding for Product attribute

Value Coding (B2B1B0)
Button up 100

Chockly 001
Classic 101

Coca Cola 010
Dippy 000

Imperial 110

ADMT 2018/19 — Unit 14 J. Gamper 22/30

Advanced Bitmap Indexes Bitmapped Join Index

Bitmapped Join Index/1

A bitmapped join index built on the attributes CR of a relation R and CS

of a relation S is a bit matrix B with |R| rows and |S | columns.

Bit Bi,j is 1 if the corresponding tuples satisfy the join predicate.

Example: Bitmapped join index for fact table SALES and dimension table
STORE.

e.g., Tuple 2 in SALES joins tuple 2 in STORE

RID 1 2 3 . . .

1 1 0 0 . . .
2 0 1 0 . . .
3 0 0 1 . . .
4 0 1 0 . . .
5 1 0 0 . . .

.

STORE table RIDs

SALES table RIDs

ADMT 2018/19 — Unit 14 J. Gamper 23/30

Advanced Bitmap Indexes Bitmapped Join Index

Bitmapped Join Index/2

Bitmapped join indexes can also be used to execute queries with multiple
joins (star joins).

1 Access the bitmap indexes on the dimension table(s) to identify the
dimension tuples (RIDs) that fulfill the predicates on the dimensional
attributes.

2 For every bitmapped join index, load only the bit vectors corresponding to
the RIDs identified in step 1. A bitwise OR yields the RIDi vector that
fulfills all predicates on a dimension table.

3 Perform a bitwise AND between the n vectors obtained for each dimension.

Repeat step 1 and 2 for each dimension involved in the join

ADMT 2018/19 — Unit 14 J. Gamper 24/30

Advanced Bitmap Indexes Bitmapped Join Index

Bitmapped Join Index Example

SELECT DISTINCT FT.m, DT1.a1, DTn.an

FROM FT, DT1, ..., DTn

WHERE FT.a1 = DT1.a1

AND ...

AND FT.an = DTn.an

AND DT1.b1 = ’val1’

...

AND DTn.bn = ’valn’

Bitmap index built on the DTi .bi attribute

RID val1 val2 . . . vali . . . valh
1 1 0 . . . 0 . . . 0
2 0 0 . . . 0 . . . 1
3 0 1 . . . 0 . . . 0
4 0 0 . . . 1 . . . 0
5 0 0 . . . 1 . . . 0

. .

Bitmapped join index FT .ai = DTi .ai
RID 1 2 3 4 5 . . .

1 0 0 0 1 0 . . .
2 0 0 0 1 0 . . .
3 0 0 1 0 0 . . .
4 1 0 0 0 0 . . .
5 0 0 0 0 1 . . .
6 0 1 0 0 0 . . .
7 0 0 0 0 1 . . .

. .

RID 4

1
1
0
0
0
0
0

. . .

bitwise OR

RID 5

0
0
0
0
1
0
1

. . .

=

RIDi

1
1
0
0
1
0
1

. . .

RID1

0
1
1
0
1
0
0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

RIDi

1
1
0
0
1
0
1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

RIDn

1
1
0
1
1
0
0

. . .

−→

RID

1
2
3
4
5
6
7

. . .

FT RIDs that fulfill all
predicates

1

2

3

ADMT 2018/19 — Unit 14 J. Gamper 25/30

Physical Storage and Indexes

Outline

1 Bitmap Indexes and Bitmap Compression

2 Advanced Bitmap Indexes
Bit-Sliced Index
Bitmap-Encoded Index
Bitmapped Join Index

3 Physical Storage and Indexes

ADMT 2018/19 — Unit 14 J. Gamper 26/30

Physical Storage and Indexes

Physical Storage

Partitioning

Data stored in large “lumps” (partitions)
Example: one partition per quarter.
Queries need only read the relevant partitions.
Can yield large performance improvements.

Operations on partitions are independent

Creation, deletion, update, indexing.
Aggregation level can be different among partitions.

Column storage

Data stored in columns, not in rows.
A “reverse” kind of partitioning.
Works well for typical DW queries (only few columns accessed).
Supports good compression of data.

ADMT 2018/19 — Unit 14 J. Gamper 27/30

Physical Storage and Indexes

Physical Configuration

RAID

Gives (depending on level) error tolerance and improved read speed.
DW optimized for reads, not for writes.
DW well suited for, e.g., RAID5 (20% redundancy).

Disk type

Small drives (many controllers) are more expensive, but faster.
Large drives are cheaper, store more aggregates for same price.

Block size

Large sequential reads faster with large blocks (32K).
Scattered index reads faster with small blocks (4K).

Memory

RAM is cheap: buy a lot.
RAM caching must be per user session.

Monitoring user activity

Can give feedback to, e.g., choice of aggregates.

ADMT 2018/19 — Unit 14 J. Gamper 28/30

Physical Storage and Indexes

DBMS Functionalities

Aggregate navigation/use

Oracle 9iR2, DB2 UDB, MS Analysis Services

Aggregate choice

Oracle 9iR2, DB2 UDB, MS Analysis Services

Aggregate maintenance

Oracle 9iR2, DB2 UDB, MS Analysis Services

Using ordinary indexes

Oracle 9iR2, DB2 UDB, MS SQL Server can do “star joins”

Bitmap indexes

Oracle 9iR2, DB2 UDB not yet in MS SQL Server

Partitioning

Oracle 9iR2, DB2 UDB, MS SQL Server+Analysis Services

Column storage

MonetDB, DB2

MOLAP/ROLAP/HOLAP

Oracle 9iR2, DB2 UDB, MS SQL Server

ADMT 2018/19 — Unit 14 J. Gamper 29/30

Summary

Bitmap indexes are haevily used by data warehouses.

Bitmap compression can significantly reduce the size of bitmap indexes.

Run-length encoding is a widely used technique

Different versions of bitmap-based indices

Bitmap index for categorical attributes with low cardinality.
Bitmap-encoded index for categorical domains with many different values.
Bit-sliced index for numerical attributes.
Bimapped join index for the efficient evaluation of joins (including star
joins).

ADMT 2018/19 — Unit 14 J. Gamper 30/30

	Bitmap Indexes and Bitmap Compression
	Advanced Bitmap Indexes
	Bit-Sliced Index
	Bitmap-Encoded Index
	Bitmapped Join Index

	Physical Storage and Indexes

