
Efficient OLAP Query Processing

in Distributed Data Warehouses

Michael O. Akinde1, Michael H. Böhlen1, Theodore Johnson2, Laks V.S.
Lakshmanan3, and Divesh Srivastava2

1 Aalborg University
{strategy, boehlen}@cs.auc.dk

2 AT&T Labs–Research
{johnsont, divesh}@research.att.com

3 University of British Columbia
laks@cs.ubc.ca

Abstract. The success of Internet applications has led to an explo-
sive growth in the demand for bandwidth from ISPs. Managing an IP
network requires collecting and analyzing network data, such as flow-
level traffic statistics. Such analyses can typically be expressed as OLAP
queries, e.g., correlated aggregate queries and data cubes. Current day
OLAP tools for this task assume the availability of the data in a cen-
tralized data warehouse. However, the inherently distributed nature of
data collection and the huge amount of data extracted at each collection
point make it impractical to gather all data at a centralized site. One
solution is to maintain a distributed data warehouse, consisting of local
data warehouses at each collection point and a coordinator site, with
most of the processing being performed at the local sites. In this paper,
we consider the problem of efficient evaluation of OLAP queries over a
distributed data warehouse. We have developed the Skalla system for
this task. Skalla translates OLAP queries, specified as certain algebraic
expressions, into distributed evaluation plans which are shipped to in-
dividual sites. Salient properties of our approach are that only partial
results are shipped – never parts of the detail data. We propose a variety
of optimizations to minimize both the synchronization traffic and the
local processing done at each site. We finally present an experimental
study based on TPC(R) data. Our results demonstrate the scalability of
our techniques and quantify the performance benefits of the optimization
techniques that have gone into the Skalla system.

1 Introduction

The success of Internet applications has led to an explosive growth in the de-
mand for bandwidth from Internet Service Providers. Managing an IP (Inter-
net Protocol) network involves debugging performance problems, optimizing the
configuration of routing protocols, and planning the rollout of new capacity, to
name a few tasks, especially in the face of varying traffic on the network. Effec-
tive management of a network requires collecting, correlating, and analyzing a
variety of network trace data.

Typically, trace data such as packet headers, flow-level traffic statistics, and
router statistics are collected using tools like packet sniffers, NetFlow-enabled
routers, and SNMP polling of network elements. A wide variety of analyses
are then performed to characterize the usage and behavior of the network (see,
e.g., [5, 10]). For example, using flow-level traffic statistics data one can answer
questions like: “On an hourly basis, what fraction of the total number of flows

is due to Web traffic?”, or “On an hourly basis, what fraction of the total traffic

flowing into the network is from IP subnets whose total hourly traffic is within

10% of the maximum?” Currently, such analyses are usually implemented by the
networking community in an ad hoc manner using complex algorithms coded in
procedural programming languages like Perl. They can actually be expressed
as OLAP queries, including SQL grouping/aggregation, data cubes [12], using
marginal distributions extracted by the unpivot operator [11], and multi-feature
queries [18]. Indeed, leveraging such a well-developed technology can greatly
facilitate and speed up network data analysis.

A serious impediment to the use of current-day OLAP tools for analyzing
network trace data is that the tools require all the data to be available in a single,
centralized data warehouse. The inherently distributed nature of data collection
(e.g., flow-level statistics are gathered at network routers, spread throughout the
network) and the huge amount of data extracted at each collection point (of the
order of several gigabytes per day for large IP networks), make it impractical to
gather all this data at a single centralized data warehouse: for example, Feldmann
et al. [10] report that use of a single centralized collection server for NetFlow
data resulted in a loss of up to 90% of NetFlow tuples during heavy load periods!

The natural solution to this problem is to maintain a distributed data ware-
house, where data gathered at each collection point (e.g., router) is maintained at
a local data warehouse, adjacent to the collection point, to avoid loss of collected
trace data. For such a solution to work, we need a technology for distributed pro-
cessing of complex OLAP queries — something that does not yet exist. The goal
of this paper is to take the first steps in this important direction.

1.1 Outline and Contributions

The rest of this paper is organized as follows. We first present related work in
Sect. 1.2. In Sect. 2, we describe a motivating application and define the GMDJ
operator for expressing OLAP queries. Our technical contributions are as follows:

– We present a general strategy for the distributed evaluation of OLAP queries,
specified as GMDJ expressions, and present the Skalla system, developed by
us for this task (Sect. 3).

– We develop and define optimization strategies for distributed OLAP that can
exploit distribution knowledge, if known, as well as strategies that do not
assume any such knowledge, to minimize both the synchronization traffic,
and the local processing done at each site (Sect. 4).

– We conducted a series of experiments, based on TPC(R) data, to study the
performance of the Skalla approach. Our results show the effectiveness of

our strategies for distributed OLAP query processing, and also quantify the
performance benefits of our optimizations. This demonstrates the validity of
the Skalla approach (Sect. 5).

While we illustrate our techniques using examples drawn from the network
management application, our approach and results are more generally applicable
to distributed data warehouses and OLAP query processing in other application
domains as well (e.g., with heterogenous data marts distributed across an enter-
prise). To the best of our knowledge, ours is the first paper on this important
topic.

1.2 Related Work

The most closely related prior work is that of Shatdal and Naughton [19], who
use a similar coordinator/sites model for the parallel evaluation of aggregates,
and present various strategies where the aggregate computation is split between
the sites and the coordinator, to optimize performance. Aggregates are also con-
sidered in a number of parallel database systems, such as in [3, 4]. There are
two main differences with our work. First, their results are tuned for a parallel
computer, where communication is assumed to be very cheap, which is certainly
not the case in our distributed data warehouse setting. Second, they deal only
with the case of simple SQL aggregates, while we consider significantly more
complex OLAP queries.

A variety of OLAP queries have been proposed in the literature, allowing a
fine degree of control over both the group definition and the aggregates that are
computed using operators such as cube by [12], unpivot [11], and other SQL
extensions (e.g., [6]). Recently, Chatziantoniou et al. [7] proposed the MDJ op-
erator for complex OLAP queries, which provides a clean separation between
group definition and aggregate computation, allowing considerable flexibility in
the expression of OLAP queries. The processing and optimization of these com-
plex OLAP queries has received a great deal of attention in recent years (see,
e.g., [1, 2, 7, 8, 12, 17, 18]), but it has all been in the context of a single centralized
data warehouse. Our results form the basis for extending these techniques to the
distributed case.

A considerable body of research has been performed for processing and op-
timizing queries over distributed data (see, e.g., [15, 16]). However, this research
has focused on distributed join processing rather than distributed aggregate
computation. The approach we explore in this paper uses an extended aggrega-
tion operator to express complex aggregation queries. Some of the distributed
evaluation optimizations that we have developed resemble previously proposed
optimizations, e.g. exploiting data distributions [15] or local reduction [20]. How-
ever, our architecture for evaluating distributed aggregation queries allows for
novel optimizations not exploited by conventional algorithms for distributed pro-
cessing.

2 Preliminaries

In this section, we give an example of an application area that motivates the
use of distributed data warehouse techniques. We then define the GMDJ opera-
tor and demonstrate how the GMDJ operator allows us to uniformly express a
variety of OLAP queries.

2.1 Motivating Example

Analysis of IP flow data is a compelling application that can tremendously ben-
efit from distributed data warehouse technology. An IP flow is a sequence of
packets transferred from a given source to a given destination (identified by an
IP address, Port, and Autonomous system), using a given Protocol. All packets
in a flow pass through a given router, which maintains summary statistics about
the flow and which dumps out a tuple for each flow passing through it.

Data warehouses are typically modelled using, e.g., star schemas or snowflake
schemas [14, 8]. Our techniques are oblivious to which of these data warehouse
models are used for conceptually modeling the data, and our results would hold
in either model. For simplicity, in our examples the table Flow is a denormalized
fact relation, with NumPackets and NumBytes as the measure attributes and with
the following schema:

Flow (RouterId, SourceIP, SourcePort, SourceMask, SourceAS, DestIP,

DestPort, DestMask, DestAS, StartTime, EndTime, NumPackets,

NumBytes)

We assume that flow tuples generated by a router are stored in a local data
warehouse “adjacent” to the router, i.e., RouterId is a partition attribute. Each
local warehouse is assumed to be fully capable of evaluating any complex OLAP
query. We refer to this collection of local data warehouses (or sites), along with a
coordinator site that correlates subquery results, as a distributed data warehouse.

2.2 GMDJ Expressions

The GMDJ operator is an OLAP operator that allows for the algebraic expres-
sion of many complex OLAP queries [2].

Let θ be a condition, b be a tuple, and R be a relation. We write attr(θ) to
denote the set of attributes used in θ. RNG(b,R, θ) =def {r | r ∈ R ∧ θ(b, r)}
denotes the set of tuples in R that satisfies θ, with respect to the tuple b. E.g.,
RNG(b,R, b.A = R.B) denotes those tuples in R whose B-value matches the
A-value of b. We use {{. . .}} to denote a multiset.

Definition 1. Let B(B) and R(R) be relations, θi a condition with attr(θi) ⊆
B ∪ R, and li be a list of aggregate functions (fi1, fi2, . . . , fini

) over attributes

ci1, ci2, . . . , cini
in R. The GMDJ, MD(B,R, (l1, . . . , lm), (θ1, . . . , θm)), is a re-

lation with schema1

X = (B, f11 R c11, . . . , f1n R c1n1
, . . . , fm1 R cm1, . . . , fmn R cmnm

),

whose instance is determined as follows. Each tuple b ∈ B contributes to an
output tuple x, such that:

– x[A] = b[A], for every attribute A ∈ B

– x[fij R cij] = fij{{t[cij] | t ∈ RNG(b,R, θi)}}, for every attribute fij R cij

of x.

We call B the base-values relation and R the detail relation.
Usually, one can determine a subset K of key attributes of the base-values

relation B for each θi, which uniquely determine a tuple in B (K can be B). We
make use of key attributes in several of our strategies.

It should be noted that conventional SQL groupwise and hash-based aggre-
gation techniques cannot be directly applied to GMDJ expressions, since the set
of tuples in the detail relation R that satisfy condition θ with respect to tuples b1

and b2 of the base-values relation, i.e., RNG(b1, R, θ) and RNG(b2, R, θ), might
not be disjoint. However, see [2, 7] for a discussion of how GMDJ expressions
can be evaluated efficiently in a centralized system.

A GMDJ operator can be composed with other relational algebra operators
(and other GMDJs) to create complex GMDJ expressions. While arbitrary ex-
pressions are possible, it is often the case that the result of a GMDJ expression
serves as the base-values relation for another GMDJ operator. This is because
the result of the GMDJ expression has exactly as many tuples as there are in
the base-values relation B. In the rest of this paper, when we refer to (complex)
GMDJ expressions, we mean only expressions where the result of an (inner)
GMDJ is used as a base-values relation for an (outer) GMDJ.

Example 1. Given our IP Flows application, an interesting OLAP query might
be to ask for the total number of flows, and the number of flows whose NumBytes
(NB) value exceeds the average value of NumBytes, for each combination of source
and destination autonomous system (e.g., to identify special traffic). This query
is computed by the complex GMDJ expression given below.
MD(MD(πSAS,DAS(Flow)→B0,

Flow→F0,
((cnt(∗)→cnt1, sum(NB)→sum1)),
(F0.SAS = B0.SAS & F0.DAS = B0.DAS)

)→B1,
Flow→F1,
((cnt(∗)→cnt2)),
(F1.SAS = B1.SAS & F1.DAS = B1.DAS & F1.NB ≥ sum1/cnt1)

)

1 Attributes are appropriately renamed if there are any duplicate names generated
this way. We note that the renaming scheme employed in the examples will use a
shorthand form.

The flow data may or may not be clustered on SourceAS or DestAS. If it is not,
the distributed evaluation of this query requires correlating aggregate data at
multiple sites, and alternating evaluation (in multiple passes) at the sites and at
the coordinator. We develop efficient evaluation strategies for both cases.

We call queries such as in Example 1 correlated aggregate queries since they
involve computing aggregates w.r.t. a specified grouping and then computing
further values (which may be aggregates) based on the previously computed
aggregates. In general, there may be a chain of dependencies among the various
(aggregate or otherwise) attributes computed by such a query. In Example 1,
the length of this chain is two. Several examples involving correlated aggregates
can be found in previous OLAP literature [7, 6, 11, 18].

It is possible to construct many different kinds of OLAP queries and iden-
tifying distributed evaluation strategies for each would be quite tedious. The
GMDJ operator provides a clean separation between the definition of the groups
and the definition of aggregates in an OLAP query. This allows us to express
a significant variety of OLAP queries (enabled by disparate SQL extensions) in
a uniform algebraic manner [2, 7]. Thus, it suffices to consider the distributed
evaluation of GMDJ expressions, to capture most of the OLAP queries proposed
in the literature.

3 Distributed GMDJ Evaluation

In this section, we will describe the distributed GMDJ evaluation algorithm
implemented in the Skalla prototype. We defer the presentation of query opti-
mizations of the core Skalla evaluation algorithm until the next section.

3.1 Skalla: An Overview

The Skalla system for distributed data warehousing is based on a coordinator
architecture (i.e., strict client-server) as depicted in Fig. 1. It consists of multiple
local data warehouses (Skalla sites) adjacent to data collection points, together
with the Skalla coordinator (we note that the coordinator can be a single instance
as in Fig. 1 or may consist of multiple instances, e.g., each client may have its own
coordinator instance). Conceptually, the fact relation of our data warehouse is
the union of the tuples captured at each data collection point. However, users can
pose OLAP queries against the conceptual data model of our distributed data
warehouse, without regard to the location of individual tuples at the various
sites.

We define a distributed evaluation plan (plan for short) for our coordinator
architecture as a sequence of rounds, where a round consists of: (i) each skalla
site performing some computation and communicating the results to the coor-
dinator, and (ii) the coordinator synchronizing the local results into a global
result, and (possibly) communicating the global result back to the sites. Thus,
the overall cost of a plan (in terms of response time) has many components:

Database

Wrapper

Skalla Site

Database

Wrapper

Skalla Site

Database

Wrapper

Skalla Site

Metadata

Data Transfer

Query Generator

Mediator

Skalla Coordinator

OLAP Client OLAP Client

Algorithm GMDJDistribEval {
construct empty X
transfer X and B0 to each site Si

at each site Si ∈ SB

compute X0 at the local sites

transfer local X0 to coordinator

synchronize X0

for each GMDJ MDk (k = 1 to m) {
transfer Xk−1 to each Si ∈ SMDk

at each Si ∈ SMDk

compute MDk(Xk−1, Rk, lk, θk)
transfer Xk to coordinator

synchronize Xk

}
}

Fig. 1. Skalla architecture (left) and evaluation algorithm (right)

(i) communication (or, synchronization traffic), and (ii) computation (or, the
query processing effort at the local sites as well as the coordinator).

The query generator of the Skalla system constructs query plans from the
OLAP queries, which are then passed on to and executed by the mediator, using
Alg. GMDJDistribEval.

3.2 Algorithm Description

We will now describe how Skalla works when receiving an OLAP query, using
Example 1 to illustrate the Skalla evaluation.

First, the Skalla query engine uses Egil, a GMDJ query optimizer, to trans-
late the OLAP query into GMDJ expressions. These GMDJ expressions are then
optimized for distributed computation. We note that even simple GMDJ expres-
sions can involve aggregation and multiple self-joins, which would be hard for a
conventional centralized — let alone a distributed — query optimizer to handle.
We defer a study of these optimizations to Sect. 4.

Alg. GMDJDistribEval gives an overview of the basic query evaluation strat-
egy of Skalla for complex GMDJ expressions. Given the GMDJ query of Exam-
ple 1, the coordinator will construct the empty base-result structure X(X) with
the schema:

X = (SourceAS, DestAS, count md1, sum md1 numbytes, count md2)

The query B0 = πSourceAS,DestAS(Flow) is then shipped to each of the sites,
executed locally, and the result shipped back to the coordinator. During evalu-
ation, the coordinator maintains the base-result structure by synchronization of
the sub-results that it receives.

The term synchronization as used in this paper refers to the process of con-
solidating the results processed at the local sites into the base-results structure

X. We refer to each local-processing-then-synchronization step as a round of
processing. An evaluation of a GMDJ expression involving m GMDJ operators
uses m + 1 rounds. The notation Xk in Alg. GMDJDistribEval refers to the in-
stance of X after the computation of the kth GMDJ, where we assume there are
m rounds in all, m depending on the dependency chain in the original OLAP
query. Aggregates of X are computed from the local aggregate values computed
at the sites as appropriate. For example, to compute count md1, we would need
to compute the sum of the COUNT(*)s computed at the local sites. Following Gray
et al. [12], we call the aggregates computed at the local sites the sub-aggregates
and the aggregate computed at the coordinator the super-aggregate. SB is the
set of all local sites, while SMDk

is set of local sites which participate in the kth
round.2 We use Rk to denote the detail relation at round k.3 Again, depending
on the query, the detail relation may or may not be the same across all rounds.
This shows the considerable class of OLAP queries the basic Skalla evaluation
framework is able to handle. In this paper, we give only examples where the
detail relation does not change over rounds. Finally, lk is the list of aggregate
functions to be evaluated at round k and θk is the corresponding condition (see
Definition 1).

The following theorem establishes the basis of the synchronization in Skalla:

Theorem 1. Let X = MD(B,R, (l1, . . . , lm), (θ1, . . . , θm)), where B has key
attributes K. Let R1, . . . , Rn be a partition of R. Let l′j and l′′j be the lists of sub-
aggregates and super-aggregates, respectively, corresponding to the aggregates in
lj. Let Hi = MD(B,Ri, (l

′
1, . . . , l

′
m), (θ1, . . . , θm)) for i = 1, . . . , n. Let H = H1⊔

· · ·⊔Hn, where ⊔ indicates multiset union. Then X = MD(B,H, (l′′1 , . . . , l′′m), θK)
where θK is a test for equality on the attributes in K.

In practice, the scheme given by Theorem 1 is executed very efficiently. The
base-results structure maintained at the coordinator is indexed on K, which
allows us to efficiently determine RNG(X, t, θK) for any tuple t in H and then
update the structure accordingly; i.e., the synchronization can be computed in
O(|H|). Since the GMDJ can be horizontally partitioned, the coordinator can
synchronize H with those sub-results it has already received while receiving
blocks of H from slower sites, rather than having to wait for all of H to be
assembled before performing the synchronization. Between each computation
at the local sites and synchronization, we ship the base-results structure (or
fragments thereof) between the sites and the coordinator.

The following result bounds the maximum amount of data transferred during
the evaluation of Alg. GMDJDistribEval for distributive aggregate queries.

Theorem 2. Let the distributed data warehouse contain n sites, and the size of
the result of query Q, expressed as a GMDJ expression with m GMDJ operators
be |Q|. Let s0 denote the number of sites participating in the computation of the

2 Typically, SMDk
= SB , but it is possible that SMDk

⊂ SB .
3 Note that every site refers to its local detail relation as Rk at round k. To avoid

clutter, we preferred this notation to something like Ri
k.

base values relation and si the number of sites participating in the computation of
the i’th GMDJ operator. Then the maximum amount of data transferred during
the evaluation of Alg. GMDJDistribEval on Q is bounded by

(

n
∑

i=1

(2 ∗ si ∗ |Q|

)

+ (s0 ∗ |Q|).

Recall that Alg. GMDJDistribEval only ships the base-result structure Xk.
Since Xk ⊆ Q, it follows that the maximum size of any Xk is |Q|. The significance
of Theorem 2 is that it provides a bound on the maximum amount of data
transferred as a function of the size of the query result, the size of the query
(i.e. number of rounds), and the number of local sites in the distributed data
warehouse, which is independent of the size of the fact relation in the database.
|Q| depends only on the size of the base values relation and the aggregates to be
computed, not the detail relation. This is significant in that such a bound does
not hold for the distributed processing of traditional SQL join queries (see, for
example, [15, 16]), where intermediate results can be arbitrarily larger than the
final query result, even when using semijoin-style optimizations.

3.3 Summary

Let B0 be the base-values relation, R1, R2, . . . , Rm be detail relations, l1, ..., lm
be lists of aggregate functions, and θ1, . . . , θm be lists of conditions.4 Let Bk

denote the result of the GMDJ MDk. Let SB be the set of sites required for the
computation of B0, and let SMDi

be the set of sites required for the computation
of the GMDJ MDi. Alg. GMDJDistribEval is a simple and efficient algorithm for
distributed OLAP processing that does not transfer any detailed data between
the sites.

Theorem 3. Given a GMDJ expression Q = MDn(· · · (MD1(B0, R1, (l11, . . . ,
l1k), (θ11, . . . , θ1k)) · · ·), Rn, (ln1, . . . , lnm), (θn1, . . . , θnm)), the set of sites SB re-
quired for computing B0, and the sets of sites SMDi

, i ≤ n, required for computing
GMDJ MDi, then Alg. GMDJDistribEval correctly computes the result of Q.

While Alg. GMDJDistribEval is efficient in relation to the size of the detail
relations, the amount of data transfer and the computation can still be objection-
ably large for very large distributed data warehouses and thus these resources
need to be optimized substantially. This is the subject of Sect. 4.

4 Distributed Evaluation Optimizations

Clearly, query optimization techniques used for centralized evaluation of GMDJ
expressions (e.g., indexing, coalescing), which have been previously studied [2, 7]
apply in an orthogonal way to their distributed processing. Classical distributed

4 li is a list of aggregates and θi is a list of grouping conditions for each of them.

query optimization techniques developed for SQL queries such as row blocking,
optimization of multi-casts, horizontal partitioning of data, or semijoin programs
[15] apply to the distributed processing of GMDJs. We do not dwell on these
any further. In Sect. 4.1 we generalize local reductions to GMDJ expressions.
Sections 4.2 and 4.3 describe optimizations specific to distributed GMDJ query
processing.

It should be stressed that in each case, we present what are best characterized
as optimization schemes. Depending on the specific situation (i.e. the amount
of distribution knowledge available), one may be able to come up with specific
optimization strategies, which are instances of these optimization schemes. In
this sense, our optimization schemes can be used for determining whether a
strategy is correct in the sense that it computes the right result. Throughout
this section, we give examples which illustrate this point.

4.1 Distribution-Aware Group Reduction

Recall the definition of the function, RNG(b,R, θ) = {r ∈ R | θ(b, r) is true}.
Given information about the partitioning of tuples in the distributed data ware-
house, we may be able reduce the size of the base-results structure transferred
between the sites and the coordinator. The following theorem provides the basis
for this optimization.

Theorem 4. Consider the GMDJ expression Q = MD(B,R, (l1, . . . , lm), (θ1,
. . . , θm)). Let R1 ∪ · · · ∪ Rn be a partitioning of the detail relation R. For each
Ri, let φi be a predicate such that for each r ∈ Ri, φi(r) is true. Let ψi(b) be the
formula ∀rφi(r) ⇒ ¬(θ1∨ . . .∨θm)(b, r). Let RNGi be RNG(b,Ri, θ1∨ . . .∨θm).
Then, we have:

σ|RNGi|>0(MD(B,Ri,(l1, . . . , lm), (θ1, . . . , θm))) =
σ|RNGi|>0(MD(σ¬ψi

(B), Ri, (l1, . . . , lm), (θ1, . . . , θm)))

Using Alg. GMDJDistribEval, a local site will compute Hi = MD(B,Ri, (l
′
1,

. . . , l′m), (θ1, . . . , θm)). Let Bi = {b ∈ B | ψi(b)}. Theorem 4 states that if we have
a-priori knowledge about whether RNG(b,Ri, θ) is empty for any given b, we
need to send to site Si only B−Bi. Given knowledge about the data distribution
at the individual sites, group reductions can be performed by restricting B using
the ¬ψi condition.

Example 2. Assume that each of the packets for a specific SourceAS passes
through a router with a specific RouterId. For example, site S1 handles all and
only autonomous systems with SourceAS between 1 and 25. The condition θ in
the query of Example 1 contains the condition Flow.SourceAS = B.SourceAS.
We can deduce that at S1, ψi(b) is true when b.SourceAS 6∈ [1, 25]. Therefore,
¬ψi(b) is the condition b.SourceAS ∈ [1, 25].

Example 2 gives a simple example of the kind of optimization possible using
distribution-aware group reductions. The analysis is easy to perform if ψi and θ
are conjunctive and the atoms of the predicates involve tests for equality.

In fact, far more complex constraints can be handled. For example, assume
the condition θ in example 2 is revised to be B.DestAS + B.SourceAS <
Flow.SourceAS∗2. Then condition ¬ψi(b) becomes B.DestAS+B.SourceAS <
50. The significance of Theorem 4 is that we can use it to determine the correct-
ness of the optimizer.

Other uses of Theorem 4 are also possible. For example, SourceAS might not
be partitioned among the sites, but any given value of SourceAS might occur in
the Flow relation at only a few sites. Even in such cases, we would be able to
further reduce the number of groups sent to the sites.

4.2 Distribution-Independent Group Reduction

A significant feature of the GMDJ processing, compared to traditional dis-
tributed algorithms, is the possibility of performing distribution-independent
group reduction.

We extend Theorem 1 for distribution-independent group reduction:

Proposition 1. Consider the GMDJ Q = MD(B,R, (l1, . . . , lm), (θ1, . . . , θm))
where B has key attributes K. Let R1, . . . , Rn be a partition of R. Let l′i and l′′i be
the lists of sub-aggregates and super-aggregates, respectively, corresponding to the
aggregates in li. Then: MD(B,R, (l1, . . . , lm), (θ1, . . . , θm)) = MD(B, σ|RNG|>0

(MD(B,R1, (l
′
1, . . . , l

′
m), (θ1, . . . , θm)))⊔ · · · ⊔ σ|RNG|>0(MD(B,Rn, (l′1, . . . , l

′
m),

(θ1, . . . , θm))), (l′′1 , . . . , l′′m), θK) where ⊔ indicates multiset union, and θK is a
test for equality on the attributes in K.

Let H1,H2, . . . ,Hn be the results of processing the GMDJ expressions at the
local sites. Then Proposition 1 states that the only tuples of Hi required for
synchronization of the results are those tuples t such that |RNG(t, Ri, (θ1∨ . . .∨
θm))| > 0, as otherwise the tuple does not contribute any information to the
global aggregate. A simple way of detecting |RNG| > 0 with respect to tuples
in Hi is to compute an additional aggregate lm+1 = COUNT(∗) on Hi such that
θm+1 = (θ1∨ . . .∨θm). The only overhead to this optimization then becomes the
additional computing time for the extra COUNT(*), and to perform the selection
COUNT(*)> 0 at the sites.

Example 3. We return to Example 1. The result of a GMDJ computation is
transmitted to the coordinator by Alg. GMDJDistribEval. Assuming n sites,
and that the size of the GMDJ is |B|, we transmit n ∗ |B| data. Assuming that
each site, on average, computes aggregates for 1/k tuples in B, then distribution-
independent group reduction will reduce the amount of data transmitted by each
site to |B|/k and the total data transmission to n/k ∗ |B|.

An advantage of distribution-independent group reduction is that it improves
performance even without semantic information about the distribution of R
(which might not be available).

4.3 Synchronization Reduction

Synchronization reduction is concerned with reducing data transfer between the
local sites and the coordinator by reducing the rounds of computation. One of
the algebraic transformations possible on GMDJ operators is to coalesce two
GMDJs into a single GMDJ. More precisely:

MD2(MD1(B,R,(l11, . . . , l1l), (θ11, . . . , θ1l)), R, (l21, . . . , l2m), (θ21, . . . , θ2m)) =
MD(B,R, (l11, . . . , l1l, l21, . . . , l2m), (θ11, . . . , θ1l, θ21, . . . , θ2m))

if the conditions θ21, . . . , θ2m do not refer to attributes generated by MD1 [7].
However, in many instances the OLAP query may consist of only one or

two simple GMDJ expressions. In this case, the advantage of the coalescing is
limited, because we may still have to synchronize the base-results structure at
the coordinator after its construction. We present two results specific to the
distributed query processing of GMDJs, that permit synchronization reduction.

Proposition 2. Consider the GMDJ Q = MD(B,R, (l1, . . . , lm), (θ1, . . . ,
θm)). Let B be the result of evaluating query B on R, let R1, . . . , Rn be a partition
of R, and let Bi be the result of evaluating query B on Ri. Suppose that B =
⊔

i Bi. Let B have key attributes K. If θj entails θK ,the test for equality on the
attributes in K, ∀j|1 ≤ j ≤ m, then:

MD(B,R, (l1, . . . , lm), (θ1, . . . , θm)) = MD(πBH,H, (l′′1 , . . . , l′′m), (θK , . . . , θK))

where H =
⊔

i Hi and Hi = MD(Bi, Ri, (l
′
1, . . . , l

′
m), (θ1, . . . , θm)).

Proposition 2 states that, if B is evaluated over the relation R and each
condition tests for equality on the key attributes K, then we can omit the syn-
chronization of the base-values relation.

Example 4. Consider again Example 1. Following Proposition 2, we can compute
B0 and the first GMDJ B1 directly, instead of synchronizing in between the two
computations as would otherwise be the case. Thus the number of synchroniza-
tions can be cut down from three to two, with a potential 40% reduction in the
amount of data transferred.

Theorem 5. Consider the GMDJ Q = MD2(MD1(B,R, (l11, . . . , l1l), (θ11, . . . ,
θ1l)), R, (l21,
. . . , l2m), (θ21, . . . , θ2m)). Let R1∪· · ·∪Rn be a partitioning of the detail relation
R. For each Ri, let φi be a predicate such that for each r ∈ Ri, φi(r) is true. Let
ψ1

i (b) be the formula ∀rφi(r) ⇒ ¬(θ11∨. . .∨θ1l)(b, r), and let ψ2
i (b) be the formula

∀rφi(r) ⇒ ¬(θ21 ∨ . . . ∨ θ2m)(b, r). Suppose that ∀j(j 6= i) ⇒ (ψ1
j (b) & ψ2

j (b)).
Then site i does not need to synchronize tuple b between the evaluation of MD1

and MD2.

Theorem 5 states that it is not necessary to synchronize a tuple b ∈ B if we
know that the only site which updates b’s aggregates during MD1 and MD2 is
site i. If we have strong information about the distribution of R among the sites,
we can avoid synchronizing between the evaluation of MD1 and MD2 altogether.

Definition 2. An attribute A is a partition attribute iff
∀i6=jπA(σφi

(R)) ∩ πA(σφj
(R)) = ∅

Corollary 1. Consider the GMDJ Q = MD2(MD1(B,R, (l11, . . . , l1l), (θ11, . . . ,
θ1l)), R, (l21, . . . , l2m), (θ21, . . . , θ2m)). If θ11, . . . , θ1l, θ21, . . . , θ2m all entail con-
dition R.A = f(A), where f(A) is a bijective function on A, and A is a partition
attribute, then MD2 can be computed after MD1 without synchronizing between
the GMDJs.

Thus, by performing a simple analysis of φi and θ, we are able to identify
a significant subset of queries where synchronization reduction is possible. We
note that more than one attribute can be a partition attribute, e.g., if a partition
attribute is functionally determined by another attribute.

Example 5. Consider the query of Example 1. Without any synchronization re-
duction, the evaluation of this GMDJ expression would require multiple passes
over the Flow relation, and three synchronizations, one for the base-values rela-
tion and one each for the results of the two GMDJs is required.

Let us assume that all packets from any given SourceAS only pass through
a router with a particular RouterId. If this is the case, SourceAS is a partition
attribute. Using Corollary 1, the second synchronization is avoided. Further,
since (SourceAS, DestAS) form a key, Proposition 2 is applicable as well, and
no synchronization of the base-values relation is needed. As a result, the query
can be evaluated against the distributed data warehouse with the entire query
being evaluated locally, and with a single synchronization at the coordinator.

Synchronization reduction is a distinctive feature of distributed GMDJ pro-
cessing, which is difficult or impossible to duplicate using traditional distributed
query optimizations methods. In addition, it is a key factor in keeping the dis-
tributed processing of OLAP queries scalable, as we shall show in Sect. 5.

5 Experimental Evaluation

In this section, we describe a set of experiments to study the performance of
Skalla. We show the scalability of our strategies and also quantify the perfor-
mance benefits of our optimizations.

5.1 Setup and Data

We used Daytona [13] as the target DBMS for GMDJ expression evaluation
in Skalla, both for the local data warehouse sites and the coordinator site. We
derived a test database from the TPC(R) dbgen program, creating a denormal-
ized 900 Mbyte data set with 6 million tuples (named TPCR). We partitioned
the data set on the NationKey attribute (and therefore also on the CustKey

attribute). The partitions were then distributed among eight sites.
In each of our test queries, we compute a COUNT and an AVG aggregate on each

GMDJ operator. We ran two different experiments with different attributes of

the TPCR relation as the grouping attribute. The first set of experiments (high
cardinality) use the Customer.Name attribute, which has 100,000 unique values
partitioned among eight sites. The second set of experiments (low cardinality)
uses attributes with between 2000 to 4000 unique values. For the following ex-
periments, we examine only group reduction, synchronization reduction, and
combined reductions.

5.2 Speed-up Experiments

In this section, we divide the TPCR relation equally among eight sites, and
vary the number of sites participating in the evaluation of a query. We use this
experimental setup to evaluate the impact of the various optimizations.

Query Evaluation Time (high cardinality)

0

100

200

300

400

500

600

0 2 4 6 8 10

Number of Sites

S
ec

o
n

d
s

No Group Reduction
Group Reduction

Data Transferred (high cardinality)

0

20

40

60

80

100

120

0 2 4 6 8 10

Number of Sites

M
b

yt
es No Group Reduction

Group Reduction

Fig. 2. Group reduction query

Figure 2 depicts graphs showing the query evaluation time (left) and the
amount of data transferred for distribution-independent group-reduced and the
non group-reduced versions of the group reduction query (right). The set of non
group-reduced curves shows a quadratic increase in query evaluation time and
in the number of bytes transferred. This behavior is due to a linearly increasing
number of groups being sent to a linearly increasing number of sites; thus the
communication overhead and synchronization overhead increases quadratically.
When group reduction is applied, the curves are still quadratic, but to a lesser
degree. The distribution-independent (i.e., site side) group reduction solves half
of the inefficiency, as the sites send a linear amount of data to the coordinator,
but the coordinator sends a quadratic amount of data to the sites. Distribution-
aware (i.e., coordinator side) group reduction would make the curves linear.

To see this, we perform an analysis of the number of bytes transferred. Let
the number of groups residing on a single site be g, the number of sites be n,
and the fraction of sites’ group aggregates updated during the evaluation of a
grouping variable be c. In the first round, ng groups are sent from the sites to the
coordinator. Without group reduction, n2g groups are sent from the coordinator
to the sites, and n2g groups are sent back. With group reduction, only cng

groups are returned. Therefore, the proportion of groups transferred with group
reduction versus without group reduction is (ng(2c+1+2n))/(ng(4n+1)) = (2c+
2n+1)/(4n+1). The number of bytes transferred is roughly proportional to the
number of groups transferred, and in fact this formula matches the experimental
results to within 5%.

Query Evaluation Time (high cardinality)

0

50

100

150

200

250

300

350

0 2 4 6 8 10

Number of Sites

S
ec

o
n

d
s

No Coalescing
Coalescing

Query Evaluation Time (low cardinality)

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

Number of Sites

S
ec

o
n

d
s

No Coalescing
Coalescing

Fig. 3. Coalescing query

Figure 3 shows the evaluation time of the coalesced and non coalesced query
for high cardinality (left) and low cardinality (right) queries. The non coalesced
curve in the high cardinality query shows a quadratic increase in execution time.
The coalesced GMDJ curve is linear. There is only one evaluation round, at the
end of which the sites send their results to the coordinator, so the volume of data
transferred increases linearly with the number of sites. For the low cardinality
query the difference is less dramatic. Even though the amount of data transferred
is small, coalescing reduces query evaluation time by 30%, primarily due to a
reduction in the site computation time.

Query Evaluation Time (high cardinality)

0

50

100

150

200

250

300

350

0 2 4 6 8 10

Number of SItes

S
ec

on
ds

No Synchronization
Reduction
Synchronization
Reduction

Query Evaluation Time (low cardinality)

0

10

20

30

40

50

60

70

0 2 4 6 8 10

Number of Sites

S
ec

o
n

d
s No Synchronization

Reduction
Synchronization
Reduction

Fig. 4. Synchronization reduction query

Finally, we test the effect of synchronization reduction without coalescing.
Figure 4 shows the query evaluation time of the an OLAP query evaluated with
and without synchronization reduction for the high cardinality (left) and low car-
dinality (right) versions of the query. Without synchronization reduction in the
high cardinality query, the query evaluation time is quadratic with an increasing
number of sites. With synchronization reduction, the query is evaluated in a
single round, and shows a linear growth in evaluation time (due to the linearly
increasing size of the output). Thus, synchronization reduction removes the in-
efficiencies (due to attribute partitioning) seen in the previous experiments. For
the low cardinality query, synchronization reduction without coalescing reduces
the query evaluation time, but not to the same degree achieved with coalescing
of GMDJs on the high cardinality query. This is because coalescing improves
computation time as well as reducing communication; thus the work performed
by the sites is nearly the same, and the difference in query evaluation time only
represents the reduction in synchronization overhead.

5.3 Scale-up Experiments

In this section, we fix the number of sites at four, and vary the data set size at
each of these sites. We start with the data set used in the speed-up experiments
and increase its size by up to a factor of four. We used the combined reductions
query, and applied either all of the reductions or none of them.

Query Evaluation Time

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

Database Size

S
ec

o
n

d
s

not optimized
optimized

Query Evaluation Time Breakdown

0

100

200

300

400

500

600

1 2 3 4

Database Size

S
ec

o
n

d
s

Communication
Client Compute
Server Compute

Fig. 5. Combined reductions query

In our first set of experiments, the number of groups increased linearly with
the data set size. The graph in Fig. 5 (left) shows the query evaluation time when
the optimizations are turned on or off. In both cases there is a linear increase in
query evaluation time with increasing database size. Using the optimizations im-
proved the query evaluation time by nearly half. The bar graph of Fig. 5 (right)
breaks down the evaluation time of the optimized query into the site computa-
tion time, coordinator computation time, and communication overhead, showing
linear growth in each component. We ran the same set of experiments using a

data set in which the number of groups remains constant with an increasing
database size, and obtained comparable results.

5.4 Summary

For many queries (e.g., with a moderate number of groups), distributed OLAP
evaluation is effective and scalable (see, e.g., Fig. 3). The optimizations discussed
in this paper are effective in reducing query evaluation time by a large fraction
(see, e.g., Fig. 5).

Distributed OLAP faces a scalability problem when a partition attribute is
used as one of the grouping attributes, leading to a quadratic increase in query
evaluation time with a linearly increasing number of sites. Most of the work is
wasted as the sites do not have tuples for most of the groups sent to them. Two
of the optimizations we have considered in this paper are effective in eliminating
this inefficiency. Group reduction (both at the coordinator and at the sites)
reduces the data traffic (and thus the query evaluation time) from quadratic
to linear. Synchronization reduction further takes advantage of the partition
attribute by eliminating much of the data traffic altogether.

6 Conclusions

In this paper, we have developed a framework for evaluating complex OLAP
queries on distributed data warehouses. We build efficient query plans using
GMDJ expressions, which allow the succinct expression of a large class of com-
plex multi-round OLAP queries. In our distributed OLAP architecture, a coor-
dinator manages, collects and correlates aggregate results from the distributed
warehouse sites.

The use of GMDJ expressions allows us to avoid complex distributed join
optimization problems. However, query plans involving GMDJ operators also
require optimization for best performance. We show a collection of novel GMDJ
transformations which allow us to minimize the cost of computation and of
communication between the sites and the coordinator.

We built Skalla, a distributed OLAP system which implements the dis-
tributed OLAP architecture. Skalla also implements most of the optimizations
discussed in this paper. We ran a collection of experiments, and found that the
optimizations lead to a scalable distributed OLAP system.

The results we present in this paper are the first steps in the exploration
of research issues in the important area of distributed OLAP. Future research
topics could include the exploration of alternative architectures (e.g., a multi-
tiered coordinator architecture or spanning-tree networks) and additional query
optimization strategies.

References

1. S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the computation of multidimensional aggregates. In
Proc. of the Int. Conf. on Very Large Databases, pages 506–521, 1996.

2. M. O. Akinde, and M. H. Böhlen. Generalized MD-joins: Evaluation and reduction
to SQL. In Databases in Telecommunications II, pages 52–67, Sept. 2001.

3. D. Bitton, H. Boral, D. J. DeWitt, and W. K. Wilkinson. Parallel algorithms for
the executions of relational database operations. ACM TODS 8(3):324-353, 1983.

4. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel database system.
IEEE TKDE 2(1), March 1990

5. R. Cáceres, N. Duffield, A. Feldmann, J. Friedmann, A. Greenberg, R. Greer,
T. Johnson, C. Kalmanek, B. Krishnamurthy, D. Lavelle, P. Mishra, K. K. Ra-
makrishnan, J. Rexford, F. True, and J. van der Merwe. Measurement and analysis
of IP network usage and behavior. IEEE Communications Magazine, May 2000.

6. D. Chatziantoniou. Ad hoc OLAP: Expression and evaluation. In Proc. of the

IEEE Int. Conf. on Data Engineering, 1999.
7. D. Chatziantoniou, M. O. Akinde, T. Johnson, and S. Kim. The MD-join: An

operator for complex OLAP. In Proc. of the IEEE Int. Conf. on Data Engineering,
2001.

8. S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technol-
ogy. SIGMOD Record, 26(1):65–74, Mar. 1997.

9. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings Publishers, second edition, 1994.

10. A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. De-
riving traffic demands for operational IP networks: Methodology and experience.
In Proc. of ACM SIGCOMM, 2000.

11. G. Graefe, U. Fayyad, and S. Chaudhuri. On the efficient gathering of sufficient
statistics for classification from large SQL databases. In Proc. of Int. Conf. on

Knowledge Discovery and Data Mining, pages 204–208, 1998.
12. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-

low, and H. Pirahesh. Datacube : A relational aggregation operator generaliz-
ing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

13. R. Greer. Daytona and the fourth-generation language Cymbal. In Proc. of the

ACM SIGMOD Conf. on Management of Data, pages 525–526, 1999.
14. R. Kimball. The data warehouse toolkit. John Wiley, 1996.
15. D. Kossman The state of the art in distributed query processing. ACM Computing

Surveys, 32(4):422–469, 2000.
16. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice

Hall, 1991.
17. K. A. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. of

the Int. Conf. on Very Large Databases, pages 116–125, 1997.
18. K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple

granularities. In Proc. of the Int. Conf. on Extending Database Technology, pages
263–277, 1998.

19. A. Shatdal and J. F. Naughton. Adaptive parallel aggregation algorithms. In Proc.

of the ACM SIGMOD Conf. on Management of Data, pages 104–114, 1995.
20. C. T. Yu, K. C. Guh, and A. L. P. Chen. An integrated algorithm for distributed

query processing. In Proc. of the IFIP Conf. on Distributed Processing, 1987.

