Acknowledgements: I am indebted to M. Böhlen for providing me the lecture notes.
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Observations
- DW queries are simple, follow the same “schema”
- Aggregate measure per dim_attr_1, dim_attr_2, ...

Idea
- Compute and store query results in advance (preaggregation)

Example: Store “total sales per month and product”
- Yields large performance improvements (factor 100,1000, ...).
- No need to store everything: re-use is possible.
 - e.g., quarterly total can be computed from monthly total.

Prerequisites for pre-aggregation
- Tree-structured dimensions.
- Many-to-one relationships from fact to dimensions.
- Facts mapped to bottom level in all dimensions.
- Otherwise, re-use is not possible.
Pre-Aggregation Example

- Imagine 1 bio. sales rows, 1000 products, 100 locations
- Create a materialized view
 - `CREATE VIEW TotalSales (pid, locid, total) AS
 SELECT s.pid, s.locid, SUM(s.sales)
 FROM Sales s
 GROUP BY s.pid, s.locid`
 - The materialized view has 100’000 rows.
- Query rewritten to use the view
 - `SELECT p.category, SUM(s.sales)
 FROM Products p, Sales s
 WHERE p.pid=s.pid
 GROUP BY p.category`
 - Rewritten to
 - `SELECT p.category, SUM(t.total)
 FROM Products p, TotalSales t
 WHERE p.pid=t.pid
 GROUP BY p.category`
 - Query becomes 10’000 times faster!
Pre-Aggregation Choices

- **Full** pre-aggregation: all combinations of levels
 - Fast query response
 - Takes a lot of space/update time (200-500 times raw data)
- **No** pre-aggregation:
 - Slow query response (for terabytes)
- **Practical** pre-aggregation: chosen combinations
 - A good compromise between response time and space use
- **Most (R)OLAP tools today** support practical pre-aggregation
 - IBM DB2 UDB
 - Oracle 9iR2
 - MS Analysis Services
 - Hyperion Essbase (DB2 OLAP Services)
Using Aggregates

- Given a query, the best pre-aggregate must be found.
 - Should be done by the system, not by the user.
- The four design goals for aggregate usage:
 - Aggregates are stored separately from detail data.
 - “Shrunken” dimensions (i.e., subset of a dimension’s attributes that apply to the aggregation) are mapped to aggregate facts.
 - Connection between aggregates and detail data known by the system.
 - All queries (SQL) refer to detail data only.
- Aggregates are used via aggregate navigator
 - For a query, the best aggregate is found by the system, and the query is rewritten to use it.
 - Traditionally done in middleware, e.g., ODBC.
 - Can now (most often) be performed directly by the DBMS.
- SUM, MIN, MAX, COUNT, AVG can all be handled.
Choosing Aggregates

- Using practical pre-aggregation, it must be decided what aggregates to store.
- This is a non-trivial (NP-complete) optimization problem
- Many influencing factors
 - Space use
 - Update speed
 - Response time demands
 - Actual queries
 - Prioritization of queries
 - Index and/or aggregates
- Only choose an aggregate if it is considerably smaller than available, usable aggregates (factor 3-5-10).
- Often supported (semi-)automatically by tools/DBMSs
 - Oracle, DB2, MS SQL Server
MS Analysis Aggregate Choice

- Can also log and use knowledge of actual queries.
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Implementing Data Cubes Efficiently

- The data cube stores multidimensional GROUP BY relations of tables in data warehouses.

- Classic SIGMOD 1996 paper
 - Harinarayan, Rajaraman, and Ullman: *Implementing Data Cubes Efficiently*.

- Simple but effective approach.

- Almost all DBMSes (ROLAP + MOLAP) now use similar, but more advanced, techniques for determining best aggregates to materialize.
Example: Sales fact table with dimensions part (p), supplier (s), customer (c)
- 8 possible groupings of attributes (or views) with 3 dimensions.
- Each grouping gives the total sales as per that grouping.

- Groupings
 - part, supplier, customer (6M rows)
 - part, customer (6M)
 - part, supplier (0.8M)
 - supplier, customer (6M)
 - part (0.2M)
 - supplier (0.01M)
 - customer (0.1M)
 - none (1)

- 8 views organized into a lattice
Picking the right views to materialize improves the query performance.

Query: What are the sales of a part?
- If view pc is available, will need to process about 6M rows.
- If view p is available, will need to process about 0.2M rows.

Questions
- How many views to materialize to get good performance?
- Given that we have space S, what views to materialize to minimize average query costs?

View pc and sc are not needed!
- This reduces effective rows needed from 19M to 7M – a reduction of 60%.
Lattice Framework

- **Lattice**: A pair \((L, \leq)\), where \(L\) is a set of queries and \(\leq\) is a dependence relation.
 - \(Q_1 \leq Q_2\) if query \(Q_1\) can be answered using only the results of query \(Q_2\).
 - In other words, \(Q_1\) is dependent on \(Q_2\).

- The \(\leq\) operator imposes a partial ordering on the queries.
- Partial ordering imposes strict requirements as to what is a lattice.
- However, in practice, we only need to assume there is a top view in which every view is dependent upon.
- Essentially, the lattice models dependencies among queries/views and can be represented by a lattice graph.
Hierarchies and the Lattice Framework

- Hierarchies are important as they underlay two commonly used query operations, **drill-down** and **roll-up**.

A common hierarchy

```
none -> Year -> Month -> Day
  |      |
  v      v
Week    Month
```

...and its dependency relations

- \(Year \leq Month \leq Day \)
- \(Week \leq Day \)
- but \(Month \nless\leq Week \) and \(Week \nless\leq Month \)

- **BUT**: hierarchies introduce query dependencies that must be accounted for when determining which queries to materialize; and this can be complex.
Composite Lattices

- Dependencies caused by different dimensions and attribute hierarchies can be combined into a **direct product lattice**.
- Assume views can be created by independently grouping any or no member of the hierarchy for each of the n dimensions.
Applicability of Lattice Framework

- The lattice framework is advantageous for several reasons
 - It provides a **clean framework** to reason with dimensional hierarchies, since hierarchies are themselves lattices.
 - Able to model common queries better as users don’t jump between unconnected elements in the lattice, instead, they move along edges of the lattice.
 - A simple descending-order topological sort on the \(\leq \) operator gives the required **order of materialization**.
 - A framework to calculate the cost of answering a query based on other queries.
Important assumptions

- Time to answer a query is equal to the space occupied by the query (view) from which the query is answered.
- All queries are identical to some queries in the given lattice.
- The clustering of the materialized query and indexes have not been considered.

Example:

- To answer query Q, we choose an ancestor of Q, say Q_a, that has been materialized.
- We thus need to process the table of Q_a.
- The cost of answering Q is a function of the size of the table Q_a.
- Thus, the cost of answering Q is the number of rows present in the table for that query Q_a used to answer Q.
Cost Model/2

- An experimental validation of the cost model found almost a linear relationship between size and running time.
- **Query:** Total sales for a supplier, using different views.

<table>
<thead>
<tr>
<th>Source</th>
<th>Size S</th>
<th>Time T</th>
<th>Ratio m</th>
</tr>
</thead>
<tbody>
<tr>
<td>From cell itself</td>
<td>1</td>
<td>2.07</td>
<td>-</td>
</tr>
<tr>
<td>From view s</td>
<td>10,000</td>
<td>2.38</td>
<td>.000031</td>
</tr>
<tr>
<td>From view ps</td>
<td>0.8M</td>
<td>20.77</td>
<td>.000023</td>
</tr>
<tr>
<td>From view psc</td>
<td>6M</td>
<td>226.23</td>
<td>.000037</td>
</tr>
</tbody>
</table>

- This relationship can be expressed by $T = m \times S + c$, where c is the fixed cost and m is the ratio of the query time to the size of the view (i.e., $m = (T - c)/S$).
- Assumption: The number of rows present in each view is known (not simple, but many ways of estimating the size are available, e.g., sampling, use statistically representative subset).
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Greedy Algorithm/1

- Given a data cube lattice with space costs associated with each view, the **Greedy algorithm** selects a set of k views to materialize.

Algorithm: The Greedy algorithm

\[
S = \{\text{top view}\}; \\
\text{for } i = 1 \text{ to } k \text{ do} \\
\quad \text{Select view } v \text{ not in } S \text{ such that the benefit } B(v, S) \text{ is maximized;} \\
\quad S = S \cup \{v\}; \\
\text{return } S;
\]

- The algorithm optimizes the space-time trade-off.
 - The top view should always be included because it cannot be generated from other views.
 - Suppose we may only select k number of views in addition to the top view.
 - After selecting set S of views, the benefit $B(v, S)$ of view v relative to S, is based on how v can improve the costs of evaluating views, including itself.
 - The total benefit of v is the sum over all views w of the benefit of using v to evaluate w, providing that benefit is positive.
The benefit $B(v, S)$ of view v relative to S is defined as follows:

- For each view $w \leq v$, define the quantity B_w as follows:
 - Let u be the view of least cost in S such that $w \leq u$.
 - $B_w = \begin{cases}
 C(u) - C(v) & \text{if } C(v) \leq C(u) \\
 0 & \text{otherwise}
 \end{cases}$

- Then, the benefit is $B(v, S) = \sum_{w \leq v} B_w$.
Consider the following lattice with the indicated space costs, which are used for calculating the benefit.

Top view \(a\) must be chosen.

We want to choose 3 other views.

At each round, we pick the view that will result in the most benefits after accounting for results of previous rounds.

In round 1, view \(b\) can answer 5 queries (\(d, e, g, h\) and itself) at a cost of 50 each.

This represents a cost reduction of 250 as compared to if view \(b, d, e, g, h\) were to be answered by using view \(a\) at a cost of 100 each.

Thus, view \(b\) gives the biggest benefit of 250.

Benefits of possible choices at each round

<table>
<thead>
<tr>
<th>View</th>
<th>Choice 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>(50 \times 5 = 250)</td>
</tr>
<tr>
<td>(c)</td>
<td>(25 \times 5 = 125)</td>
</tr>
<tr>
<td>(d)</td>
<td>(80 \times 2 = 160)</td>
</tr>
<tr>
<td>(e)</td>
<td>(70 \times 3 = 210)</td>
</tr>
<tr>
<td>(f)</td>
<td>(60 \times 2 = 120)</td>
</tr>
<tr>
<td>(g)</td>
<td>(99 \times 1 = 99)</td>
</tr>
<tr>
<td>(h)</td>
<td>(90 \times 1 = 90)</td>
</tr>
</tbody>
</table>
In round 2, the cost of view a of 100 applies only to certain views.

b, d, e, g and h would have a cost of 50.

Thus, the benefit of view f wrt view h is the difference between 50 and 40.

After 3 rounds, the total costs of evaluating all views can be reduced to 420 from the initial 800.

<table>
<thead>
<tr>
<th></th>
<th>Choice 1</th>
<th>Choice 2</th>
<th>Choice 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>50 x 5 = 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>25 x 5 = 125</td>
<td>25 x 2 = 50</td>
<td>25 x 1 = 25</td>
</tr>
<tr>
<td>d</td>
<td>80 x 2 = 160</td>
<td>30 x 2 = 60</td>
<td>30 x 2 = 60</td>
</tr>
<tr>
<td>e</td>
<td>70 x 3 = 210</td>
<td>20 x 3 = 60</td>
<td>2 x 20 + 10 = 50</td>
</tr>
<tr>
<td>f</td>
<td>60 x 2 = 120</td>
<td>60 + 10 = 70</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>99 x 1 = 99</td>
<td>49 x 1 = 49</td>
<td>49 x 1 = 49</td>
</tr>
<tr>
<td>h</td>
<td>90 x 1 = 90</td>
<td>40 x 1 = 40</td>
<td>30 x 1 = 30</td>
</tr>
</tbody>
</table>
Greedy Algorithm vs. Optimal Choice

There will be situations where the algorithm does poorly.

- Round 1: Picks c whose benefit is 4141.
- Round 2: Can pick b or d with benefits of 2100 each.
- Greedy results in benefit of $4141 + 2100 = 6241$.
- But, the optimal choice is to pick b and d.
- b and d would improve by 100 for itself and all 80 nodes below resulting in total benefits of 8200.
- Ratio of $\text{greedy/optimal} = \frac{6241}{8200} = 76\%$
- But: the benefit of the greedy algorithm is at least 63% of the benefit of the optimal algorithm (shown by the authors).
Greedy Algorithm – Space vs. Time

- Experiment with composite lattice shows that it is important to materialize some views but not all.
- Performance increases at first, but after 5 views, increase of performance gets small even as more space is used.

Greedy order of view selection for TPC-D based example.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Benefit</th>
<th>TotTime</th>
<th>TotSpace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cp</td>
<td>infinite</td>
<td>72M rows</td>
<td>6nM rows</td>
</tr>
<tr>
<td>2 ns</td>
<td>24M rows</td>
<td>48M</td>
<td>6M</td>
</tr>
<tr>
<td>3 nt</td>
<td>12M</td>
<td>36M</td>
<td>6M</td>
</tr>
<tr>
<td>4 c</td>
<td>5.9M</td>
<td>30.1M</td>
<td>6.1M</td>
</tr>
<tr>
<td>5 p</td>
<td>5.8M</td>
<td>24.3M</td>
<td>6.3M</td>
</tr>
<tr>
<td>6 cs</td>
<td>1M</td>
<td>23.3M</td>
<td>11.3M</td>
</tr>
<tr>
<td>7 np</td>
<td>1M</td>
<td>23.3M</td>
<td>16.3M</td>
</tr>
<tr>
<td>8 ct</td>
<td>0.01M</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>9 t</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>10 n</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>11 s</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>12 none</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
</tbody>
</table>
Two situations where the algorithm is optimal.

- If the benefit of the first view is much larger than the other benefits, the greedy is close to optimal.
- If all the benefits are equal then greedy is optimal.

But there are also two situations where the algorithm is not realistic.

- Views in a lattice are unlikely to have the same probability of being requested in a query; hence, probabilities should be associated to each view.
- Instead of asking for some fixed number of views to materialize, should instead allocate a fixed amount of space to views.
Hypercube Lattices – Observations

- The size of views grows exponentially, until it reaches the size of the raw data at rank $\lceil \log_r m \rceil$ (i.e., the “cliff”).

Assumptions and basis of reasoning

- Each domain size is r.
- Top element has m cells appearing in raw data.
- If group on i attributes, cube has r^i cells.
- If $r^i \geq m$, then each cell will have at most one data point. Space cost is m.
- If $r^i < m$, then almost all r^i cells will have at least one data point. Space cost is r^i as several data points can be collapsed into one aggregate.

- This explains why grouping of 2 attributes (p,c), (s,c) have the same size as (p,s,c) at 6M rows.
Inevitably, questions will be raised about space and time optimality of hypercubes.

What is the average time for a query when the space is optimal?
- Space is minimized when only the top view is materialized.
- Every query would take time m.
- Total time cost for all 2^n queries is $m2^n$.

Is there sense to minimize time by materializing all views?
- No gain past the cliff.
- No point to do so.
- Nature of time-optimal solution is to get as close to the cliff as possible.
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
View Maintenance

- Views (pre-aggregates) are used to speed up querying.
- How and when should we refresh materialized views?
- Total re-computation
 - Most often too expensive
- Incremental view maintenance
 - Apply only changes since last refresh to view.
 - $r_i =$ inserted rows into relation r
 - $r_d =$ deleted rows from relation r
- Additional info must be stored to make views self-maintainable
 - Number of derivations c (count) along with each row in view v
 - Thus, tuples in view have the form (a_1, \ldots, a_k, c)
Projection View Maintenance

- **Projection** views with DISTINCT
- **View** $v = \pi_{A_1, \ldots, A_k}(r)$
- **Insertion** of tuples r_i

```
foreach tuple $(a_1, \ldots, a_k) \in \pi_{A_1, \ldots, A_k}(r_i) \ do$
    Let $c_i$ be # occurrences of the tuple;
    if $(a_1, \ldots, a_k, c) \in v$ then
        $c = c + c_i$
    else
        Insert $(r, c_i)$ into $V$
```

- **Deletion** of tuples r_d

```
foreach $(a_1, \ldots, a_k) \in \pi_{A_1, \ldots, A_k}(r_d) \ do$
    Let $c_d$ be # of occurrences of the tuple;
    if $(a_1, \ldots, a_k, c) \in v$ then
        $c = c - c_d$
    if $c = 0$ then
        Delete $(a_1, \ldots, a_k, c)$ from $v$
```
Projection View Maintenance Example

Relation r, view v

Insert tuple $(b, 4)$

<table>
<thead>
<tr>
<th>r</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

$v = \pi_A(r)$

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

Delete tuples $\{(c, 3), (a, 2)\}$

<table>
<thead>
<tr>
<th>r</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

$v = \pi_A(r)$

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Join View Maintenance

- Join views
- View $v = r \Join s$
- Insertion of r_i:
 - Compute $r_i \Join s$ and add to v, update counts.
- Deletion of r_d:
 - Compute $r_d \Join s$ and subtract from v, update counts.
COUNT

- **COUNT**
 - Maintain tuples of the form \((g_1, \ldots, g_m, c)\)
 - \(g_1, \ldots, g_m\) are the grouping attribute values
 - \(c\) is a counter
 - Update count \(c\) based on inserts \((r_i)\) and deletes \((r_d)\)
 - Insert row \((g_1, \ldots, g_m, 1)\) for new groups
 - Delete row \((g_1, \ldots, g_m, c)\) from \(v\) if \(c = 0\)

SUM

- **SUM**
 - Maintain tuples of the form \((g_1, \ldots, g_m, sum, c)\)
 - Update count \((c)\) and sum \((sum)\) based on inserts \((r_i)\) and deletes \((r_d)\)
 - Insert row \((g_1, \ldots, g_m, val, 1)\) for new grouping attribute values
 (\(val\) is the value of attribute over which SUM is applied)
 - Delete row \((g_1, \ldots, g_m, sum, c)\) from \(v\) if \(c = 0\).

AVG

- **AVG**
 - Computed as pair SUM/COUNT
MIN/MAX Aggregation View Maintenance

- **MIN** *(MAX works similar)*
 - Maintain tuples \(x = (g_1, \ldots, g_m, \text{min}, c) \)
 - Update \(\text{min} \) and \(c \) based on inserts \((r_i) \) and deletes \((r_d) \) and whether \(\text{val} \in \{=, <, >\} \) \(\text{min} \)
 - Insert tuple \((g_1, \ldots, g_m, \text{val}) \)
 - if \(\text{val} < \text{min} \) then
 - \(x = (g_1, \ldots, g_m, \text{val}, 1) \)
 - else if \(\text{val} = \text{min} \) then
 - \(x = (g_1, \ldots, g_m, \text{min}, c + 1) \)
 - Delete tuple \((g_1, \ldots, g_m, \text{val}) \)
 - if \(\text{val} = \text{min} \) then
 - \(x = (g_1, \ldots, g_m, \text{min}, c - 1) \);
 - if \(c = 0 \) then
 - Scan table for new values for \(\text{min} \) and \(c \) (expensive!)
Aggregation View Maintenance Example/1

- Determine a view for \(\text{MIN} \) using SQL
 - Input: relation \(r \) with schema \((A, B)\)
 - Output: relation with schema \((A, \text{MIN}(B), \text{count of MIN}(B))\)

Solution 1

```
SELECT t.*, ( SELECT COUNT(*) Cnt 
FROM r 
WHERE A = t.A AND B = t.MinB )
FROM ( SELECT A, MIN(B) MinB 
FROM r 
GROUP BY A ) t;
```

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>MinB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>MinB</th>
<th>Cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Aggregation View Maintenance Example/2

Solution 2

\[
\text{SELECT A, B, COUNT(*)}
\text{FROM r}
\text{GROUP BY A, B}
\text{HAVING (A, B) IN (SELECT A, MIN(B)
 FROM r
 GROUP BY A)};
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>MIN(B)</th>
<th>Cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Aggregation View Maintenance Example/3

Solution 3

```
SELECT A, B, COUNT(*)
FROM r AS t
WHERE B = ( SELECT MIN(B)
            FROM r
            WHERE A = t.A )
GROUP BY A, B;
```

<table>
<thead>
<tr>
<th>r</th>
<th>a=1</th>
<th>a=2</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MIN(B)</td>
<td>MIN(B)</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aggregation View Maintenance Example/4

Solution 4 using GMD-join

\[x = \text{MD}(r/b, \text{r}, (\text{MIN}(B)/\text{Min}), (\text{COUNT}(\ast)/\text{Cnt})), (\text{r}.A = \text{b}.A), (\text{r}.A = \text{b}.A \text{ AND } \text{r}.B = \text{b}.B)) \]

result = \[\pi_{a,\text{min},\text{cnt}}(\sigma_{b=\text{min}}(x)) \]

<table>
<thead>
<tr>
<th>r</th>
<th>x</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[a | \text{min}(b) | \text{cnt} \]
\[1 | 2 | 2 \]
\[2 | 3 | 1 \]
Practical View Maintenance

When to synchronize views?
- **Immediate** - in same transaction as base changes.
- **Lazy** - when view is used for the first time after base updates.
- **Periodic** – e.g., once a day, often together with base load.
- **Forced** - after a certain number of changes.

Updating aggregates
- Computation outside DBMS in flat files (no longer very relevant!).
- Built by loader.
- Computation in DBMS using SQL.
- Can be expensive: DBMS must be tuned for this.

Supported by tool/DBMS
- Oracle, SQL Server, DB2
Summary

- **Pre-aggregation** is a key technique to boost performance.
- Data warehouses **automatically determine** views to materialize and when to use them.
- Problems in deciding which set of views to materialize to improve query performance.
- **Lattice framework**: views are organized in a lattice.
- Notion of linear cost in query processing.
- **Greedy algorithm** that picks the right views.
- Some observations about hypercubes and time-space trade-off.
- Views have to be **maintained**.
- **Incremental view maintenance** is state-of-the-art
 - Needs to store a count to trace the number of supporting tuples.