
The MD-join : An Operator for Complex OLAP 

Damianos Chatziantoniou 
Panakea Software Inc. 

damianos@panakea.com 

Theodore Johnson 
Database Research Center 

AT&T Labs - Research 
johnsont@research.att.com 

Abstract 

OLAP queries (i.e. group-by or cube-by queries with ag- 
gregation) have proven to be valuable for  data analysis and 
exploration. Many decision support applications need very 
complex OLAP queries, requiring a fine degree of control 
over both the group definition and the aggregates that are 
computed. For example, suppose that the user has access to 
a data cube whose measure attribute is Sum(Sales). Then 
the user might wish to compute the sum of sales in New 
York and the sum of sales in California for  those data cube 
entries in which Sum(Sales) > $1,000,000. 

This type of complex OLAP query is o fen  dificult to ex- 
press and diflcult to optimize using standard relational op- 
erators (including standard aggregation operators). In this 
paper we propose the MD-join operator for complex OLAP 
queries. The MD-join provides a clean separation between 
group dejinition and aggregate computation, allowing great 
flexibility in the expression of OLAP queries. In addition, 
the MD-join has a simple and easily optimizable implemen- 
tation, while the equivalent relational algebra expression 
is often complex and diflcult to optimize. We present sev- 
eral algebraic transformations that allow relational algebra 
queries that include MD-joins to be optimized. 

1. Introduction 

Decision support systems (DSS), on-line analytical pro- 
cessing (OLAP) and multi-dimensional analysis have been 
the focus of intense research and commercial activity the 
past few years. Large private and public organizations use 
data warehouses to store and organize information collected 
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during normal business processes. To be of use, the data 
must be analyzed and mined, leading to the development of 
many new data analysis and mining tools. 

A common OLAP query computes the aggregate of mea- 
sure attributes from a fact table, grouped by one or more 
dimension attributes (i.e., Select . . . From R Group By 
. . .). However, researchers have observed that providing a 
greater degree of control over the query greatly extends the 
types of analyses that can readily be performed. 

One type of extension is to allow alternative definitions 
of the groups. Gray et al. in [GBLP96] have proposed 
the Cube B y  keyword and appropriate SQL extensions. 
Graefe, Fayyad, and Chaudhuri [GFC98] have proposed 
the unpivot operator, which allows the easy extraction 
of marginal distributions from a database for use as input 
to decision tree algorithms. The SQL99 standard [Cha96, 
SQL991 defines grouping sets, which compute a user- 
controlled collection of rollups (instead of all rollups, as in 
the Cube By keyword). The EMF-SQL language [Cha991 
allows the user to specify aggregation independently of the 
group specification. 

Another type of extension is to allow the user to specify 
aggregate functions more complex than the standard set 
of count, sum, average, min and max (for example, most 
frequent, median, moving average, and so on). The SQL99 
standard [SQL99] provides a large collection of new key- 
words for expressing new aggregate functions. Chatzianto- 
niou and Ross in [CR96] and Chatziantoniou in [Cha99] 
proposed extensions to SQL that allow the user succinctly 
express customized aggregation conditions. Another ap- 
proach is to allow the user to write User Defined Aggregate 
Functions (UDAFs) [JM98, Cha96,11195, WZOOa, WZOOb]. 
A user defined aggregate function requires the user to spec- 
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ify the resources that must be allocated for the aggregate, 
and callbacks that initialize the aggregate, add a value to 
the aggregate and report the aggregate’s value. Wang and 
Zaniolo [WZOOa] also support an early return callback. 
The AXL system [WZOOb] uses relational tables instead 
of scratchpads. Johnson and Chatziantoniou [JC99] allow 
the user to specify a restricted scratchpad, but declaratively 
instead of through a UDAF. Queries involving UDAFs can 
be difficult to optimize because the UDAF’s behavior is 
unknown. The user can describe additional properties and 
callbacks of the UDAF to allow cost-based optimization and 
parallelization [JM98, SM961. 

In this paper, we show how complex group specifica- 
tion can be extended and unified with complex aggregate 
specification. We propose a new operator, the MD-join that 
aggregates a relation R to a base values table B. The base 
values table B as well as the relation R can be the result of 
a relational algebra expression (which can include MD-join 
operations), allowing tremendous flexibility in expressing 
decision support queries. We show several algebraic trans- 
formations of relational expressions involving MD-joins. 
These transformations allow for a wide variety of optimiza- 
tions, permitting automatic parallelization and ensuring 
scalability. For example, one algebraic transformation can 
express the cube computation optimization algorithms of 
[AADf96, RS961, and generalize their application within 
a cost-based optimizer. 

The paper proceeds as follows: In Section 2 we exam- 
ine several decision support examples and discuss briefly 
how all these seemingly different queries can be seen as 
instances of the same framework. In Section 3 we discuss 
how this framework is set up. We argue that decision 
support queries have to be seen as a two-phase process and 
give one relational operator (coupled with a simple generic 
algorithm) to handle the aggregation phase. In Section 4 we 
describe generic optimization techniques for the proposed 
operator and briefly show that in fact, many of the known 
algorithms are simply subcases of our algorithm. A general 
discussion on syntactic issues, performance, related and 
future work follows in Section 5. The following table is 
used by the examples in the rest of the paper: 

Sales(cust,prod,day,month,year,state,sale) 

2 Motivation 

We have observed that decision support and data mining 
applications often need a fine-grained control over the base 
values (i.e., groups) used to define the aggregation, as well 
as a fine-grained control over what aggregated values are 
computed. Let us consider a series of examples to illustrate 
this idea. 

I I I 1  I ALL I 4 I ALL 11 651202 I 
856765 

Figure 1. Output tables of Example 2.1. 

Example 2.1: One may be interested to compute the total 
sales broken down by all possible combinations of attributes 
prod, month, state (i.e. eight group bys). Gray 
et al. proposed in [GBLP96] the cube by operator and 
extended appropriately SQL. The query is then formulated 
as: 

Select prod, month, state, sum(sa1e) 
From Sales 
Cube By prod, month, state 

A subset of the output table is shown in Figure 1. A thick 
line partitions the output table in two parts, the cube by 
attribute values and the computed total. We merge the eight 
separate group-by tables into a single table by using ‘ALL‘ 
values. We defer the definition of ‘ALL‘ until later, but 
its meaning mirrors the modeling of subcubes of a base 
cube (as in [GBLP96]). That is, (prod,ALL,state) 
is a rollup of the prod, month, state by dimension 
month. In I(a), the row with cube-by attributes (44 ,  3 ,  
ALL) represents all sales of product44 during month 3, over 
all states. 

The user might not be interested in all the entire cube, 
but rather a restricted collection of group-bys. For exam- 
ple, Graefe, Chaudhuri and Fayyad in [GFC98] discuss the 
“unpivot” operator, for use in the context of data mining. 
These authors observed that most decision tree computation 
algorithms use as input data the marginal densities of the 
input data rather than the entire data set. The Grouping Sets 
keyword [Cha96] allows the following query to request the 
marginals: 
Select prod, month, state, sum(sa1e) 
From Sales 
Group By Grouping Sets ((prod), (month), 

(state)) I 

Example 2.2: Consider now a pivoting example, which 
does not classify as a data cube or multi-dimensional query. 
Suppose that we want to compute for each customer the 
average sale in “NY”, in “NJ” and in “CT” (the tri-state 
area). Figure 1 shows part of the output table. Note once 
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again the thick line that separates the grouping attribute 
values and the aggregated values. 

This type of query is cumbersome to express in SQL 
because the definition of aggregation is tied to the definition 
of the groups. Three subqueries are required to compute 
per-customer sales in NY, NJ, and CT, respectively. Our 
intended collection of groups is the list of all customers, 
whether or not they made any purchases in NY, NJ, or CT. 
Therefore a fourth subquery is required to select all unique 
customers, followed by four outer joins to attach the sales 
to the customer in NY, NJ, and CT. I 
Example2.3: Suppose that we want to count how many 
sales were above the average sale, when table Sales is bro- 
ken down by all possible combinations of prod, month, 
state. The last sentence implies a data cube structure over 
prod, month and year attribute; however, we want to 
compute something more complex than a simple aggregate. 
Even if the cube by syntax is available in our version of 
SQL, it can not be used. Rather, the user has to define eight 
group bys, join each one with the Sales table and perform 
eight new group bys. 

In [RSC98], Ross, Srivastava and Chatziantoniou argued 
that the multi-featured aggregation and the cube by syntax 
should be merged for succinctness and performance rea- 
sons. However, we would like to generalize this idea by 
separating the definition of the groups and the definition of 
the (multi-pass) aggregation. Instead of proposing special 
purpose evaluation algorithms, we would like to use query 
transformations and a cost-based optimizer to find an opti- 
mal evaluation plan. I 
Example 2.4: Suppose that we are interested in computing 
the total sale at certain points of a data cube, given to us in 
a precomputed datafile or table. For example, a data mining 
algorithm may be interested in the total sale only at these 
crucial/representative points. A generic decision support 
framework should be able to handle such queries in a clean 
and succinct way. This can be achieved by separating the 
specification method of the left and the right part of the 
output table. I 
Example 2.5: Suppose that for each product you want to 
count for each month of 1997 the sales that were between 
previous month’s average sale and following month’s aver- 
age sale. 

Computing the answer to this query requires that for each 
product and month, we compute aggregates from tuples 
outside the group (the next and previous month’s average 
sales). After these values are computed, we have enough 
information to compute the output aggregate. That is, mul- 
tiple pass aggregation is required. l 

The list of examples can continue (e.g., using computed 
values in the base values, for example to aggregate by 

quarter instead of month), but we stop here to analyze the 
similarities and differences between the example queries. 
Although each of the queries seems to have a different flavor 
and a different evaluation strategy, they all involve the same 
approach: defining a set of base values which define the 
rows of the output table, associating subsets of a relation 
with each row, and computing aggregates of the subset. 
Both the definition of the base values and the computation 
of the associated aggregates can involve complex computa- 
tions. This observation argues that the definition of the base 
values and the computation of the aggregated values should 
be decoupled. By decoupling these two definitions, we can 
achieve not only a greater flexibility in defining the queries, 
but also a greater succinctness and simplicity in expressing 
them. 

Example 2.1 is a classical data cube example. Several 
algorithms have been proposed for fast data cube computa- 
tions [AAD+96, RS961. In these formulations aggregation 
is considered part of the data cube structure. As a result, if 
one computes the total sale for some data cube and later 
wants to compute the average sale, s h e  must re-execute 
one of the proposed algorithms. Example 2.3 shows that 
although the base values structure is a data cube, the cube 
by clause can not be used, due to the fact that the semantics 
of this operator are tied to the computation. Although the 
proposed solution in [RSC98] solves nicely such cases, i t  
still does not distinguish between base values and aggrega- 
tion. Note that modeling data cubes as in [AGS97] does not 
help much, since we must join the data cube with the detail 
data, an operation not supported in [AGS97]. 

Chatziantoniou and Ross introduced the concept of 
grouping variable [CR96, Cha991, a useful idea for complex 
and ad hoc computations (Examples 2.2 and 2.5 can be 
expresed simply using grouping variables). Still, this idea 
is restricted to group by queries. 

In this paper we propose a clean cut between the base 
values set-up phase and the aggregation phase. We need 
only one operator to carry out the aggregation, no matter 
what are the base values. Furthermore, we want to be able 
to combine several of these operators to represent complex 
ad hoc computations. We show that this formulation leads 
to better performance, optimization and expressibility of 
decision support queries. Other useful OLAP relational 
operators or SQL extensions are proposed in [KS95, GL97, 
CT971. Gyssens and Lakshmanan in particular [GL97] 
recognize the need to separate group definition and aggre- 
gation. 

3 The MD-Join Operator 

In this section, we define the MD-join operator, which 
cleanly separates the definition of the groups from the def- 
inition of the aggregation. The MD-join does not group 
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tuples for aggregation in the way that conventional aggrega- 
tion does. Instead, the collection of output tuples is defined 
by a base values relation, which contains a collection of 
“group” keys. We will generally refer to base values instead 
of groups from now on. 

Definition 3.1: Let B ( B )  and R ( R )  be relations, 8 a con- 
dition involving attributes in B and R, and 1 a list of aggre- 
gate functions ( f 1 ,  f 2 , .  . . , f,) over attributes c1, c2,. . . , c, 
in R. Then the MD-join, MD( (, R, B ,  , ), I ,  e),  is a relation 
with schema B ,  fl R-cl ,  ..., f,-R-c,,’ whose instance is 
determined as follows. Each tuple b E B contributes to an 
output tuple b, such that: 

0 

0 

B is 

b[A] = b[A], for every attribute A E B 

for each tuple b of relation B let RNG(b, R, 8) = 
{ r  E RIB(b,r) is t rue }. Then, the value of at- 
tribute fi-R-ci of tuple b is given by b [ f J L c i ]  = 
fi{{t[ci] I t E RNG(b, R,8)}}, where {{...}} de- 
notes multiset. 

called the base-values relation and R is called the 
detail relation. I 

Following Gray et a1 [GBLP96], we use the value “ALL” 
in the base-values table To model multiple granularity ag- 
gregates within a single table (as discussed in Example 2.1). 

Note that if every row in B is distinct, then the above 
definition corresponds to the relational algebra expression: 

b-Tfl(~.c,) ,..., f , , ( ~ . ~ , , ) @  We R) 
U ( ( B  - w,(B We R))  x Nil 

where F is an aggregation operator (e.g. [EN89]), b denotes 
all the attributes of B and N is a one tuple relation whose 
fields are the initial values for the aggregates in 1. 

The definition of the MD-join operator allows the user a 
tremendous amount of flexibility in defining an aggregation 
query, as B and R can be arbitrary relational expressions 
and 8 can be an arbitrary join predicate. For example, to 
compute in query of Example 2.5 for each customer and 
month the average of sales of this customer in the previ- 
ous month, one defines 8 as: Sales. cust=cust and 
Sales .month = month+l. 

Note that the row count of the result of the MD-join is 
the same as the row count of B (i.e., the MD-join performs 
an outer join). This semantics more accurately captures 
the user’s intentions than the standard aggregation does 
(consider Example 2.2) .  

Note also that the MD-join operator can be considered 
as a shortcut for a somewhat more complex expression. 
However, the expression that the MD-join represents often 

‘Attributes are appropriately renamed if there are any duplicate names 
generated this way. 

occurs in OLAP queries. By understanding the properties of 
the operator, we can easily obtain many query transforma- 
tions leading to efficient evaluation plans, as will be shown 
in Section 4. 

We give below a simple algorithm to implement MD- 
join2. Note that although definition 3.1 states that for each 
row b of B we identify a set of tuples of R, in this algorithm 
we follow the opposite direction: we scan the detail table R 
and loop over all tuples of B to identify matches based on 
condition 0. If a match is detected, we update the aggregate 
columns appropriately. 

Algorithm 3.1: Evaluation of the MD-join operator: 

scan R ,  and for all tuples t in R{ 
for all rows r of B ,  check if condition 
6 is satisfied with respect to r and t .  
If yes, update T ’ S  aggregate columns 
appropriately. 

> I  
The conventional group-wise aggregation algorithm can- 

not in general be applied, because the tuples in B do not 
necessarily represent groups in R. Neither can a conven- 
tional hash aggregation algorithm be applied, as a tuple 
from R might join with many tuples from B. However, 
by using the appropriate transformations and optimizations 
one can develop efficient evaluation plans the generalize the 
group-wise and the hash aggregation algorithms. 

3.1 Complex Ad Hoc Computations 

Many decision support queries ask for something more 
complex than a simple average or total. Examples 2.2,  2.3 
and 2.5 are instances of queries requiring complex ad-hoc 
computations. More examples can be found in [Cha99]. 
One of the primary motivations for separating grouping 
and computation is the ability to define complex ad hoc 
computations without needing to define a new operator for 
each query. 

The semantics of the MD-join operator has been defined 
in such a way that several MD-joins can be combined in a 
sequence to carry out most ad hoc complex computations. 

Example 3.1: Example 2.2 can be expressed in relational 
algebra using MD-joins as 3:  

M D ( M D ( M D ( B ,  Sales ,  awg(sale),BI), 
Sales,  awg(sale), &), Sales ,  awg(sale), 03)  

2This algorithm works only for distributive and algebraic aggregates; 
holistic aggregates can be processed by a similar algorithm that handles 
memory allocation issues (e.g., see [WZOOb]). However, some holistic ag- 
gregates can be made algebraic by using approximation, e.g. approximate 
medians[MRL98]. 

3We omit for simplicity several relational algebra details in this formu- 
lation. Each application of the MD-join should be preceded by renaming 
of the Sales table. The same holds for the remaining examples. 
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where 01 : Sales.cust=cust and Sales.state="NY", 
02 : Sales.cust=cust and Sales.state="CT", 
03  : Sales.cust=cust and Sales.state="NJ", 

and B is the resulting table of a select distinct 
cus t from Sales. 

The advantage of this formulation is that we do not have 
to define a new class of queries. It is still a group by (to 
construct the base-values table), followed by a complex 
computation. If the cube by keyword in this query is 
replaced by, e.g. unpivot, the algebraic expression is 
unchanged (except for the definition of B). I 
Example 3.2: Example 2.3 can be expressed in relational 
algebra using MD-joins as: 

MD(MD(B,  Sales, avg(sale), 01) ,Sales,  count(*), 02) 

where 

81 : Sales.prod=prod and Sales.month=month and 

02 : Sales.prod=prod and Sales.month=month and 
Sales.state=state, 

Sales.state=state andSales.sale>avg-Sales-sale, 

and B is the data cube of prod, month and state 
attributes. 

Once again this is a data cube query with some complex 
computation. It is not necessary to define a whole new class 
ofqueries. I 
Example 3.3: A complex operation may involve different 
detail tables. Let us assume 
that there is another table, called Payments with schema 
(cus t , day, month, year, amount ) and a user wants 
to know the total sales and payments for each customer and 
month. This query can be expressed as: 

MD(MD(B,  Sales, sum(sale),  0,) 
Payments, sum(amount), 0 2 ) )  

where 
01 : Sales.cust=cust and Sales.month=month, 
62 : Payments.cust=cust and Payments.month=month, 

and B is the resulting table of a select distinct 
cust,month from Sales. 

Such a formulation can be optimized significantly better 
than a traditional relational algebra expression, due to its 
conciseness. I 

4 Optimizations 

In this section we discuss how the MD-join operator 
interacts with other relational operators and present several 
algebraic transformations useful for generating optimized 
query plans. Thus we show that the MD-join contributes to 

the efficient evaluation of decision support queries as well 
as to their succinct expression. The MD-join can be incor- 
porated immediately into present cost- and algebraic-based 
query optimizers. We also show that the implementation 
of the MD-join is efficient and offers orders of magnitude 
speedups as compared to current commercial systems. We 
briefly discuss performance in Section 5. 

4.1 In-Memory Computation and Parallelism 

In this section, we present how the MD-join and union 
operators interact. Specifically, we show the base-values 
table partitioning transformation, and show its uses in de- 
veloping query plans for large-scale computations and for 
parallel query evaluation. We also show how MD-join can 
employ intra-operator parallelism. 

Theorem 4.1: If B and R are relations, B1 , B2 , . . . , B, a 
partition of B, 1 a list of aggregate functions over columns 
of R and 0 a condition involving attributes of B and R, then: 

MD(B,R ,1 ,0 )  = MD(B1,RlZ,0) U . 
. . . U MD(B,, R ,  1,O)D 

4.1.1 In-Memory Computation 

One interpretation of Theorem 4.1 is that the base-values 
table B can be partitioned in any arbitrary way and the 
MD-join can be computed in m scans of the detail table 
R instead of one. As a result, we can always devise 
a query evaluation plan in which Algorithm 3.1 operates 
on memory-resident data. Regardless of the indices con- 
structed on B for use in the MD-join (discussed in Sec- 
tion 4.59, in-memory evaluation will usually be significantly 
faster than an out-of-core evaluation. The cost is a well- 
defined increase in the number of scans of R. 

4.1.2 Parallelism 

A different application of Theorem 4.1 is some form of 
intra-operator parallelism. That is, the partitions B1 through 
B, are distributed to m processors and each MD-join 
fragment evaluated locally. Each evaluation requires a scan 
through R ,  but we will show how the work requried to 
perform the evaluations can be reduced. 

4.2 MD-join and Selections 

The MD-join operator interacts with selections in a sim- 
ilar fashion to joins. 

Theorem4.2: Let B and R be relations, 1 be a list of 
aggregate functions over columns of R and 0 be a condition 
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involving attributes of B and R. If 8 = dl and e2 and e2 
involves only attributes of R ,  then: 

M D ( B , R , z , ~ ~  ande2) = M D ( B , ~ ~ ~ ( R ) , ~ , ~ ~ )  

Proof: Tuples of R not satisfying 02 will not be considered 
by the MD-join and as a result this selection can be pushed 
t o R .  I 

This theorem says that the MD-join operator can be 
implemented via an indexed instead of a full scan of R. 
This is a very important optimization, especially if R is very 
large (e.g. internet/web/call logs). 

Example 4.1: One may be interested to compare for each 
product the total sales of the period 1994 to 1996 versus 
the total sales of 1999. This can be expressed in relational 
algebra using MD-joins as: 

M D ( M D ( B ,  Sales, sum(sale),  el), Sales, sum(sale),  8,) 

where 

81 : Sales.prod=prod and Sales.year> 1994 and 

82 : Sales.prod=prod and Sales.year= 1999 

and B is the resulting table of a select distinct 
prod from Sales. 

If there is a clustered index on the date (day, m o n t h ,  
year) set of attributes, there is no need to perform two 
full scans of the Sales relation. Instead, the first scan 
will involve sales of I994 to 1996 and the second scan will 
involve sales of 1999. 

Sales.year5 1996, 

We note that Theorem 4.2 can work in conjunction with 
Theorem 4.1 to limit the range of R that must be MD-joined 
with B.  

Observation 4.1: Let us 
consider an MD-join M D ( B ,  R, 1, e) in which B does not 
fit in memory and is partitioned into B1 U. . . U B,, where 
Bi = a i ( B ) ,  oi is a range selection on a set S of attributes 
of B, i = 1,2,  . . . , m. Further assume that the condition 
e can be expressed as a conjunction of an equality test on 
attributes of S between B and R and another condition e’, 
i.e. -9 : B. S=R.  s ’ and e’. Then, 

M D ( ~ ~ ( B ) ,  R,  z, e) = M D ( ~ ~ ( B ) ,  O: (R) ,  z, e) 
where oi is oi with references to attributes S of B replaced 
by the corresponding references to attributes S‘ of R. 1 

Observation 4.1 states that a range selection on the base- 
value relation B can be pushed to the detail relation R when 
the theta condition of the MD-join is appropriate. This 
optimization is very similar to optimization techniques of 

hash-based aggregation methods of [Gra93]. However, the 
framework is more general since the theta condition is not 
necessarily an equijoin. 

One application of Observation 4.1 is to reduce amount 
of data scanned when applying the in-memory optimization 
in Section 4.1.1. For an example, consider the query in 
Section 4.1.2. If we range partition the base-value relation 
on month (e.g. 1-3, 4-8, 9-12), we can push these range 
selections to the detail relation. If there is a clustering index 
on month we can reduce the work required to evaluate ag- 
gregates of 2 and y to scanning only appropriate partitions 
of the Sales relation (i.e., do group-wise processing). A 
similar optimization can be made when performing the par- 
allelization optimization discussed in Section 4.1.2, except 
that the effect is to reduce the number of processors that 
receive each tuple. 

4.3 Series of MD-joins 

Another set of important algebraic transformations ap- 
plies when there is a series of MD-join operators, a very 
common case in decision support queries (almost all of our 
examples involve series of MD-join operators). 

A scan of a relation can be very expensive, especially if 
the data set is large. It is therefore essential to reduce the 
number of scans as much as possible. If there is a series of 
IC consecutive MD-joins, Algorithm 3.1 requires one pass 
over the detail relation(s) for each operator, for a total of IC 
scans. However, this is not always necessary. 

Consider Example 2.2. Although this query is expressed 
as a series of three MD-joins, obviously it can be evaluated 
with just one scan. The key observation in this example is 
that the theta conditions of the MD-joins are “independent” 
of each other. More precisely, there are no augmented 
columns generated by an MD-join used in a theta condition 
of a subsequent MD-join. 

Dependency analysis between correlated aggregates has 
been treated in [Cha99] and many ideas are common. How- 
ever it is valuable to formulate this concept as an algebraic 
transformation. One approach is to generalize the MD-join 
operator to incorporate a vector of theta conditions and a 
vector of lists of aggregate functions (and possibly a vector 
of names to rename aggregate functions). This is denoted 
as: 

MD(B,R ,  ( z 1 1 i 2 , .  . . m1 (elre2, .  . .,e,)) 
with the obvious semantics’ extensions (for each tuple of B 
we define IC subsets of R instead of one). Using this new 
generalized MD-join, two consecutive MD-join operators 
can be combined in one, if (i) the condition of the second 
MD-join does not mention any column generated by the first 
and (ii) the detail relation is the same for both MD-joins. 

A possible impediment to using the series MD-join op- 
erator is that we might be provided with the algebraic ex- 
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pression in an inappropriate order. Fortunately, MD-joins 
commute under suitable conditions. 

Theorem 4.3: If B,R1,R2 are relations, 11 and 12 are list of 
aggregate functions and el, 02 conditions, then: 

MD(MD(B, RI , 11 , 01 ), R2,12, 02) = 
MD(MD(B1 R2112, e,>, R1111,el) 

if O1 involves only attributes of B and R1 and 6J2 involves 
only attributes of B and R2. I 

The last theorem gives us the ability to assign a series of 
k MD-joins to'a minimal number of generalized MD-joins 
in O(k2)  worst-case time (by topologically sorting the MD- 
joins). 

In addition to combining a sequence of MD-joins into a 
single operation, it  is possible to express one as a join of 
two separate MD-joins. 

Theorem 4.4: Assume that B ,  R I ,  and R2 are relations, 1 1  

and 12 are lists of aggregate functions over columns of R1 
and R2 respectively, and B1 and 6 2  are conditions involving 
attributes of B and respectively R1 and Ra. 

Because the MD-join does not change the rows of B ,  i t  
is possible under suitable conditions to perform the equijoin 
very efficiently. An implication of the theorem is that one 
can move the computation of the MD-join to the source of a 
relation R, and in fact perform several such joins in parallel. 
Consider Example 2.2. Suppose that the Sales table is a 
distributed relation, and data for New Jersey is stored in 
Trenton, data for New York in Albany, and so on. It is 
likely to be more efficient to move the base-value relation to 
the three data stores, perform local MD-joins, then equijoin 
the results to obtain the answer. Note that we make use of 
Theorem 4.2 here. 

4.4 Projections and MD-Joins 

In this section we show how projections and MD-joins 
can be used to express the roll-up property of data cubes - 
that is, sub-cubes can be constructed from their drill-down 
cubes - as an algebraic transformation, and discuss how 
this allows us to algebraically express and generalize more 
specialized cube computation algorithms. 

Theorem 4.5: Let S and R be two relations, X and Y be 
attribute sets of S.  Let T ] T X , A L L ~  ( B )  be consist of the unique 
tuples of S projected to attributes in X ,  and with i copies of 
'ALL' attached. Let 1 be a list of distributive aggregates, and 

Figure 2. Pipelined paths of the PIPESORT 
algorithm 

let 6 be a predicate that is a conjunction of predicates that 
test the equality of an attribute of X or Y with an attribute 
in R, for all attributes in X U Y .  Then, 

where I' is the set of distributive aggregates in 1 modified 
appropriately (e.g. a count in 1 becomes a sum in 1 ' ) .  I 

Theorem 4.5 simply states that a coarser granularity 
cuboid can be computed by a finer granularity cuboid. The 
efficient cube computation algorithms of [AAD+96] are 
based largely on appropriate partitions of the data cube, 
on pushing selections on the base-values table partitions to 
the detail table partitions, and the roll up property of data 
cubes. Using Theorem 4.5 (in conjuction with the preceding 
theorems), we can express the algorithms of [AAD+96] 
algebraically, and thus generalize their application. 

For example, the PIPESORT algorithm of [AAD+96] 
proceeds level-by-level in the search lattice of a data cube 
starting from the root, building pipelined paths according to 
certain cost criteria and converting the search lattice into a 
tree. Theorem 4.5 can be used to build pipelined paths. The 
cost criteria can be incorporated into the optimizer. As a 
result we can generalize these algorithms and apply them in 
new settings. 

Example 4.2: Assume that R is a relation, A ,  B ,  M are 
attributes of R ( M  is the measure) and we want to compute 
the total of M over the datacube of attributes A and B. 
Suppose that by running PIPESORT on this we get the paths 
of Figure 2, where the dashed line means resorting. 

If D denotes the datacube of A and B ,  then we want 
to compute MD(D, R,  I, O), where 1 = s u m ( M )  and 0: 
R.A = D.A and R.B = D.B.  This expands to: 

Applying Theorems 4.1 and 4.5 - more than once in some 
cases- we have: 
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This algebraic expression can be annotated appropriately 
to reflect the pipelining and resorting steps corresponding 
to the PIPESORT output of Figure 2. Usually optimizers 
perform common subexpressions elimination. We note that 
the MD-join operator can be implemented differently than 
described by Algorithm 3.1. In this case, a more efficient 
algorithm is possible because the detail relation is provided 
in sorted order. 

Note that using an annotated relational algebra expres- 
sion to represent the cube computation, one can divert from 
the classical evaluation methods and build hybrid tech- 
niques. For example, the dashed line in Figure 2 could 
denote either resorting, or hash evaluation [Gra93]. I 

Ross and Srivastava in [RS96] proposed a divide- 
and-conquer strategy for the computation of a data cube 
over D1 Dz, . . . , D,  dimensions. If the detail relation 
R fits in main memory, then their algorithm performs 
multiple in-memory sorts computing the cuboids, using 
the idea of pipelined paths of the PIPESORT algorithm 
[AAD+96], executing however an optimal number of 
sorts. If the detail relation R does not fit in memory, 
then a dimension Di is picked (chosen carefully) and 
R is partitioned based on the values of Di. Then, the 
subcube of D1,. . . , Di-1, Di+l,. . . , D, is computed in 
memory for each value of Di using the previous algo- 
rithm - if the partition does not fit in memory there is 
further partitioning recursively. Finally the subcube of 
D1, . . . Di-1 ALL, Di+l, . . . D, is computed. 

Their proposed in-memory data cube computation is 
similar in spirit with [AAD+96] and therefore Theorem 4.5 
can be used to construct the appropriate pipelined paths 
for cuboids computation, based on their path selection 
methods. For the partitioning phase of their algorithm, 
Theorem 4.1 can be used: B1, B2 . . . , B, corresponds to 
the subcubes D1, . . . , Di-1, Di+l . . . D, for all values of 
Di attribute (including the ALL value). Specifically, the 
algebraic transformations are (B denotes the data cube over 
D l  7 D 2 ,  . . . 7 

MD(B7 R, 4 0) 
= MD(U2,=~; OD,=z(B)7  R7 l , e )  
= U z € ~ ;  MD(OD,=27 R ,  I ,  6 )  
= UzEDi  M D ( O D , = ~ ,  DR.D;=~(R), 1,e)  

Thm.  4.1 
Observ. 4.1 

The second operand of the last MD-join corresponds to the 
partitions mentioned in Ross and Srivastava’s algorithm. 

We can generalize the efficient cube computation to new 
applications using the algebraic framework. For one exam- 
ple, we can generalize efficient data cube construction to 
cubes over multiple fact tables. For another example, we 
can apply the optimizations to finding efficient techniques 
for computing a selected set of subcubes. 

4.5 Indexing 

Algorithm 3.1 can become very expensive if the base- 
values relation B has a large number of rows (even though 
B is memory resident), since for every scanned tuple t of 
the detail table R all B’s rows are examined, resulting in 
a nested-loop join. However, this is not always necessary 
since, given a tuple t ,  one can identify a small number of 
B’s rows that may be updated with respect to t during the 
evaluation of the MD-join operator. 

For instance, consider Examples 2.2 and 3.1. During the 
evaluation of the first MD-join, given a tuple t of Sales 
relation, there is only one row of B that may be updated, 
the one that has the same value in the cus t attribute with 
t’s cust value). If B is indexed on the cust attribute, 
searching of B becomes very fast. Now consider Exam- 
ple 2.5. This query can be expressed by three MD-joins 
with theta conditions as described in that example. During 
the evaluation of the first MD-join, given a tuple t of Sales 
relation, there is one row of B that may be updated, the one 
that has the same value in the cust attribute with t’s cust 
value and its month value equals t’s month value + 1. An 
index on (prod, month) on B would reduce searching 
of B significantly (an index on prod would be sufficient.) 

Definition 4.1: The set of rows of B that are updated dur- 
ing the evaluation of an MD-join given a tuple t (i.e. the 
set of rows updated in the innermost loop body of Algo- 
rithm 3.1) is called the relative set of B with respect to t ,  
denoted as Rel(t) .  I 

Sometimes it is possible to index B once and use this 
indexing for the evaluation of all MD-joins in a query, as 
in the examples described above. In other cases we may 
have to create an additional index (for example, we may 
have to index on a column generated by a previous MD- 
join). However, since B can be made memory-resident 
(using Algorithm 3.1), it is not very expensive to build an 
index from scratch. 

5 Discussion 

Query Language The MD-join algebra provides a way 
to express complex OLAP queries in a succinct relational 
algebra, a necessary condition for efficient optimization. 
However users do not express queries in algebraic form, 
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they use a query language such as SQL. Since SQL trans- 
lates to relational algebra and MD-join is not part of it, 
this means that either there must be a mapping phase from 
standard relational algebra to relational algebra with MD- 
join (a difficult task), or SQL must be extended. We believe 
(having tried to express decision support queries in SQL) 
that the succinctness of the MD-join operator must be re- 
layed to SQL. Several SQL extensions have been proposed 
in the past by many authors [KS95, GBLP96, CR96, GL98, 
Cha99, JC991, arguing that SQL is cumbersome and diffi- 
cult to use for decision support. In this section we present 
some ideas on how to decouple the description of the base- 
values table and the description of the computation. 

In [Cha99], Chatziantoniou presented EMF-SQL, a lan- 
guage for complex aggregation. An EMF-SQL query uses 
grouping variables to constrain the tuples to be aggregated 
over for each group. The grouping variable constraint may 
specify that tuples outside of the group should be aggre- 
gated. That is, a grouping variable is processed using an 
MD-join. For an example, the following EMF-SQL query 
expresses Example 2.5: 
select prod, month, count(Z.*) 
from Sales 
where year=1997 
group by prod,month ; X,Y,Z 
such that X.prod=prod and X.month=month-1, 
Y.prod=prod and Y.month=month+l, 
Z.prod=prod and Z.month=month and 
Z. sale>avg (X. sale) and 2 .  sale<avg (Y. sale) 

However, the EMF-SQL language cannot easily express 
the full range of queries that are succinctly expressed with 
MD-joins (that is, without extensive use of multiblock 
queries and views). In a previous work [JC99], we present a 
query language that allows the expression of many holistic 
aggregates by aggregating over the result of an MD-join. 
However, the base table is still defined as a selection from a 
table. 

We propose to replace the group by or cube by 
clause by a more general clause that incorporates grouping 
or cubing as special cases. The format of this clause is: 

analyze by groupingaperation or table 
( list-ofattributes ) 

The first argument groupingaperation or table pro- 
vides the base-values table B. It can be a known opera- 
tion (e.g. group by, cube by, unpivot, roll-up, 
grouping sets) or a table or view. In general, it can be 
any expression returning a table. The second argument is 
just a list of attributes. 

Example 5.1: Example 2.1 could be expressed as: 

select prod, month, state, sum(sa1e) 
from Sales 
analyze by cube(prod, month, state) 

The unpivot query in Example 2.1 could be expressed as: 

select prod, month, sum(sa1e) 
from Sales 
analyze by unpivot(prod, month, state) 

Suppose that that table T contains the data points of Exam- 
ple 2.4. Then, this query could be expressed as: 

select prod, month, state, sum(sa1e) 
from Sales 
analyze by T(prod, month, state) I 

Performance It is natural to wonder whether Algo- 
rithm 3.1 has an efficient implementation, even in the 
presence of the optimizations described in Section 4. In 
[Cha99], Chatziantoniou presents the EMF-SQL language 
for expressing complex OLAP queries and also a perfor- 
mance study using a prototype EMF-SQL tool. The query 
in Example 2.5 was evaluated using both a commercially 
available DBMS and the prototype, and the prototype was 
an order of magnitude faster. 

6 Conclusions 

We have observed that different decision support queries 
require aggregation over different sets of base values. Tradi- 
tional examples are queries involving group-bys and cube- 
bys, which define the base values differently. Other exam- 
ples that aggregate over different sets of base values are: 
computing new aggregates for select rows of an existing 
data cube, the unpivot operator proposed for data mining, 
and materializing an optimal set of subcubes of a data cube. 
Other queries can involve aggregation over base values 
resulting from ad-hoc SQL queries. Often the aggregation 
over the base values is complex also (e.g., the number of 
purchases larger than the average purchase for the group). 
To unify all of these types of queries in a single relational 
algebraic framework, we decouple the definition of the base 
value set from the definition of the aggregates. 

We propose a new relational operator, the MD-join 
which cleanly provides this decoupling. The operands of 
the MD-join include the set of base values and the rela- 
tion to be aggregated; these operands can be the result of 
arbitrary relational expressions. We show that the MD- 
join operator provides tremendous flexibility in expressing 
decision support queries. 

In addition, we show that expressing decision support 
queries in terms of the MD-join leads to efficient and op- 
timized query plans. We show an efficient algorithm for 
implementing an MD-join. We next show a variety of alge- 
braic transformations of expressions involving an MD-join 
that permits parallel execution and partitioned in-memory 
computation. By use of a roll-up transformation we can 
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express the efficient data cube computation algorithms as 
transformed MD-joins expressions. As a result, we can 
generalize the cube computation algorithms and apply them 
to new settings. 

The introduction of the MD-join operator opens a range 
of research questions. While we have demonstrated alge- 
braic transformations that lead to a wide variety of opti- 
mizations, much more is possible, We also note that the 
MD-join operator permits the concise expression of a rich 
collection of decision support queries, which have not yet 
been fully explored. 
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