
The MD-join : An Operator for Complex OLAP

Damianos Chatziantoniou
Panakea Software Inc.

damianos@panakea.com

Theodore Johnson
Database Research Center

AT&T Labs - Research
johnsont@research.att.com

Abstract

OLAP queries (i.e. group-by or cube-by queries with ag-
gregation) have proven to be valuable for data analysis and
exploration. Many decision support applications need very
complex OLAP queries, requiring a fine degree of control
over both the group definition and the aggregates that are
computed. For example, suppose that the user has access to
a data cube whose measure attribute is Sum(Sales). Then
the user might wish to compute the sum of sales in New
York and the sum of sales in California for those data cube
entries in which Sum(Sales) > $1,000,000.

This type of complex OLAP query is o fen dificult to ex-
press and diflcult to optimize using standard relational op-
erators (including standard aggregation operators). In this
paper we propose the MD-join operator for complex OLAP
queries. The MD-join provides a clean separation between
group dejinition and aggregate computation, allowing great
flexibility in the expression of OLAP queries. In addition,
the MD-join has a simple and easily optimizable implemen-
tation, while the equivalent relational algebra expression
is often complex and diflcult to optimize. We present sev-
eral algebraic transformations that allow relational algebra
queries that include MD-joins to be optimized.

1. Introduction

Decision support systems (DSS), on-line analytical pro-
cessing (OLAP) and multi-dimensional analysis have been
the focus of intense research and commercial activity the
past few years. Large private and public organizations use
data warehouses to store and organize information collected

Michael Akinde
Dept. of Computer Science*

Aalborg University
strategy@cs.auc.dk

Samuel Kim
Dept. of Computer Science
Stevens Institute of Tech.

skim@cs.stevens-tech.edu

during normal business processes. To be of use, the data
must be analyzed and mined, leading to the development of
many new data analysis and mining tools.

A common OLAP query computes the aggregate of mea-
sure attributes from a fact table, grouped by one or more
dimension attributes (i.e., Select . . . From R Group By
. . .). However, researchers have observed that providing a
greater degree of control over the query greatly extends the
types of analyses that can readily be performed.

One type of extension is to allow alternative definitions
of the groups. Gray et al. in [GBLP96] have proposed
the Cube B y keyword and appropriate SQL extensions.
Graefe, Fayyad, and Chaudhuri [GFC98] have proposed
the unpivot operator, which allows the easy extraction
of marginal distributions from a database for use as input
to decision tree algorithms. The SQL99 standard [Cha96,
SQL991 defines grouping sets, which compute a user-
controlled collection of rollups (instead of all rollups, as in
the Cube By keyword). The EMF-SQL language [Cha991
allows the user to specify aggregation independently of the
group specification.

Another type of extension is to allow the user to specify
aggregate functions more complex than the standard set
of count, sum, average, min and max (for example, most
frequent, median, moving average, and so on). The SQL99
standard [SQL99] provides a large collection of new key-
words for expressing new aggregate functions. Chatzianto-
niou and Ross in [CR96] and Chatziantoniou in [Cha99]
proposed extensions to SQL that allow the user succinctly
express customized aggregation conditions. Another ap-
proach is to allow the user to write User Defined Aggregate
Functions (UDAFs) [JM98, Cha96,11195, WZOOa, WZOOb].
A user defined aggregate function requires the user to spec-

524
1063-6382/01$10.00 0 2001 IEEE

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

mailto:damianos@panakea.com
mailto:johnsont@research.att.com
mailto:skim@cs.stevens-tech.edu

ify the resources that must be allocated for the aggregate,
and callbacks that initialize the aggregate, add a value to
the aggregate and report the aggregate’s value. Wang and
Zaniolo [WZOOa] also support an early return callback.
The AXL system [WZOOb] uses relational tables instead
of scratchpads. Johnson and Chatziantoniou [JC99] allow
the user to specify a restricted scratchpad, but declaratively
instead of through a UDAF. Queries involving UDAFs can
be difficult to optimize because the UDAF’s behavior is
unknown. The user can describe additional properties and
callbacks of the UDAF to allow cost-based optimization and
parallelization [JM98, SM961.

In this paper, we show how complex group specifica-
tion can be extended and unified with complex aggregate
specification. We propose a new operator, the MD-join that
aggregates a relation R to a base values table B. The base
values table B as well as the relation R can be the result of
a relational algebra expression (which can include MD-join
operations), allowing tremendous flexibility in expressing
decision support queries. We show several algebraic trans-
formations of relational expressions involving MD-joins.
These transformations allow for a wide variety of optimiza-
tions, permitting automatic parallelization and ensuring
scalability. For example, one algebraic transformation can
express the cube computation optimization algorithms of
[AADf96, RS961, and generalize their application within
a cost-based optimizer.

The paper proceeds as follows: In Section 2 we exam-
ine several decision support examples and discuss briefly
how all these seemingly different queries can be seen as
instances of the same framework. In Section 3 we discuss
how this framework is set up. We argue that decision
support queries have to be seen as a two-phase process and
give one relational operator (coupled with a simple generic
algorithm) to handle the aggregation phase. In Section 4 we
describe generic optimization techniques for the proposed
operator and briefly show that in fact, many of the known
algorithms are simply subcases of our algorithm. A general
discussion on syntactic issues, performance, related and
future work follows in Section 5. The following table is
used by the examples in the rest of the paper:

Sales(cust,prod,day,month,year,state,sale)

2 Motivation

We have observed that decision support and data mining
applications often need a fine-grained control over the base
values (i.e., groups) used to define the aggregation, as well
as a fine-grained control over what aggregated values are
computed. Let us consider a series of examples to illustrate
this idea.

I I I 1 I ALL I 4 I ALL 11 651202 I
856765

Figure 1. Output tables of Example 2.1.

Example 2.1: One may be interested to compute the total
sales broken down by all possible combinations of attributes
prod, month, state (i.e. eight group bys). Gray
et al. proposed in [GBLP96] the cube by operator and
extended appropriately SQL. The query is then formulated
as:

Select prod, month, state, sum(sa1e)
From Sales
Cube By prod, month, state

A subset of the output table is shown in Figure 1. A thick
line partitions the output table in two parts, the cube by
attribute values and the computed total. We merge the eight
separate group-by tables into a single table by using ‘ALL‘
values. We defer the definition of ‘ALL‘ until later, but
its meaning mirrors the modeling of subcubes of a base
cube (as in [GBLP96]). That is, (prod,ALL,state)
is a rollup of the prod, month, state by dimension
month. In I(a), the row with cube-by attributes (44 , 3 ,
ALL) represents all sales of product44 during month 3, over
all states.

The user might not be interested in all the entire cube,
but rather a restricted collection of group-bys. For exam-
ple, Graefe, Chaudhuri and Fayyad in [GFC98] discuss the
“unpivot” operator, for use in the context of data mining.
These authors observed that most decision tree computation
algorithms use as input data the marginal densities of the
input data rather than the entire data set. The Grouping Sets
keyword [Cha96] allows the following query to request the
marginals:
Select prod, month, state, sum(sa1e)
From Sales
Group By Grouping Sets ((prod), (month),

(state)) I

Example 2.2: Consider now a pivoting example, which
does not classify as a data cube or multi-dimensional query.
Suppose that we want to compute for each customer the
average sale in “NY”, in “NJ” and in “CT” (the tri-state
area). Figure 1 shows part of the output table. Note once

525

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

again the thick line that separates the grouping attribute
values and the aggregated values.

This type of query is cumbersome to express in SQL
because the definition of aggregation is tied to the definition
of the groups. Three subqueries are required to compute
per-customer sales in NY, NJ, and CT, respectively. Our
intended collection of groups is the list of all customers,
whether or not they made any purchases in NY, NJ, or CT.
Therefore a fourth subquery is required to select all unique
customers, followed by four outer joins to attach the sales
to the customer in NY, NJ, and CT. I
Example2.3: Suppose that we want to count how many
sales were above the average sale, when table Sales is bro-
ken down by all possible combinations of prod, month,
state. The last sentence implies a data cube structure over
prod, month and year attribute; however, we want to
compute something more complex than a simple aggregate.
Even if the cube by syntax is available in our version of
SQL, it can not be used. Rather, the user has to define eight
group bys, join each one with the Sales table and perform
eight new group bys.

In [RSC98], Ross, Srivastava and Chatziantoniou argued
that the multi-featured aggregation and the cube by syntax
should be merged for succinctness and performance rea-
sons. However, we would like to generalize this idea by
separating the definition of the groups and the definition of
the (multi-pass) aggregation. Instead of proposing special
purpose evaluation algorithms, we would like to use query
transformations and a cost-based optimizer to find an opti-
mal evaluation plan. I
Example 2.4: Suppose that we are interested in computing
the total sale at certain points of a data cube, given to us in
a precomputed datafile or table. For example, a data mining
algorithm may be interested in the total sale only at these
crucial/representative points. A generic decision support
framework should be able to handle such queries in a clean
and succinct way. This can be achieved by separating the
specification method of the left and the right part of the
output table. I
Example 2.5: Suppose that for each product you want to
count for each month of 1997 the sales that were between
previous month’s average sale and following month’s aver-
age sale.

Computing the answer to this query requires that for each
product and month, we compute aggregates from tuples
outside the group (the next and previous month’s average
sales). After these values are computed, we have enough
information to compute the output aggregate. That is, mul-
tiple pass aggregation is required. l

The list of examples can continue (e.g., using computed
values in the base values, for example to aggregate by

quarter instead of month), but we stop here to analyze the
similarities and differences between the example queries.
Although each of the queries seems to have a different flavor
and a different evaluation strategy, they all involve the same
approach: defining a set of base values which define the
rows of the output table, associating subsets of a relation
with each row, and computing aggregates of the subset.
Both the definition of the base values and the computation
of the associated aggregates can involve complex computa-
tions. This observation argues that the definition of the base
values and the computation of the aggregated values should
be decoupled. By decoupling these two definitions, we can
achieve not only a greater flexibility in defining the queries,
but also a greater succinctness and simplicity in expressing
them.

Example 2.1 is a classical data cube example. Several
algorithms have been proposed for fast data cube computa-
tions [AAD+96, RS961. In these formulations aggregation
is considered part of the data cube structure. As a result, if
one computes the total sale for some data cube and later
wants to compute the average sale, s h e must re-execute
one of the proposed algorithms. Example 2.3 shows that
although the base values structure is a data cube, the cube
by clause can not be used, due to the fact that the semantics
of this operator are tied to the computation. Although the
proposed solution in [RSC98] solves nicely such cases, i t
still does not distinguish between base values and aggrega-
tion. Note that modeling data cubes as in [AGS97] does not
help much, since we must join the data cube with the detail
data, an operation not supported in [AGS97].

Chatziantoniou and Ross introduced the concept of
grouping variable [CR96, Cha991, a useful idea for complex
and ad hoc computations (Examples 2.2 and 2.5 can be
expresed simply using grouping variables). Still, this idea
is restricted to group by queries.

In this paper we propose a clean cut between the base
values set-up phase and the aggregation phase. We need
only one operator to carry out the aggregation, no matter
what are the base values. Furthermore, we want to be able
to combine several of these operators to represent complex
ad hoc computations. We show that this formulation leads
to better performance, optimization and expressibility of
decision support queries. Other useful OLAP relational
operators or SQL extensions are proposed in [KS95, GL97,
CT971. Gyssens and Lakshmanan in particular [GL97]
recognize the need to separate group definition and aggre-
gation.

3 The MD-Join Operator

In this section, we define the MD-join operator, which
cleanly separates the definition of the groups from the def-
inition of the aggregation. The MD-join does not group

526

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

tuples for aggregation in the way that conventional aggrega-
tion does. Instead, the collection of output tuples is defined
by a base values relation, which contains a collection of
“group” keys. We will generally refer to base values instead
of groups from now on.

Definition 3.1: Let B (B) and R (R) be relations, 8 a con-
dition involving attributes in B and R, and 1 a list of aggre-
gate functions (f 1 , f 2 , . . . , f,) over attributes c1, c2,. . . , c,
in R. Then the MD-join, MD((, R, B , ,), I , e), is a relation
with schema B , fl R-cl , ..., f,-R-c,,’ whose instance is
determined as follows. Each tuple b E B contributes to an
output tuple b, such that:

0

0

B is

b[A] = b[A], for every attribute A E B

for each tuple b of relation B let RNG(b, R, 8) =
{ r E RIB(b,r) is t rue }. Then, the value of at-
tribute fi-R-ci of tuple b is given by b [f J L c i] =
fi{{t[ci] I t E RNG(b, R,8)}}, where {{...}} de-
notes multiset.

called the base-values relation and R is called the
detail relation. I

Following Gray et a1 [GBLP96], we use the value “ALL”
in the base-values table To model multiple granularity ag-
gregates within a single table (as discussed in Example 2.1).

Note that if every row in B is distinct, then the above
definition corresponds to the relational algebra expression:

b-Tfl(~.c,) ,..., f , , (~ . ~ , ,) @ We R)
U ((B - w,(B We R)) x Nil

where F is an aggregation operator (e.g. [EN89]), b denotes
all the attributes of B and N is a one tuple relation whose
fields are the initial values for the aggregates in 1.

The definition of the MD-join operator allows the user a
tremendous amount of flexibility in defining an aggregation
query, as B and R can be arbitrary relational expressions
and 8 can be an arbitrary join predicate. For example, to
compute in query of Example 2.5 for each customer and
month the average of sales of this customer in the previ-
ous month, one defines 8 as: Sales. cust=cust and
Sales .month = month+l.

Note that the row count of the result of the MD-join is
the same as the row count of B (i.e., the MD-join performs
an outer join). This semantics more accurately captures
the user’s intentions than the standard aggregation does
(consider Example 2.2) .

Note also that the MD-join operator can be considered
as a shortcut for a somewhat more complex expression.
However, the expression that the MD-join represents often

‘Attributes are appropriately renamed if there are any duplicate names
generated this way.

occurs in OLAP queries. By understanding the properties of
the operator, we can easily obtain many query transforma-
tions leading to efficient evaluation plans, as will be shown
in Section 4.

We give below a simple algorithm to implement MD-
join2. Note that although definition 3.1 states that for each
row b of B we identify a set of tuples of R, in this algorithm
we follow the opposite direction: we scan the detail table R
and loop over all tuples of B to identify matches based on
condition 0. If a match is detected, we update the aggregate
columns appropriately.

Algorithm 3.1: Evaluation of the MD-join operator:

scan R , and for all tuples t in R{
for all rows r of B , check if condition
6 is satisfied with respect to r and t .
If yes, update T ’ S aggregate columns
appropriately.

> I
The conventional group-wise aggregation algorithm can-

not in general be applied, because the tuples in B do not
necessarily represent groups in R. Neither can a conven-
tional hash aggregation algorithm be applied, as a tuple
from R might join with many tuples from B. However,
by using the appropriate transformations and optimizations
one can develop efficient evaluation plans the generalize the
group-wise and the hash aggregation algorithms.

3.1 Complex Ad Hoc Computations

Many decision support queries ask for something more
complex than a simple average or total. Examples 2.2, 2.3
and 2.5 are instances of queries requiring complex ad-hoc
computations. More examples can be found in [Cha99].
One of the primary motivations for separating grouping
and computation is the ability to define complex ad hoc
computations without needing to define a new operator for
each query.

The semantics of the MD-join operator has been defined
in such a way that several MD-joins can be combined in a
sequence to carry out most ad hoc complex computations.

Example 3.1: Example 2.2 can be expressed in relational
algebra using MD-joins as 3:

M D (M D (M D (B , Sales , awg(sale),BI),
Sales, awg(sale), &), Sales , awg(sale), 03)

2This algorithm works only for distributive and algebraic aggregates;
holistic aggregates can be processed by a similar algorithm that handles
memory allocation issues (e.g., see [WZOOb]). However, some holistic ag-
gregates can be made algebraic by using approximation, e.g. approximate
medians[MRL98].

3We omit for simplicity several relational algebra details in this formu-
lation. Each application of the MD-join should be preceded by renaming
of the Sales table. The same holds for the remaining examples.

527

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

where 01 : Sales.cust=cust and Sales.state="NY",
02 : Sales.cust=cust and Sales.state="CT",
03 : Sales.cust=cust and Sales.state="NJ",

and B is the resulting table of a select distinct
cus t from Sales.

The advantage of this formulation is that we do not have
to define a new class of queries. It is still a group by (to
construct the base-values table), followed by a complex
computation. If the cube by keyword in this query is
replaced by, e.g. unpivot, the algebraic expression is
unchanged (except for the definition of B). I
Example 3.2: Example 2.3 can be expressed in relational
algebra using MD-joins as:

MD(MD(B, Sales, avg(sale), 01) ,Sales, count(*), 02)

where

81 : Sales.prod=prod and Sales.month=month and

02 : Sales.prod=prod and Sales.month=month and
Sales.state=state,

Sales.state=state andSales.sale>avg-Sales-sale,

and B is the data cube of prod, month and state
attributes.

Once again this is a data cube query with some complex
computation. It is not necessary to define a whole new class
ofqueries. I
Example 3.3: A complex operation may involve different
detail tables. Let us assume
that there is another table, called Payments with schema
(cus t , day, month, year, amount) and a user wants
to know the total sales and payments for each customer and
month. This query can be expressed as:

MD(MD(B, Sales, sum(sale), 0,)
Payments, sum(amount), 0 2))

where
01 : Sales.cust=cust and Sales.month=month,
62 : Payments.cust=cust and Payments.month=month,

and B is the resulting table of a select distinct
cust,month from Sales.

Such a formulation can be optimized significantly better
than a traditional relational algebra expression, due to its
conciseness. I

4 Optimizations

In this section we discuss how the MD-join operator
interacts with other relational operators and present several
algebraic transformations useful for generating optimized
query plans. Thus we show that the MD-join contributes to

the efficient evaluation of decision support queries as well
as to their succinct expression. The MD-join can be incor-
porated immediately into present cost- and algebraic-based
query optimizers. We also show that the implementation
of the MD-join is efficient and offers orders of magnitude
speedups as compared to current commercial systems. We
briefly discuss performance in Section 5.

4.1 In-Memory Computation and Parallelism

In this section, we present how the MD-join and union
operators interact. Specifically, we show the base-values
table partitioning transformation, and show its uses in de-
veloping query plans for large-scale computations and for
parallel query evaluation. We also show how MD-join can
employ intra-operator parallelism.

Theorem 4.1: If B and R are relations, B1 , B2 , . . . , B, a
partition of B, 1 a list of aggregate functions over columns
of R and 0 a condition involving attributes of B and R, then:

MD(B,R ,1 ,0) = MD(B1,RlZ,0) U .
. . . U MD(B,, R , 1,O)D

4.1.1 In-Memory Computation

One interpretation of Theorem 4.1 is that the base-values
table B can be partitioned in any arbitrary way and the
MD-join can be computed in m scans of the detail table
R instead of one. As a result, we can always devise
a query evaluation plan in which Algorithm 3.1 operates
on memory-resident data. Regardless of the indices con-
structed on B for use in the MD-join (discussed in Sec-
tion 4.59, in-memory evaluation will usually be significantly
faster than an out-of-core evaluation. The cost is a well-
defined increase in the number of scans of R.

4.1.2 Parallelism

A different application of Theorem 4.1 is some form of
intra-operator parallelism. That is, the partitions B1 through
B, are distributed to m processors and each MD-join
fragment evaluated locally. Each evaluation requires a scan
through R , but we will show how the work requried to
perform the evaluations can be reduced.

4.2 MD-join and Selections

The MD-join operator interacts with selections in a sim-
ilar fashion to joins.

Theorem4.2: Let B and R be relations, 1 be a list of
aggregate functions over columns of R and 0 be a condition

528

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

involving attributes of B and R. If 8 = dl and e2 and e2
involves only attributes of R , then:

M D (B , R , z , ~ ~ ande2) = M D (B , ~ ~ ~ (R) , ~ , ~ ~)

Proof: Tuples of R not satisfying 02 will not be considered
by the MD-join and as a result this selection can be pushed
t o R . I

This theorem says that the MD-join operator can be
implemented via an indexed instead of a full scan of R.
This is a very important optimization, especially if R is very
large (e.g. internet/web/call logs).

Example 4.1: One may be interested to compare for each
product the total sales of the period 1994 to 1996 versus
the total sales of 1999. This can be expressed in relational
algebra using MD-joins as:

M D (M D (B , Sales, sum(sale), el), Sales, sum(sale), 8,)

where

81 : Sales.prod=prod and Sales.year> 1994 and

82 : Sales.prod=prod and Sales.year= 1999

and B is the resulting table of a select distinct
prod from Sales.

If there is a clustered index on the date (day, m o n t h ,
year) set of attributes, there is no need to perform two
full scans of the Sales relation. Instead, the first scan
will involve sales of I994 to 1996 and the second scan will
involve sales of 1999.

Sales.year5 1996,

We note that Theorem 4.2 can work in conjunction with
Theorem 4.1 to limit the range of R that must be MD-joined
with B.

Observation 4.1: Let us
consider an MD-join M D (B , R, 1, e) in which B does not
fit in memory and is partitioned into B1 U. . . U B,, where
Bi = a i (B) , oi is a range selection on a set S of attributes
of B, i = 1,2, . . . , m. Further assume that the condition
e can be expressed as a conjunction of an equality test on
attributes of S between B and R and another condition e’,
i.e. -9 : B. S=R. s ’ and e’. Then,

M D (~ ~ (B) , R, z, e) = M D (~ ~ (B) , O: (R) , z, e)
where oi is oi with references to attributes S of B replaced
by the corresponding references to attributes S‘ of R. 1

Observation 4.1 states that a range selection on the base-
value relation B can be pushed to the detail relation R when
the theta condition of the MD-join is appropriate. This
optimization is very similar to optimization techniques of

hash-based aggregation methods of [Gra93]. However, the
framework is more general since the theta condition is not
necessarily an equijoin.

One application of Observation 4.1 is to reduce amount
of data scanned when applying the in-memory optimization
in Section 4.1.1. For an example, consider the query in
Section 4.1.2. If we range partition the base-value relation
on month (e.g. 1-3, 4-8, 9-12), we can push these range
selections to the detail relation. If there is a clustering index
on month we can reduce the work required to evaluate ag-
gregates of 2 and y to scanning only appropriate partitions
of the Sales relation (i.e., do group-wise processing). A
similar optimization can be made when performing the par-
allelization optimization discussed in Section 4.1.2, except
that the effect is to reduce the number of processors that
receive each tuple.

4.3 Series of MD-joins

Another set of important algebraic transformations ap-
plies when there is a series of MD-join operators, a very
common case in decision support queries (almost all of our
examples involve series of MD-join operators).

A scan of a relation can be very expensive, especially if
the data set is large. It is therefore essential to reduce the
number of scans as much as possible. If there is a series of
IC consecutive MD-joins, Algorithm 3.1 requires one pass
over the detail relation(s) for each operator, for a total of IC
scans. However, this is not always necessary.

Consider Example 2.2. Although this query is expressed
as a series of three MD-joins, obviously it can be evaluated
with just one scan. The key observation in this example is
that the theta conditions of the MD-joins are “independent”
of each other. More precisely, there are no augmented
columns generated by an MD-join used in a theta condition
of a subsequent MD-join.

Dependency analysis between correlated aggregates has
been treated in [Cha99] and many ideas are common. How-
ever it is valuable to formulate this concept as an algebraic
transformation. One approach is to generalize the MD-join
operator to incorporate a vector of theta conditions and a
vector of lists of aggregate functions (and possibly a vector
of names to rename aggregate functions). This is denoted
as:

MD(B,R , (z 1 1 i 2 , . . . m1 (elre2, . . .,e,))
with the obvious semantics’ extensions (for each tuple of B
we define IC subsets of R instead of one). Using this new
generalized MD-join, two consecutive MD-join operators
can be combined in one, if (i) the condition of the second
MD-join does not mention any column generated by the first
and (ii) the detail relation is the same for both MD-joins.

A possible impediment to using the series MD-join op-
erator is that we might be provided with the algebraic ex-

529

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

pression in an inappropriate order. Fortunately, MD-joins
commute under suitable conditions.

Theorem 4.3: If B,R1,R2 are relations, 11 and 12 are list of
aggregate functions and el, 02 conditions, then:

MD(MD(B, RI , 11 , 01), R2,12, 02) =
MD(MD(B1 R2112, e,>, R1111,el)

if O1 involves only attributes of B and R1 and 6J2 involves
only attributes of B and R2. I

The last theorem gives us the ability to assign a series of
k MD-joins to'a minimal number of generalized MD-joins
in O(k2) worst-case time (by topologically sorting the MD-
joins).

In addition to combining a sequence of MD-joins into a
single operation, it is possible to express one as a join of
two separate MD-joins.

Theorem 4.4: Assume that B , R I , and R2 are relations, 1 1

and 12 are lists of aggregate functions over columns of R1
and R2 respectively, and B1 and 6 2 are conditions involving
attributes of B and respectively R1 and Ra.

Because the MD-join does not change the rows of B , i t
is possible under suitable conditions to perform the equijoin
very efficiently. An implication of the theorem is that one
can move the computation of the MD-join to the source of a
relation R, and in fact perform several such joins in parallel.
Consider Example 2.2. Suppose that the Sales table is a
distributed relation, and data for New Jersey is stored in
Trenton, data for New York in Albany, and so on. It is
likely to be more efficient to move the base-value relation to
the three data stores, perform local MD-joins, then equijoin
the results to obtain the answer. Note that we make use of
Theorem 4.2 here.

4.4 Projections and MD-Joins

In this section we show how projections and MD-joins
can be used to express the roll-up property of data cubes -
that is, sub-cubes can be constructed from their drill-down
cubes - as an algebraic transformation, and discuss how
this allows us to algebraically express and generalize more
specialized cube computation algorithms.

Theorem 4.5: Let S and R be two relations, X and Y be
attribute sets of S. Let T] T X , A L L ~ (B) be consist of the unique
tuples of S projected to attributes in X , and with i copies of
'ALL' attached. Let 1 be a list of distributive aggregates, and

Figure 2. Pipelined paths of the PIPESORT
algorithm

let 6 be a predicate that is a conjunction of predicates that
test the equality of an attribute of X or Y with an attribute
in R, for all attributes in X U Y . Then,

where I' is the set of distributive aggregates in 1 modified
appropriately (e.g. a count in 1 becomes a sum in 1 ') . I

Theorem 4.5 simply states that a coarser granularity
cuboid can be computed by a finer granularity cuboid. The
efficient cube computation algorithms of [AAD+96] are
based largely on appropriate partitions of the data cube,
on pushing selections on the base-values table partitions to
the detail table partitions, and the roll up property of data
cubes. Using Theorem 4.5 (in conjuction with the preceding
theorems), we can express the algorithms of [AAD+96]
algebraically, and thus generalize their application.

For example, the PIPESORT algorithm of [AAD+96]
proceeds level-by-level in the search lattice of a data cube
starting from the root, building pipelined paths according to
certain cost criteria and converting the search lattice into a
tree. Theorem 4.5 can be used to build pipelined paths. The
cost criteria can be incorporated into the optimizer. As a
result we can generalize these algorithms and apply them in
new settings.

Example 4.2: Assume that R is a relation, A , B , M are
attributes of R (M is the measure) and we want to compute
the total of M over the datacube of attributes A and B.
Suppose that by running PIPESORT on this we get the paths
of Figure 2, where the dashed line means resorting.

If D denotes the datacube of A and B , then we want
to compute MD(D, R, I, O), where 1 = s u m (M) and 0:
R.A = D.A and R.B = D.B. This expands to:

Applying Theorems 4.1 and 4.5 - more than once in some
cases- we have:

530

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

This algebraic expression can be annotated appropriately
to reflect the pipelining and resorting steps corresponding
to the PIPESORT output of Figure 2. Usually optimizers
perform common subexpressions elimination. We note that
the MD-join operator can be implemented differently than
described by Algorithm 3.1. In this case, a more efficient
algorithm is possible because the detail relation is provided
in sorted order.

Note that using an annotated relational algebra expres-
sion to represent the cube computation, one can divert from
the classical evaluation methods and build hybrid tech-
niques. For example, the dashed line in Figure 2 could
denote either resorting, or hash evaluation [Gra93]. I

Ross and Srivastava in [RS96] proposed a divide-
and-conquer strategy for the computation of a data cube
over D1 Dz, . . . , D, dimensions. If the detail relation
R fits in main memory, then their algorithm performs
multiple in-memory sorts computing the cuboids, using
the idea of pipelined paths of the PIPESORT algorithm
[AAD+96], executing however an optimal number of
sorts. If the detail relation R does not fit in memory,
then a dimension Di is picked (chosen carefully) and
R is partitioned based on the values of Di. Then, the
subcube of D1,. . . , Di-1, Di+l,. . . , D, is computed in
memory for each value of Di using the previous algo-
rithm - if the partition does not fit in memory there is
further partitioning recursively. Finally the subcube of
D1, . . . Di-1 ALL, Di+l, . . . D, is computed.

Their proposed in-memory data cube computation is
similar in spirit with [AAD+96] and therefore Theorem 4.5
can be used to construct the appropriate pipelined paths
for cuboids computation, based on their path selection
methods. For the partitioning phase of their algorithm,
Theorem 4.1 can be used: B1, B2 . . . , B, corresponds to
the subcubes D1, . . . , Di-1, Di+l . . . D, for all values of
Di attribute (including the ALL value). Specifically, the
algebraic transformations are (B denotes the data cube over
D l 7 D 2 , . . . 7

MD(B7 R, 4 0)
= MD(U2,=~; OD,=z(B)7 R7 l , e)
= U z € ~ ; MD(OD,=27 R , I , 6)
= UzEDi M D (O D , = ~ , DR.D;=~(R), 1,e)

Thm. 4.1
Observ. 4.1

The second operand of the last MD-join corresponds to the
partitions mentioned in Ross and Srivastava’s algorithm.

We can generalize the efficient cube computation to new
applications using the algebraic framework. For one exam-
ple, we can generalize efficient data cube construction to
cubes over multiple fact tables. For another example, we
can apply the optimizations to finding efficient techniques
for computing a selected set of subcubes.

4.5 Indexing

Algorithm 3.1 can become very expensive if the base-
values relation B has a large number of rows (even though
B is memory resident), since for every scanned tuple t of
the detail table R all B’s rows are examined, resulting in
a nested-loop join. However, this is not always necessary
since, given a tuple t , one can identify a small number of
B’s rows that may be updated with respect to t during the
evaluation of the MD-join operator.

For instance, consider Examples 2.2 and 3.1. During the
evaluation of the first MD-join, given a tuple t of Sales
relation, there is only one row of B that may be updated,
the one that has the same value in the cus t attribute with
t’s cust value). If B is indexed on the cust attribute,
searching of B becomes very fast. Now consider Exam-
ple 2.5. This query can be expressed by three MD-joins
with theta conditions as described in that example. During
the evaluation of the first MD-join, given a tuple t of Sales
relation, there is one row of B that may be updated, the one
that has the same value in the cust attribute with t’s cust
value and its month value equals t’s month value + 1. An
index on (prod, month) on B would reduce searching
of B significantly (an index on prod would be sufficient.)

Definition 4.1: The set of rows of B that are updated dur-
ing the evaluation of an MD-join given a tuple t (i.e. the
set of rows updated in the innermost loop body of Algo-
rithm 3.1) is called the relative set of B with respect to t ,
denoted as Rel(t) . I

Sometimes it is possible to index B once and use this
indexing for the evaluation of all MD-joins in a query, as
in the examples described above. In other cases we may
have to create an additional index (for example, we may
have to index on a column generated by a previous MD-
join). However, since B can be made memory-resident
(using Algorithm 3.1), it is not very expensive to build an
index from scratch.

5 Discussion

Query Language The MD-join algebra provides a way
to express complex OLAP queries in a succinct relational
algebra, a necessary condition for efficient optimization.
However users do not express queries in algebraic form,

53 1

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

they use a query language such as SQL. Since SQL trans-
lates to relational algebra and MD-join is not part of it,
this means that either there must be a mapping phase from
standard relational algebra to relational algebra with MD-
join (a difficult task), or SQL must be extended. We believe
(having tried to express decision support queries in SQL)
that the succinctness of the MD-join operator must be re-
layed to SQL. Several SQL extensions have been proposed
in the past by many authors [KS95, GBLP96, CR96, GL98,
Cha99, JC991, arguing that SQL is cumbersome and diffi-
cult to use for decision support. In this section we present
some ideas on how to decouple the description of the base-
values table and the description of the computation.

In [Cha99], Chatziantoniou presented EMF-SQL, a lan-
guage for complex aggregation. An EMF-SQL query uses
grouping variables to constrain the tuples to be aggregated
over for each group. The grouping variable constraint may
specify that tuples outside of the group should be aggre-
gated. That is, a grouping variable is processed using an
MD-join. For an example, the following EMF-SQL query
expresses Example 2.5:
select prod, month, count(Z.*)
from Sales
where year=1997
group by prod,month ; X,Y,Z
such that X.prod=prod and X.month=month-1,
Y.prod=prod and Y.month=month+l,
Z.prod=prod and Z.month=month and
Z. sale>avg (X. sale) and 2 . sale<avg (Y. sale)

However, the EMF-SQL language cannot easily express
the full range of queries that are succinctly expressed with
MD-joins (that is, without extensive use of multiblock
queries and views). In a previous work [JC99], we present a
query language that allows the expression of many holistic
aggregates by aggregating over the result of an MD-join.
However, the base table is still defined as a selection from a
table.

We propose to replace the group by or cube by
clause by a more general clause that incorporates grouping
or cubing as special cases. The format of this clause is:

analyze by groupingaperation or table
(list-ofattributes)

The first argument groupingaperation or table pro-
vides the base-values table B. It can be a known opera-
tion (e.g. group by, cube by, unpivot, roll-up,
grouping sets) or a table or view. In general, it can be
any expression returning a table. The second argument is
just a list of attributes.

Example 5.1: Example 2.1 could be expressed as:

select prod, month, state, sum(sa1e)
from Sales
analyze by cube(prod, month, state)

The unpivot query in Example 2.1 could be expressed as:

select prod, month, sum(sa1e)
from Sales
analyze by unpivot(prod, month, state)

Suppose that that table T contains the data points of Exam-
ple 2.4. Then, this query could be expressed as:

select prod, month, state, sum(sa1e)
from Sales
analyze by T(prod, month, state) I

Performance It is natural to wonder whether Algo-
rithm 3.1 has an efficient implementation, even in the
presence of the optimizations described in Section 4. In
[Cha99], Chatziantoniou presents the EMF-SQL language
for expressing complex OLAP queries and also a perfor-
mance study using a prototype EMF-SQL tool. The query
in Example 2.5 was evaluated using both a commercially
available DBMS and the prototype, and the prototype was
an order of magnitude faster.

6 Conclusions

We have observed that different decision support queries
require aggregation over different sets of base values. Tradi-
tional examples are queries involving group-bys and cube-
bys, which define the base values differently. Other exam-
ples that aggregate over different sets of base values are:
computing new aggregates for select rows of an existing
data cube, the unpivot operator proposed for data mining,
and materializing an optimal set of subcubes of a data cube.
Other queries can involve aggregation over base values
resulting from ad-hoc SQL queries. Often the aggregation
over the base values is complex also (e.g., the number of
purchases larger than the average purchase for the group).
To unify all of these types of queries in a single relational
algebraic framework, we decouple the definition of the base
value set from the definition of the aggregates.

We propose a new relational operator, the MD-join
which cleanly provides this decoupling. The operands of
the MD-join include the set of base values and the rela-
tion to be aggregated; these operands can be the result of
arbitrary relational expressions. We show that the MD-
join operator provides tremendous flexibility in expressing
decision support queries.

In addition, we show that expressing decision support
queries in terms of the MD-join leads to efficient and op-
timized query plans. We show an efficient algorithm for
implementing an MD-join. We next show a variety of alge-
braic transformations of expressions involving an MD-join
that permits parallel execution and partitioned in-memory
computation. By use of a roll-up transformation we can

532

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

express the efficient data cube computation algorithms as
transformed MD-joins expressions. As a result, we can
generalize the cube computation algorithms and apply them
to new settings.

The introduction of the MD-join operator opens a range
of research questions. While we have demonstrated alge-
braic transformations that lead to a wide variety of opti-
mizations, much more is possible, We also note that the
MD-join operator permits the concise expression of a rich
collection of decision support queries, which have not yet
been fully explored.

References

[AAD+96] Sarneet Agarwal, Rakesh Agrawal,

[AGS97]

[Cha96]

[Cha99]

[CR96]

[CT971

[EN891

Prasad Deshpande, Ashish Gupta, Jeffrey F.
Naughton, Raghu Ramakrishnan, and Sunita
Sarawagi. On the Computation of Multidimen-
sional Aggregates. In 22nd VLDB Conference,
pages 505-52 1,1996.
Rakesh Agrawal, Ashish Gupta, and
Sunita Sarawagi. Modeling multidimensional
databases. In IEEE International Conference
on Data Engineering, 1997.
D. Chamberlin. Using the New DB2. Morgan
Kaufman, 1996.
Damianos Chatziantoniou. Ad Hoc OLAP :
Expression and Evaluation. In IEEE Interna-
tional Conference on Data Engineering, 1999.
Damianos Chatziantoniou and Kenneth Ross.
Querying Multiple Features of Groups in Rela-
tional Databases. In 22nd VLDB Conference,
pages 295-306,1996.
Luca Cabibbo and Riccardo Torlone. Query-
ing Multidimensional Databases. In Interna-
tional Workshop on Database Programming
Languages, pages 319-335,1997.
Ramez Elmasri and Shamkant Navathe. Fun-
damentals of Database Systems. The Ben-
jaminlcummings Publishing Company, 1989.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pi-
rahesh. Datacube : A Relational Aggregation
Operator Generalizing Group-by, Cross-Tab,
and Sub-Totals. In IEEE International Con-
ference on Data Engineering, pages 152-159,
1996.

[GFC98] Goetz Graefe, Usama Fayyad, and Surajit
Chaudhuri. On the Efficient Gathering of Suf-
ficient Statistics for Classification from Large
SQL Databases. In International Conference
on Knowledge Discovery and Data Mining,
pages 204-208,1998.

[GL971

[GL98]

[Gra93]

[I11951

[JC991

[JM98]

[KS95]

[MRL98]

[RS96]

[RSC98]

[SM96]

lSQL991
[WZOOa]

[WZOOb]

Marc Gyssens and Laks Lakshmanan. A Foun-
dation for Multi-Dimensional Databases. In
Proceedings of the 23rd VLDB Conference,
pages 106-1 15,1997.
Frederic Gingras and Laks Lakshmanan. nD-
SQL: A Multi-Dimensional Language for In-
teroperability and OLAP. In VLDB Confer-
ence, pages 134-145,1998.
Goetz Graefe. Query Evaluation Techniques
for Large Databases. ACM Computing Surveys,

Illustra Information Technologies. Illustra
User’s Guide. 1995.
T. Johnson and D. Chatziatoniou. Extending
complex ad-hoc OLAP. In Conference on In-
formation and Knowledge Management, pages
170-179,1999.
M. Jaedicke and B. Mitschang. On parallel
processing of aggregate and scalar functions in
object-relational DBMS. In Proc. ACM SIG-
MOD Con$, pages 379-389,1998.
Ralph Kimball and Kevin Strehlo. Why Deci-
sion Support Fails and How to Fix it. SIGMOD

Gurmeet Manku, Sridhar Rajagopalan, and
Bruce Lindsay. Approximate Medians and
other Quantiles in One Pass and with Limited
Memory. In ACM SIGMOD, Conference on
Management of Data, pages 426435,1998.
Kenneth Ross and Divesh Srivastava. Fast
Computation of Sparse Datacubes. In 23nd
VLDB Conference, pages 116-125,1996.
Kenneth Ross, Divesh Srivastava, and Dami-
anos Chatziantoniou. Complex Aggregation at
Multiple Granularities. In Extending Database
Technology (EDBT), Valencia, pages 263-277,
1998.
M. Stonebraker and D. Moore. Object-
Relational DBMSs - The Next Great Wave.
Morgan Kaufman, 1996.
SQL99. SQL99. SQL99,1999.
H. Wang and C. Zaniolo. User defined ag-
gregates in object-relational systems. In Proc.
16th Intl. Conj Data Engineering, 2000.
H. Wang and C. Zaniolo. Using SQL to
build new aggregates and extenders for object-
relational systems. In Proc. Zntl. Con& Very
Large Data Bases, 2000.

25(2):73-170,1993.

RECORD, 24(3):92-97, 1995.

533

Authorized licensed use limited to: Johann Gamper. Downloaded on January 10, 2010 at 15:53 from IEEE Xplore. Restrictions apply.

