Acknowledgements: I am indebted to M. Böhlen for providing me the lecture notes.
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Observations
- DW queries are simple, follow the same “schema”
- Aggregate measure per dim_attr_1, dim_attr_2, ...

Idea
- Compute and store query results in advance (preaggregation)

Example: Store “total sales per month and product”
- Yields large performance improvements (factor 100, 1000, ...).
- No need to store everything: re-use is possible.
 - e.g., quarterly total can be computed from monthly total.

Prerequisites for pre-aggregation
- Tree-structured dimensions.
- Many-to-one relationships from fact to dimensions.
- Facts mapped to bottom level in all dimensions.
- Otherwise, re-use is not possible.
Pre-Aggregation Example

- Imagine 1 billion sales rows, 1000 products, 100 locations
- Create a materialized view

  ```sql
  CREATE VIEW TotalSales (pid, locid, total) AS
  SELECT s.pid, s.locid, SUM(s.sales)
  FROM Sales s
  GROUP BY s.pid, s.locid
  
  The materialized view has 100,000 rows.
  ```
- Query rewritten to use the view

  ```sql
  SELECT p.category, SUM(s.sales)
  FROM Products p, Sales s
  WHERE p.pid=s.pid
  GROUP BY p.category
  
  Rewritten to
  ```sql
 SELECT p.category, SUM(t.total)
 FROM Products p, TotalSales t
 WHERE p.pid=t.pid
 GROUP BY p.category
  ```
- Query becomes 10,000 times faster!
Pre-Aggregates

Pre-Aggregation Choices

- **Full** pre-aggregation: all combinations of levels
  - Fast query response
  - Takes a lot of space/update time (200-500 times raw data)

- **No** pre-aggregation:
  - Slow query response (for terabytes)

- **Practical** pre-aggregation: chosen combinations
  - A good compromise between response time and space use

- Most (R)OLAP tools *today* support practical pre-aggregation
  - IBM DB2 UDB
  - Oracle 9iR2
  - MS Analysis Services
  - Hyperion Essbase (DB2 OLAP Services)
Using Aggregates

- Given a query, the best pre-aggregate must be found.
  - Should be done by the system, not by the user.
- The **four design goals** for aggregate usage:
  - Aggregates are stored separately from detail data.
  - “Shrunk” dimensions (i.e., subset of a dimension’s attributes that apply to the aggregation) are mapped to aggregate facts.
  - Connection between aggregates and detail data known by the system.
  - All queries (SQL) refer to detail data only.
- Aggregates are used via aggregate navigator
  - For a query, the best aggregate is found by the system, and the query is rewritten to use it.
  - Traditionally done in middleware, e.g., ODBC.
  - Can now (most often) be performed directly by the DBMS.
- **SUM, MIN, MAX, COUNT, AVG** can all be handled.
Choosing Aggregates

- Using practical pre-aggregation, it must be decided what aggregates to store.
- This is a non-trivial (NP-complete) optimization problem.
- Many influencing factors:
  - Space use
  - Update speed
  - Response time demands
  - Actual queries
  - Prioritization of queries
  - Index and/or aggregates
- Only choose an aggregate if it is considerably smaller than available, usable aggregates (factor 3-5-10).
- Often supported (semi-)automatically by tools/DBMSs:
  - Oracle, DB2, MS SQL Server
MS Analysis Aggregate Choice

- Can also log and use knowledge of actual queries.
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
The data cube stores multidimensional GROUP BY relations of tables in data warehouses.

Classic SIGMOD 1996 paper
- Harinarayan, Rajaraman, and Ullman: *Implementing Data Cubes Efficiently*.

Simple but effective approach.

Almost all DBMSes (ROLAP + MOLAP) now use similar, but more advanced, techniques for determining best aggregates to materialize.
**Example:** Sales fact table with dimensions part (p), supplier (s), customer (c)
- 8 possible groupings of attributes (or views) with 3 dimensions.
- Each grouping gives the total sales as per that grouping.

- Groupings
  - part, supplier, customer (6M rows)
  - part, customer (6M)
  - part, supplier (0.8M)
  - supplier, customer (6M)
  - part (0.2M)
  - supplier (0.01M)
  - customer (0.1M)
  - none (1)

- 8 views organized into a **lattice**

![Diagram of a lattice structure showing 8 views organized into a lattice.

Parent nodes: psc 6M, pc 6M, ps 0.8M, sc 6M
Child nodes: p 0.2M, s 0.01M, c 0.1M, c 1](image)
Picking the right views to materialize improves the query performance.

Query: What are the sales of a part?
- If view pc is available, will need to process about 6M rows.
- If view p is available, will need to process about 0.2M rows.

Questions
- How many views to materialize to get good performance?
- Given that we have space S, what views to materialize to minimize average query costs?
- View pc and sc are not needed!
  - This reduces effective rows needed from 19M to 7M – a reduction of 60%.
Lattice Framework

- **Lattice:** A pair \((L, \leq)\), where \(L\) is a set of queries and \(\leq\) is a dependence relation.
  - \(Q_1 \leq Q_2\) if query \(Q_1\) can be answered using only the results of query \(Q_2\).
  - In other words, \(Q_1\) is dependent on \(Q_2\).

- The \(\leq\) operator imposes a partial ordering on the queries.
- Partial ordering imposes strict requirements as to what is a lattice.
- However, in practice, we only need to assume there is a top view in which every view is dependent upon.
- Essentially, the lattice models dependencies among queries/views and can be represented by a lattice graph.
Hierarchies and the Lattice Framework

- Hierarchies are important as they underlay two commonly used query operations, drill-down and roll-up.

A common hierarchy

- Year \leq Month \leq Day
- Week \leq Day
- but Month \not\leq Week and Week \not\leq Month

BUT: hierarchies introduce query dependencies that must be accounted for when determining which queries to materialize; and this can be complex.
Dependencies caused by different dimensions and attribute hierarchies can be combined into a **direct product lattice**.

Assume views can be created by independently grouping any or no member of the hierarchy for each of the $n$ dimensions.
Applicability of Lattice Framework

- The lattice framework is advantageous for several reasons
  - It provides a clean framework to reason with dimensional hierarchies, since hierarchies are themselves lattices.
  - Able to model common queries better as users don’t jump between unconnected elements in the lattice, instead, they move along edges of the lattice.
  - A simple descending-order topological sort on the $\leq$ operator gives the required order of materialization.
  - A framework to calculate the cost of answering a query based on other queries.
Important assumptions

- Time to answer a query is equal to the space occupied by the query (view) from which the query is answered.
- All queries are identical to some queries in the given lattice.
- The clustering of the materialized query and indexes have not been considered.

Example:

- To answer query $Q$, we choose an ancestor of $Q$, say $Q_a$, that has been materialized.
- We thus need to process the table of $Q_a$.
- The cost of answering $Q$ is a function of the size of the table $Q_a$.
- Thus, the cost of answering $Q$ is the number of rows present in the table for that query $Q_a$ used to answer $Q$. 
An experimental validation of the cost model found **almost a linear relationship between size and running time.**

**Query:** Total sales for a supplier, using different views.

<table>
<thead>
<tr>
<th>Source</th>
<th>Size $S$</th>
<th>Time $T$</th>
<th>Ratio $m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>From cell itself</td>
<td>1</td>
<td>2.07</td>
<td>-</td>
</tr>
<tr>
<td>From view $s$</td>
<td>10,000</td>
<td>2.38</td>
<td>.000031</td>
</tr>
<tr>
<td>From view $ps$</td>
<td>0.8M</td>
<td>20.77</td>
<td>.000023</td>
</tr>
<tr>
<td>From view $psc$</td>
<td>6M</td>
<td>226.23</td>
<td>.000037</td>
</tr>
</tbody>
</table>

This relationship can be expressed by $T = m \ast S + c$, where $c$ is the fixed cost and $m$ is the ratio of the query time to the size of the view (i.e., $m = (T - c)/S$).

**Assumption:** The number of rows present in each view is known (not simple, but many ways of estimating the size are available, e.g., sampling, use statistically representative subset).
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm
4. View Maintenance
Given a data cube lattice with space costs associated with each view, the **Greedy algorithm** selects a set of \( k \) views to materialize.

**Algorithm:** The Greedy algorithm

\[
S = \{ \text{top view} \}; \\
\text{for } i = 1 \text{ to } k \text{ do} \\
\quad \text{Select view } \nu \text{ not in } S \text{ such that the benefit } B(\nu, S) \text{ is maximized;} \\
\quad S = S \cup \{ \nu \}; \\
\text{return } S;
\]

The algorithm optimizes the space-time trade-off.

- The top view should always be included because it cannot be generated from other views.
- Suppose we may only select \( k \) number of views in addition to the top view.
- After selecting set \( S \) of views, the benefit \( B(\nu, S) \) of view \( \nu \) relative to \( S \), is based on how \( \nu \) can improve the costs of evaluating views, including itself.
- The total benefit of \( \nu \) is the sum over all views \( w \) of the benefit of using \( \nu \) to evaluate \( w \), providing that benefit is positive.
The **benefit** $B(v, S)$ of view $v$ relative to $S$ is defined as follows:

- For each view $w \leq v$, define the quantity $B_w$ as follows:
  - Let $u$ be the view of least cost in $S$ such that $w \leq u$.
  - $B_w = \begin{cases} C(u) - C(v) & \text{if } C(v) \leq C(u) \\ 0 & \text{otherwise} \end{cases}$

Then, the benefit is $B(v, S) = \sum_{w \leq v} B_w$. 
Consider the following lattice with the indicated space costs, which are used for calculating the benefit.

Top view a must be chosen.

We want to choose 3 other views.

At each round, we pick the view that will result in the most benefits after accounting for results of previous rounds.

In round 1, view b can answer 5 queries (d, e, g, h and itself) at a cost of 50 each.

This represents a cost reduction of 250 as compared to if view b, d, e, g, h were to be answered by using view a at a cost of 100 each.

Thus, view b gives the biggest benefit of 250.
Greedy Algorithm: Example/2

- In round 2, the cost of view a of 100 applies only to certain views.
- b, d, e, g and h would have a cost of 50.
- Thus, the benefit of view f wrt view h is the difference between 50 and 40.
- After 3 rounds, the total costs of evaluating all views can be reduced to 420 from the initial 800.

Benefits of possible choices at each round

<table>
<thead>
<tr>
<th></th>
<th>Choice 1</th>
<th>Choice 2</th>
<th>Choice 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>50 x 5 = 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>25 x 5 = 125</td>
<td>25 x 2 = 50</td>
<td>25 x 1 = 25</td>
</tr>
<tr>
<td>d</td>
<td>80 x 2 = 160</td>
<td>30 x 2 = 60</td>
<td>30 x 2 = 60</td>
</tr>
<tr>
<td>e</td>
<td>70 x 3 = 210</td>
<td>20 x 3 = 60</td>
<td>2 x 20 + 10 = 50</td>
</tr>
<tr>
<td>f</td>
<td>60 x 2 = 120</td>
<td>60 + 10 = 70</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>99 x 1 = 99</td>
<td>49 x 1 = 49</td>
<td>49 x 1 = 49</td>
</tr>
<tr>
<td>h</td>
<td>90 x 1 = 90</td>
<td>40 x 1 = 40</td>
<td>30 x 1 = 30</td>
</tr>
</tbody>
</table>
Greedy Algorithm vs. Optimal Choice

There will be situations where the algorithm does poorly.

- Round 1: Picks c whose benefit is 4141.
- Round 2: Can pick b or d with benefits of 2100 each.
- Greedy results in benefit of $4141 + 2100 = 6241$.
- But, the optimal choice is to pick b and d.
- b and d would improve by 100 for itself and all 80 nodes below resulting in total benefits of 8200.
- Ratio of $\text{greedy} / \text{optimal} = 6241 / 8200 = 76\%$
- But: the benefit of the greedy algorithm is at least 63% of the benefit of the optimal algorithm (shown by the authors).
Greedy Algorithm – Space vs. Time

- Experiment with composite lattice shows that it is important to materialize some views but not all.
- Performance increases at first, but after 5 views, increase of performance gets small even as more space is used.

Greedy order of view selection for TPC-D based example.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Benefit</th>
<th>TotTime</th>
<th>TotSpace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cp</td>
<td>infinite</td>
<td>72M rows</td>
<td>6nM rows</td>
</tr>
<tr>
<td>2 ns</td>
<td>24M rows</td>
<td>48M</td>
<td>6M</td>
</tr>
<tr>
<td>3 nt</td>
<td>12M</td>
<td>36M</td>
<td>6M</td>
</tr>
<tr>
<td>4 c</td>
<td>5.9M</td>
<td>30.1M</td>
<td>6.1M</td>
</tr>
<tr>
<td>5 p</td>
<td>5.8M</td>
<td>24.3M</td>
<td>6.3M</td>
</tr>
<tr>
<td>6 cs</td>
<td>1M</td>
<td>23.3M</td>
<td>11.3M</td>
</tr>
<tr>
<td>7 np</td>
<td>1M</td>
<td>23.3M</td>
<td>16.3M</td>
</tr>
<tr>
<td>8 ct</td>
<td>0.01M</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>9 t</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>10 n</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>11 s</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
<tr>
<td>12 none</td>
<td>small</td>
<td>23.3M</td>
<td>23.3M</td>
</tr>
</tbody>
</table>
Optimal Cases and Anomalies

- Two situations where the algorithm is **optimal**.
  - If the benefit of the **first view is much larger** than the other benefits, the greedy is close to optimal.
  - If all the **benefits are equal** then greedy is optimal.

- But there are also two situations where the algorithm is not realistic.
  - Views in a lattice are unlikely to have the same probability of being requested in a query; hence, probabilities should be associated to each view.
  - Instead of asking for some fixed number of views to materialize, should instead allocate a fixed amount of space to views.
Hypercube Lattices – Observations

- The size of views grows exponentially, until it reaches the size of the raw data at rank $\lceil \log_r m \rceil$ (i.e., the “cliff”).

![Graph showing exponential growth]

- Assumptions and basis of reasoning
  - Each domain size is $r$.
  - Top element has $m$ cells appearing in raw data.
  - If group on $i$ attributes, cube has $r^i$ cells.
  - If $r^i \geq m$, then each cell will have atmost one data point. Space cost is $m$.
  - If $r^i < m$, then almost all $r^i$ cells will have at least one data point. Space cost is $r^i$ as several data points can be collapsed into one aggregate.

- This explains why grouping of 2 attributes (p,c), (s,c) have the same size as (p,s,c) at 6M rows.
Inevitably, questions will be raised about space and time optimality of hypercubes.

**What is the average time for a query when the space is optimal?**
- Space is minimized when only the top view is materialized.
- Every query would take time $m$.
- Total time cost for all $2^n$ queries is $m2^n$.

**Is there sense to minimize time by materializing all views?**
- No gain past the cliff.
- No point to do so.
- Nature of time-optimal solution is to get as close to the cliff as possible.
Outline

1. Pre-Aggregates
2. Lattice Framework
3. Greedy Algorithm

4. View Maintenance
**View Maintenance**

- Views (pre-aggregates) are used to speed up querying.
- **How** and **when** should we refresh materialized views?
- **Total re-computation**
  - Most often too expensive
- **Incremental view maintenance**
  - Apply only changes since last refresh to view.
  - $r_i = $ inserted rows into relation $r$
  - $r_d = $ deleted rows from relation $r$
- **Additional info must be stored to make views self-maintainable**
  - Number of derivations $c$ (count) along with each row in view $v$
  - Thus, tuples in view have the form $(a_1, \ldots, a_k, c)$
Projection View Maintenance

- **Projection** views with \( \text{DISTINCT} \)
- **View** \( \mathbf{v} = \pi_{A_1,\ldots,A_k}(r) \)
- **Insertion** of tuples \( r_i \)

```plaintext
foreach tuple \((a_1,\ldots,a_k) \in \pi_{A_1,\ldots,A_k}(r_i)\) do
 Let \(c_i\) be \# occurrences of the tuple;
 if \((a_1,\ldots,a_k,c) \in \mathbf{v}\) then
 \(c = c + c_i\)
 else
 Insert \((r,c_i)\) into \(V\)
```

- **Deletion** of tuples \( r_d \)

```plaintext
foreach \((a_1,\ldots,a_k) \in \pi_{A_1,\ldots,A_k}(r_d)\) do
 Let \(c_d\) be \# of occurrences of the tuple;
 if \((a_1,\ldots,a_k,c) \in \mathbf{v}\) then
 \(c = c - c_d\)
 if \(c = 0\) then
 Delete \((a_1,\ldots,a_k,c)\) from \(\mathbf{v}\)
```
# Projection View Maintenance Example

Relation $r$, view $v$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbf{v} = \pi_A(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Insert tuple $(b, 4)$

Relation $r$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbf{v} = \pi_A(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Delete tuples $\{(c, 3), (a, 2)\}$

Relation $r$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbf{v} = \pi_A(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Join View Maintenance

- **Join views**
- View \( v = r \bowtie s \)
- **Insertion of** \( r_i \)
  - Compute \( r_i \bowtie s \) and add to \( v \), update counts.
- **Deletion of** \( r_d \)
  - Compute \( r_d \bowtie s \) and subtract from \( v \), update counts.
COUNT/SUM/AVG Aggregation View Maintenance

**COUNT**

- Maintain tuples of the form \((g_1, \ldots, g_m, c)\)
  - \(g_1, \ldots, g_m\) are the grouping attribute values
  - \(c\) is a counter
- Update count \(c\) based on inserts \((r_i)\) and deletes \((r_d)\)
- Insert row \((g_1, \ldots, g_m, 1)\) for new groups
- Delete row \((g_1, \ldots, g_m, c)\) from \(v\) if \(c = 0\)

**SUM**

- Maintain tuples of the form \((g_1, \ldots, g_m, \text{sum}, c)\)
- Update count \((c)\) and sum \((\text{sum})\) based on inserts \((r_i)\) and deletes \((r_d)\)
- Insert row \((g_1, \ldots, g_m, \text{val}, 1)\) for new grouping attribute values
  - \(\text{val}\) is the value of attribute over which SUM is applied
- Delete row \((g_1, \ldots, g_m, \text{sum}, c)\) from \(v\) if \(c = 0\).

**AVG**

- Computed as pair \(\text{SUM/COUNT}\)
MIN/MAX Aggregation View Maintenance

- **MIN** (**MAX** works similar)
  - Maintain tuples $x = (g_1, \ldots, g_m, min, c)$
  - Update $min$ and $c$ based on inserts ($r_i$) and deletes ($r_d$) and whether $val \{=, <, >\} min$
  - **Insert** tuple $(g_1, \ldots, g_m, val)$
    - if $val < min$ then
      - $x = (g_1, \ldots, g_m, val, 1)$
    - else if $val = min$ then
      - $x = (g_1, \ldots, g_m, min, c + 1)$
  - **Delete** tuple $(g_1, \ldots, g_m, val)$
    - if $val = min$ then
      - $x = (g_1, \ldots, g_m, min, c - 1)$;
    - if $c = 0$ then
      - Scan table for new values for $min$ and $c$ (expensive!)
Determine a view for MIN using SQL
- Input: relation \( r \) with schema \((A, B)\)
- Output: relation with schema \((A, \text{MIN}(B), \text{count of } \text{MIN}(B))\)

Solution 1

\[
\text{SELECT } t.*, ( \text{SELECT COUNT(*) Cnt FROM } r \text{ WHERE } A = t.A \text{ AND } B = t.\text{MinB} ) \text{ FROM } ( \text{SELECT } A, \text{min}(B) \text{ MinB FROM } r \text{ GROUP BY } A ) \text{ t;}
\]

<table>
<thead>
<tr>
<th>r</th>
<th></th>
<th>t</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>MinB</td>
<td>Cnt</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

result:

<table>
<thead>
<tr>
<th>A</th>
<th>MinB</th>
<th>Cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Aggregation View Maintenance Example/2

Solution 2

SELECT A, B, COUNT(*)
FROM r
GROUP BY A, B
HAVING (A, B) IN ( SELECT A, MIN(B)
FROM r
GROUP BY A );

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>MIN(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>MIN(B)</th>
<th>Cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Solution 3

```
SELECT A, B, COUNT(*)
FROM r AS t
WHERE B = (SELECT MIN(B)
 FROM r
 WHERE A = t.A)
GROUP BY A, B;
```

<table>
<thead>
<tr>
<th>r</th>
<th>a=1 MIN(B)</th>
<th>a=2 MIN(B)</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution 4 using GMD-join

\[ x = \text{MD}( r/b, r, ( (\text{MIN}(B)/\text{Min}), (\text{COUNT(*)}/\text{Cnt}) ), ( (r.A = b.A), (r.A = b.A \text{ AND } r.B = b.B) ) ) \]

result = \[ \pi_{a,min,cnt}(\sigma_{b=\text{min}(x)}(x)) \]

<table>
<thead>
<tr>
<th>r</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>a</th>
<th>b</th>
<th>min</th>
<th>cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>result</th>
<th>a</th>
<th>min(b)</th>
<th>cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Practical View Maintenance

When to synchronize views?
- **Immediate** - in same transaction as base changes.
- **Lazy** - when view is used for the first time after base updates.
- **Periodic** – e.g., once a day, often together with base load.
- **Forced** - after a certain number of changes.

Updating aggregates
- Computation outside DBMS in flat files (no longer very relevant!).
- Built by loader.
- Computation in DBMS using SQL.
- Can be expensive: DBMS must be tuned for this.

Supported by tool/DBMS
- Oracle, SQL Server, DB2
Summary

- **Pre-aggregation** is a key technique to boost performance.
- Data warehouses automatically determine views to materialize and when to use them.
- Problems in deciding which set of views to materialize to improve query performance.
- **Lattice framework**: views are organized in a lattice.
- Notion of linear cost in query processing.
- **Greedy algorithm** that picks the right views.
- Some observations about hypercubes and time-space trade-off.
- Views have to be maintained.
- **Incremental view maintenance** is state-of-the-art
  - Needs to store a count to trace the number of supporting tuples.