
Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 341–358
0306-43

doi:10.1

� Cor

E-m

boehlen

(D. Cha
journal homepage: www.elsevier.com/locate/infosys
y-Constrained multi-dimensional aggregation
Michael Akinde a, Michael H. Böhlen b, Damianos Chatziantoniou c, Johann Gamper d,�

a IT Department, The Norwegian Meteorological Institute, Norway
b Department of Computer Science, University of Zürich, Switzerland
c Faculty of Management Science and Technology, Athens University of Economics and Business, Greece
d Faculty of Computer Science, Free University of Bolzano-Bozen, Dominikanerplatz 3, 39100 Bolzano, Italy
a r t i c l e i n f o

Article history:

Received 21 March 2009

Accepted 12 July 2010
Recommended by: P. O’Neil
compute the aggregate results during a scan of the sorted relation. For multi-dimensional

OLAP queries with aggregation groups defined by a general y condition an appropriate
Keywords:

OLAP

SQL/OLAP

Window functions

Multi-dimensional aggregation
79/$ - see front matter & 2010 Elsevier B.V. A

016/j.is.2010.07.005

responding author.

ail addresses: michael.akinde@met.no (M. Ak

@ifi.uzh.ch (M.H. Böhlen), damianos@aueb.gr

tziantoniou), gamper@inf.unibz.it (J. Gamper)
a b s t r a c t

The SQL:2003 standard introduced window functions to enhance the analytical processing

capabilities of SQL. The key concept of window functions is to sort the input relation and to

ordering does not exist, though, and hence expensive join-based solutions are required.

In this paper we introduce y-constrained multi-dimensional aggregation (y-MDA), which

supports multi-dimensional OLAP queries with aggregation groups defined by inequalities.

y-MDA is not based on an ordering of the data relation. Instead, the tuples that shall be

considered for computing an aggregate value can be determined by a general y condition.

This facilitates the formulation of complex queries, such as multi-dimensional cumulative

aggregates, which are difficult to express in SQL because no appropriate ordering exists. We

present algebraic transformation rules that demonstrate how the y-MDA interacts with

other operators of a multi-set algebra. Various techniques for achieving an efficient

evaluation of the y-MDA are investigated, and we integrate them into concrete evaluation

algorithms and provide cost formulas. An empirical evaluation with data from the TPC-H

benchmark confirms the scalability of the y-MDA operator and shows performance

improvements of up to one order of magnitude over equivalent SQL implementations.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Problem definition and running example

On-line analytical processing (OLAP) has become a
mature field with an abundance of systems and methods.
It has evolved from a niche area for highly sophisticated
corporations to an essential component of any modern
business entity or institution. A crucial element of OLAP
systems is the succinct formulation of analytical queries and
their efficient evaluation. Expressing analytical queries in
SQL was for a long time difficult and often resulted in
prohibitive running times. The SQL:2003 standard enhanced
ll rights reserved.

inde),

.

SQL with window functions, which provide support for
advanced analytical functions, including moving and cumu-
lative aggregations. The key concept of window functions is
to sort the input relation and to compute the aggregate
during a scan of the sorted relation. For each row in the
result a sliding window determines a contiguous range of
rows over which the aggregate value for that row is
computed. By having a sliding window that starts at the
first row (as defined by the ordering) and ends at the current
row, cumulative aggregates can be computed. For cumula-
tive aggregations over multiple dimensions, however, such
an ordering does not exist, and the tuples that contribute to
an aggregation result are formed by non-contiguous rows.

Example 1. Consider the Lineitem relation of the TPC-H1

benchmark, which stores information about sales orders,
1 http://www.tpc.org/tpch/

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.07.005
mailto:michael.akinde@met.no
mailto:boehlen@inf.unibz.it
mailto:boehlen@inf.unibz.it
mailto:damianos@aueb.gr
mailto:damianos@aueb.gr
mailto:gamper@inf.unibz.it
http://www.tpc.org/tpch/
dx.doi.org/10.1016/j.is.2010.07.005

Lineitem
Ordkey Partkey Suppkey Quant Price Disc Shipdate

r1 O1 P1 S1 2 220 0.00 2008.01.23
r2 O2 P1 S1 4 440 0.05 2008.01.23
r3 O3 P2 S1 6 300 0.10 2008.01.23
r4 O4 P2 S2 7 420 0.10 2008.01.23
r5 O5 P2 S1 2 100 0.00 2008.01.24
r6 O6 P1 S2 3 240 0.05 2008.01.24
r7 O7 P2 S1 9 450 0.05 2008.01.24
r8 O8 P1 S2 8 640 0.10 2008.01.24

Fig. 1. Instance of Lineitem relation.

X
Shipdate Disc CntDD CumCntD CumCntDD

x1 2008.01.23 0.00 1 4 1
x2 2008.01.23 0.05 1 4 2
x3 2008.01.23 0.10 2 4 4
x4 2008.01.24 0.00 1 8 2
x5 2008.01.24 0.05 2 8 5
x6 2008.01.24 0.10 1 8 8

Fig. 2. Result of query Q1.

Table 1
Illustration of aggregation groups.

Aggregate value Aggregation group

x1:CntDD {r1}

x3:CntDD {r3,r4}

x1:CumCntD {r1,r2,r3,r4}

x4:CumCntD {r1,r2,r3,r4,r5,r6,r7,r8}

x3:CumCntDD {r1,r2,r3,r4}

x5:CumCntDD {r1,r2,r5,r6,r7}

M. Akinde et al. / Information Systems 36 (2011) 341–358342
each one consisting of one or more items. A tuple in the
relation represents an item of an order and records
various pieces of information: the order key (Ordkey),
the line number (Linenum), a part key (Partkey), a supplier
key (Suppkey), the quantity (Quant), the applied discount
(Disc), the shipping date (Shipdate), etc. Fig. 1 shows a
simplified instance of the Lineitem relation with eight
orders of one lineitem each that were shipped at two
consecutive days. We use this relation as a running
example throughout the paper.

Consider the following query to analyze the develop-

ment of the number of sales orders:

Q1: Compute the number of sales orders per day and
discount rate, the cumulative number of sales orders
per day, and the cumulative number of sales orders per
day and discount rate.

The result of this query is shown in Fig. 2. The first two
columns, Shipdate and Disc, form the base table and represent
the different combinations of dates and discount rates for
which aggregate values shall be computed. The other three
columns represent the aggregation results. CntDD reports the
orders per day and discount rate, CumCntD the cumulative
number of orders by day only, and CumCntDD reports the
cumulative number of orders by day and discount rate, i.e.,
the number of orders with a shipping date that is smaller or
equal to the value in column Shipdate and where a discount
rate smaller or equal to the value in column Disc is applied. To
facilitate reading, base table and aggregate values are
separated by a vertical line in the result table.

The three aggregates in Query Q1 are of different
nature, in particular with respect to the aggregation
groups over which the aggregate functions are evaluated.
For the first aggregate, CntDD, the aggregation groups are
defined by identical values on the grouping attributes and
can be expressed with the SQL GROUP BY clause. The
second aggregate, CumCntD, is a one-dimensional cumu-
lative aggregate that can be expressed with the SQL
window functions and the UNBOUNDED PRECEDING clause.
Thus, the aggregation groups can be specified by a
particular sorting of the input relation in combination
with a window to select a set of contiguous rows from
the sorted relation.2 The third aggregate, CumCntDD, is a
two-dimensional cumulative aggregate that specifies the
2 The SQL window function yields two tuples only, and an additional

join is required to expand the result to six result tuples as shown

in Fig. 2.
aggregation groups along two dimensions, for which SQL
provides no adequate support. Window functions are not
applicable, since the Lineitem relation cannot be ordered
such that all aggregation groups are formed by contiguous
rows.

Example 2. Table 1 shows selected aggregate values of
the result in Fig. 2 together with the corresponding
aggregation groups, i.e., the tuples needed to compute the
aggregate values. Note that if the Lineitem relation is
sorted first by shipping date and then by discount rate
as shown in Fig. 1, x5:CumCntDD is computed over the
non-contiguous set of tuples {r1, r2, r5, r6, r7}. It is
impossible to order the Lineitem relation such that the
aggregation group of x5:CumCntDD consists of adjacent
tuples in Lineitem and without introducing gaps in other
aggregation groups of CumCntDD.

Query Q1 is an example of a y-constrained multi-
dimensional aggregation query. It is multi-dimensional
since the grouping is done along more than one dimen-
sion. It is y-constrained since the aggregation groups, over
which the aggregates are computed, are determined by a
general y-condition composed of non-equality conditions
(e.g., r). This is different from aggregation in SQL, where
the aggregation groups are either determined by equality
conditions on the grouping attributes or by a window in
combination with a specific ordering of the input relation.
A well-known class of y-constrained multi-dimensional
aggregation queries are multi-dimensional cumulative
aggregates, where aggregation values are accumulated
along two or more dimensions.

Expressing y-constrained multi-dimensional aggrega-
tion queries in SQL is difficult and requires expensive
operations such as join and Cartesian product, which
yields prohibitive running times. We provide an easy-to-
use aggregation operator which offers advanced grouping
capabilities, supports a direct and straightforward speci-
fication of aggregation groups for complex OLAP queries,
and allows an efficient query evaluation.

M. Akinde et al. / Information Systems 36 (2011) 341–358 343
1.2. Contribution

This paper proposes a new aggregation operator,
termed y-constrained multi-dimensional aggregation

ðy-MDAÞ, which allows a succinct, systematic, and
intuitive formulation of complex OLAP queries, where
grouping is done along more than one dimension and
aggregation groups are determined by non-equality
conditions. Fig. 3 illustrates the new operator, which
requires four arguments: the base table B, the detail table

R, a list of aggregate functions ~l, and a list of grouping

conditions ~y. The y-MDA computes the result table, X, by
extending each tuple of the base table, B, with the
aggregation results according to the aggregate functions
in~l. The grouping conditions, ~y, determine for each result
tuple and aggregate function the assigned aggregation

group, i.e., the set of tuples from the detail table, R, over
which the aggregate function is computed. The hatched
areas indicate different aggregation groups over which the
corresponding aggregate values are computed.

The y-MDA exhibits a number of salient features. First
and most importantly, the aggregation groups may
consist of non-contiguous and overlapping rows in R as
illustrated in Fig. 3. This is important since in general it is
impossible to reorder R in such a way that all aggregation
groups consist of contiguous rows for which efficient SQL
solutions exist. Second, the y-MDA does not change the
row count of the base table. The number of tuples in X is
identical to the number of tuples in B, and the presence of
duplicates in B and of tuples with empty aggregation
groups does not change this. In contrast, join-based
solutions have to rely on non-trivial techniques that use
outer joins and duplicate eliminations to handle these
cases. Third, it is possible to compute the aggregate
results by scanning the data relation only once. No
temporary memory and no additional expensive opera-
tions such as joins or Cartesian products are required.

The technical contributions of this paper can be
summarized as follows:
�
 We propose a new aggregation operator, termed
y-MDA, which permits aggregation groups that are
Aggregate results

Base table B

Result table X

Detail table R

Fig. 3. Illustration of the y�MDA.
defined by a general y condition and are independent
of any ordering of the data. This feature supports a
succinct and systematic formulation of complex OLAP
queries, such as multi-dimensional cumulative aggre-
gates, which SQL does not support adequately.

�
 We show how the y-MDA interacts with other

relational algebra operators and prove algebraic trans-
formation rules that hold for the y-MDA operator.

�
 We propose a number of evaluation algorithms with

cost formulas that allow an analytical comparison of
query plans that include the y-MDA.

�
 We report the results of an empirical evaluation of the

y-MDA. The results confirm the scalability to large data
sets and show performance improvements of one order
of magnitude over equivalent SQL implementations.

1.3. Organization

The rest of this paper is organized as follows. After the
discussion of related work in Section 2, we define the
y-MDA operator in Section 3. In Section 4 we motivate our
work by discussing an example query from the meteor-
ological/oceanographic domain. Section 5 presents an
effective but inefficient reduction of the y-MDA to SQL
that clarifies the expressiveness of the y-MDA and
illustrates the limitations of SQL. Section 6 formulates a
number of transformation rules that show how the
y-MDA interacts with other algebraic operators. Section
7 presents a range of evaluation algorithms and cost
formulas for various optimization techniques. Experimen-
tal results are described in Section 8. Section 9 concludes
the paper.

2. Related work

A significant body of work [12,13,17,25,29,41,42] has
considered the optimization of aggregation in the context
of a unified groupby/aggregate operator. This research has
focused on the reordering of groupby/aggregate operators
with respect to other relational operators, primarily with
selections and various forms of joins. The proposed
solutions to grouping/aggregation often have difficulties
to efficiently evaluate complex OLAP queries, such as
multi-dimensional cumulative aggregates, since they are
composed of multiple joins and aggregations [9], which
leads to complex algebraic expressions.

While there has been a significant amount of research
that considered data cubes and the proposed CUBE BY

extension [23,24], very little research considered optimi-
zations and implementations of more complex OLAP
expressions. The work on the formalization and modeling
of multi-dimensional databases [4,5,26,30,37] almost
exclusively investigates the modeling of the data cube as
well as roll-up and drill-down operations. Graefe et al.
[21] proposed the UNPIVOT operator, which permits
alternative definitions of the group. Sarawagi et al. [33]
proposed SQL extensions and query processing techniques
to accommodate complex data analysis for data mining.

Chatziantoniou et al. [9,10] proposed the multi-feature
syntax for SQL—an extension that introduces the use of

M. Akinde et al. / Information Systems 36 (2011) 341–358344
grouping sets. The implementation resembles that of the
nest-join operator [14,36] for complex object models,
which has been used for unnesting [15,31]. The nest-join
is a generalized form of the outer join that computes the
set of right operand tuples that match with each left
operand tuple. The idea of grouping sets was carried over
to data cubes by Ross et al. [32]. EMF-SQL (extended
multi-feature syntax) [6,7,28] extends the multi-feature
syntax by permitting the definition of customized aggre-
gate conditions using the definition of grouping variables.

The SQL-99 standard [34] was extended with a number
of OLAP specific features. It incorporates features such as
grouping sets [9] that allow the computation of a user-
controlled selection of roll-ups (instead of all roll-ups as
with the CUBE BY operator). Another new feature is the
WINDOW construct which defines an ordered set of data per
row (partition), facilitating the formulation of moving and
cumulative aggregates as well as rank aggregates. With
the additional introduction of a wide variety of new
aggregate functions, the SQL/OLAP amendment [35]
provides a much needed improvement to the capabilities
of SQL with respect to complex OLAP. While the SQL/OLAP
amendment improves the capabilities of SQL significantly,
the efficient evaluation of general complex OLAP queries
remains an open issue. Window functions do not support
multi-dimensional OLAP queries with y-constrained ag-
gregation groups.

The multi-dimensional join (MD-join) [8] is an operator
for complex OLAP that combines complex group specifi-
cation with complex aggregate specification in a single
relational operator. Unlike the nest-join, the MD-join is an
aggregation operator and was initially conceived to map
the extended multi-feature syntax to relational algebra
[10]. Grouping variables correspond to the aggregate
specifications of this operator. The y-MDA generalizes
the MD-join and extends earlier work that describes a
translation to SQL [1]. This work did not include a cost
model, did not explore the differences with respect to SQL
for y-constrained multi-dimensional aggregates, and did
not address the recent advances of commercial DBMS in
supporting OLAP queries.

Other work on group-wise processing is described in
[11,19,20]. Galindo-Legaria and Joshi [19,20] proposed two
operators called Apply and SegmentApply to model para-
meterized query execution in an algebraic manner.
Chaudhuri et al. [11] proposed the GApply operator in the
context of XML queries, based on the Apply operator. The
evaluation strategy of this operator is to partition the input
tuple stream based on the grouping attributes and to
execute on each group, which binds to a relation-valued
variable, the per-group-query. The y-MDA subsumes this
work in a general aggregation operator.

Users can use spreadsheets to enter business data,
define formulas using two-dimensional array abstrac-
tions, construct simultaneous equations with recursive
models, pivot data, and compute aggregates for selected
cells. Witkowski et al. [38–40] proposed spreadsheet-like
computations in RDBMSs through extensions to SQL,
similar in spirit to grouping sets and the SQL/OLAP
amendment. They also presented optimizations, access
structures, and execution models for efficient processing.
Similar optimizations exist in the MD-join and y-MDA
framework.

Dittrich et al. [16] analyze the gap between OLAP and
DBMS and recognized that most OLAP systems have to
replicate a great deal of DBMS functionality. In order to
bridge and close this gap, the authors propose to extend
the relational model with new OLAP features, including the
support for order, hierarchies, multi-columns, multi-rows,
and multi-dimensional concepts. The y-MDA framework is
a step in this direction, since it provides a powerful, multi-
dimensional aggregation operator that can be smoothly
integrated into the query optimizer of any DBMS.

3. h-Constrained multi-dimensional aggregation

This section defines the y-constrained multi-dimen-
sional aggregation ðy-MDAÞ operator. Unless stated other-
wise, we assume multi-set semantics. Thus, we assume
generalized algebraic operators (p, s, [, etc.) that are
consistent with SQL and operate on and return multi-sets.
We use B to represent a database schema ðB1, . . . ,BkÞ and
x:B as a shorthand to refer to (x.B1,y,x.Bk). We write E-C

to rename E to C. Finally, attrðEÞ denotes the set of
attributes used in E.

Definition 1 (y-MDA operator). Let BðBÞ and RðRÞ be
tables, yi, 1r irm, be conditions with attrðyiÞDB [R,
and li ¼ ðfi1 ðAi1 Þ-Ci1 , . . . ,fiki

ðAiki
Þ-Ciki

Þ, 1r irm, be a list
of aggregate functions over attributes Ai1 ,Ai2 , . . . ,Aiki

in R.
The y-MDA operator is defined as

X ¼ GyðB,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞÞ

where X¼ ðB,C11
, . . . ,C1k1

, . . . ,Cm1
, . . . ,Cmkm

Þ is the schema
of the result table and each tuple b 2 B produces a result
tuple x 2 X with
�
 x:B¼ b:B.

�
 x:Cij ¼ fij ðfr:Aij jr 2 R4yiðb,rÞgÞ, for each Cij 2 X.
We call B the base table, R the detail table, and X the
result table of the y-MDA. For a base tuple, b 2 B, the
conditions yi determine the sets of detail tuples, r 2 R,
over which the aggregates fij are evaluated. The aggrega-
tion results are the values of attributes Cij in the result
relation.

Example 3. Consider Query Q1 in Example 1, which
computes three different aggregates over different aggre-
gation groups of the detail table. This query can be
expressed as GyðB,Lineitem-L,ðl1,l2,l3Þ,ðy1,y2,y3ÞÞ, where

B : p½Shipdate,Discount�Lineitem

l1 : ðcountðQuantityÞ-CntDDÞ

y1 : L:Shipdate¼ B:Shipdate4L:Discount¼ B:Discount

l2 : ðcountðQuantityÞ-CumCntDÞ

y2 : L:ShipdaterB:Shipdate

l3 : ðcountðQuantityÞ-CumCntDDÞ

y3 : L:ShipdaterB:Shipdate4L:DiscountrB:Discount

The step-wise computation of the result is illustrated in
Fig. 4. The Lineitem relation is processed tuple by tuple.

X
Shipdate Disc CntDD CumCntD CumCntDD

x1 2008.01.23 0.00 0 0 0
x2 2008.01.23 0.05 0 0 0
x3 2008.01.23 0.10 0 0 0
x4 2008.01.24 0.00 0 0 0
x5 2008.01.24 0.05 0 0 0
x6 2008.01.24 0.10 0 0 0

Lineitem
. . . Disc Shipdate

r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Shipdate Disc CntDD CumCntD CumCntDD
x1 2008.01.23 0.00 1 1 1
x2 2008.01.23 0.05 0 1 1
x3 2008.01.23 0.10 0 1 1
x4 2008.01.24 0.00 0 1 0
x5 2008.01.24 0.05 0 1 0
x6 2008.01.24 0.10 0 1 0

. . . Disc Shipdate
r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Shipdate Disc CntDD CumCntD CumCntDD
x1 2008.01.23 0.00 1 2 1
x2 2008.01.23 0.05 1 2 2
x3 2008.01.23 0.10 0 2 2
x4 2008.01.24 0.00 0 2 0
x5 2008.01.24 0.05 0 2 0
x6 2008.01.24 0.10 0 2 0

. . . Disc Shipdate
r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Shipdate Disc CntDD CumCntD CumCntDD
x1 2008.01.23 0.00 1 3 1
x2 2008.01.23 0.05 1 3 2
x3 2008.01.23 0.10 1 3 3
x4 2008.01.24 0.00 0 3 0
x5 2008.01.24 0.05 0 3 0
x6 2008.01.24 0.10 0 3 0

. . . Disc Shipdate
r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Fig. 4. Step-wise processing of Query Q1.

M. Akinde et al. / Information Systems 36 (2011) 341–358 345
For each tuple, the three conditions are evaluated in turn
and if a condition is satisfied the corresponding aggregate
value in table X is updated. For instance, r1 contributes to
the aggregate value CntDD in result tuple x1 and to the
aggregate values CumCntD and CumCntDD in all result
tuples.

The possibility to specify aggregation groups by a
general y condition that is independent of any ordering of
the data yields an easy-to-use and expressive new
operator. Note that the aggregates are computed in a
single pass over the Lineitem table. Thus, the y-MDA is a
powerful multi-dimensional aggregation operator that
calculates in one scan of the detail table multiple
aggregation functions with different grouping conditions
that include non-equality conditions. For this kind of
OLAP query no simple and efficient SQL solutions exist,
even with the use of window functions introduced in
SQL:2003.
4. Application area

Complex multi-dimensional aggregation of the kind
exemplified by Query Q1 becomes particularly prevalent
if we look beyond the scope of traditional OLAP. In many
application areas, including various scientific disciplines,
huge sets of data are stored for analysis. Consider the
following example taken from a meteorological/oceano-
graphic context. Historical data about wind and wave
measurements are stored in a denormalized fact table,
OceanObs, where each tuple records the following in-
formation: the location (Loc) and time (Time) of an
observation and the measured wave height (Wa) and
wind speed (Wi). The Bfr table stores for each Beaufort
number the lower (WiL) and upper (WiH) wind speed
limits (Fig. 5).

A relevant query that is asked on these data (e.g., to
present on a web page) is the following: For each location

and month, compute the average wave height and the

OceanObs
Loc Time Wa Wi

r1 L1 1997-01-31T18:00 5.7 20.6
r2 L1 1997-01-31T21:00 6.4 21.1
r3 L1 1997-02-01T00:00 8.1 23.1
r4 L1 1997-02-17T19:00 8.2 24 5
r5 L1 1997-02-21T12:00 8.5 23.9

Bfr
BfNr WiL WiH

...
8 17.2 20.7
9 20.8 24.4

10 24.5 28.4

Fig. 5. Simplified oceanographic fact table and table with Beaufort

numbers.

X (after initialization)
Loc Month WiL WiH SWa CWa CWi

x1 L1 1997.01 17.2 20.7 0.0 0 0
x2 L1 1997.01 20.8 24.4 0.0 0 0
x3 L1 1997.01 24.5 28.4 0.0 0 0
x4 L1 1997.02 17.2 20.7 0.0 0 0
x5 L1 1997.02 20.8 24.4 0.0 0 0
x6 L1 1997.02 24.5 28.4 0.0 0 0

X (after processing r1 of OceanObs)
Loc Month WiL WiH SWa CWa CWi

x1 L1 1997.01 17.2 20.7 5.7 1 1
x2 L1 1997.01 20.8 24.4 5.7 1 0
x3 L1 1997.01 24.5 28.4 5.7 1 0
x4 L1 1997.02 17.2 20.7 0.0 0 1
x5 L1 1997.02 20.8 24.4 0.0 0 0

M. Akinde et al. / Information Systems 36 (2011) 341–358346
number of gale (BfNr¼ 8), strong gale (BfNr¼ 9), and storm

warnings (BfNr¼ 10) issued in the three month period

ending in the current month.
We assume a function YYMM that extracts the year and

month from a timestamp. With this the query can be
expressed as GyðB,OceanObs-L,ðl1,l2Þ,ðy1,y2ÞÞ, where
x6 L1 1997.02 24.5 28.4 0.0 0 0

X (after processing r1 and r2 of OceanObs)
Loc Month WiL WiH SWa CWa CWi

x1 L1 1997.01 17.2 20.7 12.1 2 1
x2 L1 1997.01 20.8 24.4 12.1 2 1
x3 L1 1997.01 24.5 28.4 12.1 2 0
x4 L1 1997.02 17.2 20.7 0.0 0 1
x5 L1 1997.02 20.8 24.4 0.0 0 1
x6 L1 1997.02 24.5 28.4 0.0 0 0
B : p½Loc,YYMMðTimeÞ-Month,WiL,WiH�ðOceanObs�

s½8rBfNrr10�BfrÞ

l1 : ðsumðWaÞ-SWa,countðWaÞ-CWaÞ

y1 : L:Loc¼ B:Loc4YYMMðL:TimeÞ ¼ B:Month

l2 : ðcountðWiÞ-CWiÞ

y2 : L:Loc¼ B:Loc4
YYMMðL:TimeÞrB:Month 4
YYMMðL:TimeÞ4ðB:Month�INTERVAL u3u MONTHÞ4
B:WiHZL:Wi4L:WiZB:WiL
Fig. 6. Step-wise processing OceanObs tuples.
The result structure and the step-wise computation of
this query is illustrated in Fig. 6. The first four columns
represent the different combinations of groups: the
location key (Loc), the time at the granularity of month
(Month), and the lower (WiL) and upper (WiH) limits for
the wind speeds for which the aggregates are computed.
The other columns represent the aggregation result: the
average wave height for each month is represented
as sum (SWa) and count (CWa), and CWi represents
the count for each wind speed interval over the last three
months. As in the previous examples for Query 1, the
OceanObs relation is processed tuple by tuple with
the different conditions evaluated in turn. Only one scan
is required.

Queries of the form above often involve multiple
measuring parameters collected over decades at thou-
sands of locations. Complex ad hoc analysis of scientific
data is often required, but tends to be impracticable due
to the limitations of the technology used. For such
applications, leveraging the power of database technology
and multi-dimensional aggregation would open the door
to significantly faster and more flexible data storage and
processing systems.

This kind of complex analysis is not exclusive to the
meteorological domain; similar challenges can be found
in technical diagnostics and analysis of scientific data
(e.g., the analysis of medical patient data). These huge
amounts of data, much of it publicly held, tends to be
either impossible or very expensive to query in an ad hoc
manner. Operators such as the y-MDA would greatly
facilitate the usability and accessibility of databases for
the extraction of information from such data stores.
5. Reducing the h-MDA to SQL

In order to illustrate expressiveness and strengths of
the y-MDA operator we describe its reduction to SQL.
Despite significant extensions of SQL in recent years, a
comprehensive and efficient SQL reduction of the y-MDA
does not exist. However, a systematic transformation to
SQL is possible by using a combination of aggregations,
joins, and the CASE statement, as shown in the following
proposition. The key idea is to use a generate and test
approach. Specifically, a Cartesian product (or join if
possible; see below) makes sure that the aggregation
groups include all possible tuples. Subsequently, CASE
statements inside aggregate functions are used to filter
out the unwanted tuples during the aggregation. Although
this yields a systematic and effective approach, it is not
practical since the performance will be poor. Turning
generate and test solutions into efficient algorithms is
undecidable in general and we will see that DBMSs cannot
optimize such statements.
Proposition 1 (Reducing y-MDA to SQL). Let BðBÞ and RðRÞ
be base and detail table, respectively, li ¼ ðfi1 ðAi1 Þ-

Ci1 , . . . ,fiki
ðAiki
Þ-Ciki

Þ, 1r irm, be lists of aggregate func-

tions, and yi ¼ yC4yui, 1r irm, be conditions that are

divided into a part yC that is common to all conditions

and an individual part yui. If all tuples in B are distinct,
GyðB,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞÞ can be reduced to the

M. Akinde et al. / Information Systems 36 (2011) 341–358 347
following SQL expression:
SELECT

B,

f11
(CASE WHEN y1 THEN R:A11

ELSE N11
END) AS Ci1 ,

y,

fmkm
(CASE WHEN ym THEN R:Amkm

ELSE Nmkm
END) AS Cmkm

FROM

B LEFT OUTER JOIN R ON yC

GROUP BY

B

Nij is the neutral element that allows the aggregate function

fij to ignore the row (0 for sum and count, NULL for min and

max).

Proposition 1 pushes the common part, yC , of all
conditions down to the FROM clause. The left outer join on
B ensures that tuples in B are preserved. If the conditions
y1, . . . ,ym are disjoint and no common expression yC

exists, the condition of the outer-join is true, and the join
expression degenerates to a Cartesian product. Note that
the transformation only holds if B does not contain
duplicates. If duplicates may occur in B, additional steps
are required, e.g., count-based duplicate handling techni-
ques.
Example 4. Consider Query Q1 and its y-MDA formula-
tion in Example 3. Since the y conditions for the three
aggregate functions are disjoint, the common part is
empty (i.e., yC ¼ true), and the SQL reduction degener-
ates to a Cartesian product:

SELECT

B.Shipdate,

B.Discount,

COUNT(CASE WHEN L.Shipdate = B.Shipdate AND

L.Discount = B.Discount

THEN Quantity

ELSE 0 END) AS CntDD,

COUNT(CASE WHEN L.Shipdate o ¼ B.Shipdate

THEN Quantity

ELSE 0 END) AS CumCntD,

COUNT(CASE WHEN L.Shipdate o ¼ B.Shipdate AND

L.Discount o ¼ B.Discount

THEN Quantity

ELSE 0 END) AS CumCntDD

FROM

(SELECT DISTINCT Shipdate, Discount FROM Lineitem) B,

Lineitem L

GROUP BY

B.Shipdate, B.Discount

Proposition 1 provides a systematic way to transform
y-MDA queries to SQL. If the yi conditions overlap and the
common part, yC , is selective, the DBMS will use efficient
hash or sort-merge joins. One possibility to increase the
range of optimization possibilities for the DBMS is to
compute all aggregates separately (using Proposition 1)
and at the end join the results together. This will yield m

scans of the detail table and m scans of the base table (i.e.,
both tables are scanned once for each aggregation list).
However, since y conditions can be pushed down to the
WHERE clause the DBMS can employ efficient join proces-
sing techniques. Still the join remains a significant
bottleneck in terms of the performance. Further ad hoc
optimizations are possible but typically require program-
mer interaction as illustrated in the following example.

Example 5. We transform first the SQL query in Example
4 by computing each aggregate separately using Proposi-
tion 1, which requires six scans of the Lineitem relation.
Then, the individual statements are optimized manually:
CntDD can be computed by a single GROUP BY followed by
an aggregation; no join is required. CumCntD can be
computed with the help of a window function; again no
join is required. CumCntDD is a multi-dimensional cumu-
lative aggregate, and an inequality join must be used to
compute it. The optimized SQL query is then given as
follows:

WITH

q1 AS (

SELECT

L.Shipdate,

L.Discount,

COUNT(Quantity) AS CntDD

FROM

Lineitem L

GROUP BY

L.Shipdate, L.Discount

),

q2 AS (

SELECT

Shipdate,

SUM(COUNT(Quantity)) OVER

(ORDER BY Shipdate ROWS UNBOUNDED PRECEDING)

AS CumCntD

FROM

Lineitem L

GROUP BY

L.Shipdate, L.Discount

),

q3 AS (

SELECT

B.Shipdate,

B.Discount,

COUNT(Quantity) AS CumCntDD

FROM

(SELECT DISTINCT Shipdate, Discount

FROM Lineitem) B

LEFT OUTER JOIN

(SELECT Shipdate, Discount FROM Lineitem) L

ON L.Shipdate o ¼ B.Shipdate AND

L.Discount o ¼ B.Discount

GROUP BY

B.Shipdate, B.Discount

)

SELECT * FROM q1 NATURAL JOIN q2 NATURAL JOIN q3

In Section 8 we will show empirically that the SQL
statement in Example 5 is more efficient than the one
generated by Proposition 1, but still less efficient than the
y-MDA evaluation. In particular, the evaluation of the
inequality join is expensive, and it is clear that the
number of database scans for the optimized statement
depends on the number of aggregate functions being
computed, while the y-MDA requires only one scan. Also
note that DBMSs will not automatically rewrite the SQL
statement in Example 4 into the SQL statement in
Example 5.

Summarizing, the y-MDA has significant advantages
over equivalent SQL statements as defined by Proposition
1. First, SQL with CASE expressions are generally very hard

M. Akinde et al. / Information Systems 36 (2011) 341–358348
to optimize, whereas the y-MDA allows the application of
algebraic transformations and optimization strategies (cf.
Section 6). Second, although the y-MDA evaluation is
similar to join evaluation, the fact that there is no need to
compute a full join and the intermediate result size does
not exceed the final result size evades a lot of the
performance pitfalls inherent to standard SQL join-
aggregate evaluations.

6. Algebraic transformations

This section describes how the y-MDA operator
interacts with the other operators of the relational algebra
by defining algebraic transformation (equivalence) rules
that hold for the y-MDA operator. The y-MDA possesses a
variety of properties that make it flexible with respect to
the manipulation of algebraic expressions. Table 2
provides a summary of the transformation rules that can
be used to optimize algebraic expressions. In the
following we discuss representative rules. For some
rules a proof is given in Appendix A.

6.1. Projections

Given a y-MDA followed by a projection, it is possible
to push down the projection to the base table, provided
that the projection does not discard attributes required by
the y-MDA processing. Pushing down projections permits
an early reduction of the size of the result table, X, and
helps to avoid disk I/O by eagerly eliminating attribute
columns from B that are not part of the final result.

Rule E1 states that, if the attributes of the projection, A,
contain all attributes from B that are used in the
conditions y1, . . . ,ym, then we can push the projection to
the base table, where the projection attributes A are
replaced by Au¼A\C (i.e., A minus any aggregates
computed by the y-MDA). A proof of this rule is given in
Appendix A.

Rule E2 allows to push down a projection to the base
table even if A does not contain all attributes from B that
are needed by the y-MDA processing. In this case we add
the B-attributes that are used in ~y to the projection
attributes, Au, and the outer projection on the y-MDA
result remains. This transformation is useful if Au is
smaller than B and the memory requirements of the
result table are excessive.
Table 2

Transformation rules for the y-MDA.

p½A�GyðB,R,~l ,~yÞ ¼ Gyðp½Au�B,R,~l ,~yÞ

p½A�GyðB,R,~l ,~yÞ ¼ p½A�Gyðp½Au�B,R,~l ,~yÞ

s½yS�GyðB,R,~l ,~yÞ ¼ Gyðs½yS�B,R,~l ,~yÞ

GyðB,R,~l ,~yÞ ¼ GyðB,s½yR
13 � � �3yR

m�R,~l ,~yÞ

s½40�GyðB,R,~l ,~yÞ ¼ s½40�Gyðs½yB
13 � � �3yB

m�B,R,~l ,~yÞ

GyðGyðB,R1 ,~l1 ,~y1Þ,R2 ,~l2 ,~y2Þ ¼ GyðGyðB,R2 ,~l2 ,~y2Þ,R1 ,~l1 ,~y1Þ

GyðGyðB,R,~l1 ,~y1Þ,R,~l2 ,~y2Þ ¼ GyðB,R,ð~l1 ,~l2Þ,ð~y1 ,~y2ÞÞ

GyðGyðB,R1 ,~l1 ,~y1Þ,R2 ,~l2 ,~y2Þ ¼ GyðB,R1 ,~l1 ,~y1Þ-UtyB
GyðB,R2 ,~l2 ,~y2Þ-V

GyðB,R,~l ,~yÞ ¼ GyðB1 ,R,~l ,~yÞ [� � � [GyðBn ,R,~l ,~yÞ
6.2. Selections

Consider a y-MDA followed by a selection with
condition yS. If yS involves only attributes of the base
table, i.e., attrðySÞDB, the selection can commute with the
y-MDA. This is expressed in Rule E3 and follows directly
from the observation that the y-MDA preserves the rows
and attributes of the base table.

Rule E4 shows a transformation that generates a
selection from the conditions of the y-MDA. Here
yi ¼ yiu4yR

i , where yR
i contains only constraints on the

detail table, i.e., attrðyR
i ÞDR; if no such conditions exist,

yR
i ¼ true. If yR

i ðrÞ ¼ false for a tuple r 2 R, that tuple is
not used for the computation of the aggregate list li. If a
tuple r neither fulfills yR

1 nor yR
2 nor . . . nor yR

m, then that
tuple does not contribute to any of the aggregate lists l1,
y, lm. Thus, under certain conditions we can avoid a full
scan of the detail relation, e.g., when R is sorted according
to a timestamp and the condition constrains this time-
stamp. A proof of Rule E4 is given in Appendix A.

In OLAP we often want to view only tuples for which a
result has been computed. This allows for further
optimization rules. Let s½40� represent a range check on
the tuples of X, i.e., a condition that eliminates all tuples of
X for which no aggregates have been updated in the
y-MDA. A typical example would be s½40� � ðCNT14
04 � � �4CNTm40). This range check requires that each li
contains the aggregate countð�Þ-CNTi. Such a count
aggregate can easily be added if it is not present initially.
Given such a range check over the y-MDA result, we can
employ a strategy of eager selection on the tuples of the
base table as expressed in Rule E5. Let yi ¼ yiu4yB

i such
that attrðyB

i ÞDB; if no such conditions exist, yB
i ¼ true. If

yB
i ðbÞ ¼ false for a tuple b 2 B, no aggregate functions for

tuple b and aggregate list li are computed, and all
aggregates in li of b keep their initial value. Thus, if a
tuple b neither fulfills yB

1 nor yB
2 nor � � � nor yB

m, no
aggregates are computed for b at all.
6.3. y-MDAs

Sequences of y-MDAs can be commuted and coalesced
if the y-MDAs are independent. Given a nested y-MDA
sequence, GyðGyðB,R1,~l1 , ~y1 Þ,R2,~l2 , ~y2 Þ, the outer Gy is
independent of the inner Gy iff attrð ~y2 ÞDðB [R2Þ. Thus,
the outer y-MDA is independent of the inner y-MDA if the
ðattrð~yÞ \ BÞDA,Au¼A\C (E1)

Au¼ ðA [ðattrð~yÞ \ BÞÞ\C (E2)

attrðysÞDB (E3)

yi ¼ yi u4yR
i ,attrðyR

i ÞDR (E4)

yi ¼ yi u4yB
i ,attrðyB

i ÞDB (E5)

attrð ~y2 ÞDðB [R2Þ
(E6)

attrð ~y2 ÞDðB [RÞ (E7)

attrð ~y2 ÞDðB [R2Þ, yB ¼ ðU:B¼ V :BÞ (E8)

B¼ B1 [� � � [Bn , Bi \ Bj ¼ |

M. Akinde et al. / Information Systems 36 (2011) 341–358 349
y-conditions of the outer y-MDA are independent of the y
conditions of the inner y-MDA; otherwise, the outer Gy is
dependent on the inner Gy.

Rule E6 allows the commutation of nested y-MDAs
that are independent. Rule E7 allows to coalesce two
independent, nested y-MDAs into a single y-MDA. This
transformation permits the computation of several
y-MDAs in a single pass over the detail table. The rule
can also be used to split a single y-MDA into multiple
y-MDAs, which might allow a more efficient parallel or
distributed processing [3]. Coalescing and splitting to-
gether with commutation of y-MDAs are only possible
because the y-MDA preserves the rows of the base
table B.

6.4. Joins and union

Rule E8 transforms two nested independent y-MDAs
into two separate y-MDAs connected by an equi-join. This
rule only holds if B is duplicate-free with schema
B¼ ðA1, . . . ,AkÞ, and yB ¼ ðU:A1 ¼ V :A1Þ4 � � �4ðU:Ak ¼ V :AkÞ

is composed of equality conditions over the attributes in
B. Rule E8 is relevant in the context of parallel and
distributed evaluation of y-MDAs, since it allows to
compute the y-MDAs in parallel and join the results.

Rule E9 allows to replace a single y-MDA by the union
of n y-MDAs, based on a partitioning of the base table,
B¼ B1 [� � � [Bn. This allows to develop query plans where
the result tables will always reside in memory, even if the
base table is large.

7. Evaluation algorithms

This section presents evaluation algorithms for the
y-MDA together with a cost analysis. We start with a
simple nested loop approach for distributive (e.g., count,
sum, min, max) and algebraic (e.g., avg) aggregates, which
is then extended in various directions. The aim of the cost
formulas is to characterize and compare the complexity of
different evaluation algorithms. Table 3 summarizes the
notation used in the cost analysis.

The cost to transfer Vi pages from disk to memory (or
vice versa) through a buffer of Mj pages is given as
CIOðVi,MjÞ ¼ dVi=MjeTkþVi � Tt .
Table 3
Notation used in cost formulas.

VR Number of disk pages in detail table

VB Number of disk pages in base table

VX Number of disk pages in result table

MX Memory pages for the result table

MA Memory pages for indexes

MI Memory pages for the input buffer

M Total number of memory pages (M = MX + MA + MI)

Tk Sum of average seek and latency times

Tt Time for transferring a page between disk and memory

Th Time for hashing a page

Tj Time for y�MDA ing a single page using a hash table

Tu Time for updating the tuples of a page

Aj Avg. number of pages in B a page in R matches with

Cop Cost of a (complex) operation op
7.1. Basic evaluation algorithm

BasicTCMDA takes as input a base table B, a detail
table R, (lists of) aggregate functions ðl1, . . . ,lmÞ, and the
corresponding grouping conditions ðy1, . . . ,ymÞ. The algo-
rithm works in four steps: it (1) replaces algebraic
aggregates by their distributive sub-aggregates (e.g.,
avg is replaced by sum and count), (2) constructs the
result table X from B and initializes the aggregation
results, (3) scans the detail table and computes the
aggregates, and (4) computes the final result by applying
the super-function to the values of the sub-aggregates
(e.g., divide sum by count to get avg).

Algorithm. BasicTCMDA(B,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞ).

// Step 1: Replace algebraic aggregates by distributive sub-aggregates

Let l0i ¼ li , 1r irm;

foreach algebraic aggregate fij in lu1 , . . . ,lum do

b Replace fij with its distributive sub-aggregates f 1
ij

, . . . ,f
pij

ij
;

// Step 2: Construct result table X

Construct a one tuple relation NðNÞ, where:

N¼ ðC11
u, . . . ,Cm1

u, . . . ,Cmkm
uÞ and the attribute values in tuple N are

the initial values of the aggregate functions (0 for sum and count,

NULL for max and min);

Let X ¼ B� N;

// Step 3: Compute the aggregates

foreach tuple r 2 R do

foreach row x 2 X do
foreach yi 2 fy1 , . . . ,ymg do

if yiðx,rÞ is true then

b Update the aggregates fi1 , . . . ,fiki
in x;

66664

66666664

66666666664

//Step 4: Apply the super-functions

if l1 , . . . ,lm contains algebraic aggregates then

for each row x 2 X do
for each algebraic aggregate fij in l1 , . . . ,lm do

Let gij be the super-function of fij ;

In x, replace f 1
ij

, . . . ,f
pij

ij
by a single column fij and set

x:fij ¼ gij ðx:f
1
ij

, . . . ,x:f
pij

ij
Þ;

66666664

666666666664

666666666666664

return X;

The efficiency of the algorithm depends mainly on two
aspects. First, only the result table, X, is kept in memory
and X fits into memory. If this is not the case, the
algorithm must frequently access the disk to fetch
matching rows from X. (Solutions for this problem are
described in Section 7.3.1.) Second, the algorithm per-
forms only one scan of the detail table.

For the cost analysis we follow steps 2–4 of the
algorithm. In the construction phase, the base table B is
read and extended with one column for each aggregate.
The cost formula for the construction part is

CConstruct:X ¼ CRead:BþCInit:X ¼ CIOðVB,MXÞþVB � Tu

The subsequent computation phase scans R and examines
for each tuple r 2 R each row x 2 X. If r and x satisfy a
grouping condition, the corresponding aggregate values in
x are updated. The cost formula for this part is

CCompute:X ¼ CRead:RþCUpdate:XþCWrite:X

¼ CIOðVR,MIÞþVR � VX � TuþCIOðVX ,MXÞ

M. Akinde et al. / Information Systems 36 (2011) 341–358350
For the computation of the algebraic aggregates (step 4)
we iterate through the tuples in X and get CAlgebraic:X ¼

VX � Tu. The additional pass over the result table to
compute the final result from the sub-aggregates assumes
that the result table fits in memory.

Putting all parts together, we get the overall cost
formula

CBasicTCMDA ¼ CConstruct:XþCCompute:XþCAlgebraic:X

¼ CIOðVB,MXÞþVB � TuþCIOðVR,MIÞ

þVR � VX � TuþCIOðVX ,MXÞþVX � Tu

7.2. Indexing the result table

BasicTCMDA serves as a base-line algorithm for the
y-MDA evaluation, but becomes expensive if the result
table grows, since for each tuple r 2 R all rows in X are
considered. This can be avoided if the result table is
indexed. Then, for a tuple r 2 R and a condition y we can
efficiently identify the set of tuples in X that need to be
updated.

Example 6. Consider the y-MDA formulation of Q1 in
Example 3. An index on Shipdate in the result table
supports the efficient identification of the relevant result
tuples for condition y1. The computation of the relevant
result tuples for a detail tuple r proceeds as follows: use
the index on Shipdate to identify all tuples XuDX with a
shipdate equal to r:Shipdate, and then check for these
tuples the rest of the condition, i.e., r:Discount¼

Xu:Discount.

Algorithm. HashTCMDA(B,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞ).
// Construct result table and indexes

Construct and initialize NðNÞ (as in BasicTCMDA);

Let X ¼ B� N;

Build hash-indexes for X;

// Compute the aggregates

foreach tuple r 2 R do

foreach yi 2 fy1 , . . . ,ymg do

Fetch the rows Xi ¼ fx 2 Xjyiðx,rÞg using the index;

foreach x 2 Xi do

b Update the aggregates fi1 , . . . ,fiki
in x;

666664

666666664

return X;
The algorithm HashTCMDA extends and improves
the basic y-MDA evaluation algorithm with a result table
that is augmented with one or more hash-indexes.
The HashTCMDA evaluation algorithm is divided into a
construction phase and a computation phase, hence
CHashTCMDA ¼ CConstruct:XþCCompute:X . The construction phase
has now additionally to build the hash indexes on X,
yielding

CConstruct:X ¼ CRead:BþCInit:XþCHash:X

¼ CIOðVB,MXÞþVB � TuþHX � ðVX � ThÞ

where HX is the total number of hash-indexes on X and is
bounded by the number of grouping conditions, i.e.,
HX rm. Since the index structures reside in memory, the
relative cost is usually low compared to the cost of the
other operations. In the computation phase the algorithm
scans R and updates the aggregates in X, using the
hash-index to efficiently determine that have to be
updated. Thus, we have

CCompute:X ¼ CRead:RþCUpdate:XþCWrite:X

¼ CIOðVR,MIÞþVR � ðHX � TjÞ � AjþCIOðVX ,MXÞ

7.3. Advanced memory management

Despite the use of indexes, an important aspect for an
efficient evaluation is a result table that fits into main
memory. Otherwise, each tuple of R might require one or
more disk accesses to retrieve elements of X that are
currently not in memory. Several of the transformation
rules in Section 6 help to reduce the size of the result
table. Here we discuss memory management strategies
that ensure an efficient computation of the y-MDA for
large result tables that do not fit in memory.

7.3.1. Partitioning the result table

A solution that ensures an efficient computation of the
y-MDA regardless of the size of the base table, B, is
partitioning. We can always divide B into k partitions,
B¼ B1 [� � � [Bk, such that the result table Xi for each Bi fits
in memory, i.e., VXi

rMX . Then we compute the y-MDA for
each partition in isolation and take the union of the
individual results. Algorithm PartTCMDA implements this
strategy.

Algorithm. PartTCMDA(B,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞ).
// Construct result table

Construct and initialize NðNÞ (as in BasicTCMDA);

Let X ¼ B� N;

Let k¼ dVX=MXe;

Partition X into X1 , . . . ,Xk , s.t. VXj
rMX , 1r jrk;

// Compute the aggregates

foreach Xj where 1r jrk do

Construct hash-indexes for Xj;

foreach tuple r 2 R do

foreach yi 2 fy1 , . . . ,ymg do

Fetch the rows Xji ¼ fx 2 Xjjyiðx,rÞg using the index;

foreach x 2 Xji
do

b Update the aggregates fi1 , . . . ,fiki
in x;

666664

666666664

666666666666664

return X;
The cost of algorithm PartTCMDA is an increase in the
number of scans of R. In the construction phase we scan
the result table, divide it into k partitions, and write it
back to disk, yielding

CConstruct:X ¼ CRead:BþCInit:XþCWrite:X

¼ CIOðVB,MXÞþVB � TuþCIOðVX ,MXÞ

In the computation phase each partition is considered in
turn. If we assume that all partitions, Xj, have the same
size, we get

CCompute:X ¼ k � ðCRead:Xj
þCHash:Xj

þCRead:RþCUpdate:Xj
þCWrite:Xj

Þ

¼ k � ðCIOðVXj
,MXÞþHXj

� ðVXj
� ThÞ

þCIOðVR,MXÞþVR � ðHX � TjÞ � AjþCIOðVX ,MXÞÞ

M. Akinde et al. / Information Systems 36 (2011) 341–358 351
7.3.2. Result completion

During the evaluation of a y-MDA, parts of the result
table might become obsolete, that is, some entries in the
result table will not be affected by the detail tuples that
are not yet processed.

Definition 2 (Completed result tuples). Let GyðB,R,ðl1, . . . ,
lmÞ,ðy1, . . . ,ymÞÞ be a y-MDA call with result table X and
detail table R, where the tuples ri 2 R are processed in the
following order: r1,y,ri,ri + 1,y,rn. A result tuple, x 2 X, is
completed after processing ri if

frjr 2 friþ1, . . . ,rng4ðy1ðx,rÞ3 � � �3ymðx,rÞÞg ¼ |

By Com(X,ri) we denote the set of all completed tuples in X

after processing ri.

Once a result tuple is completed it can be removed
from memory without affecting the correctness of the
y-MDA evaluation. To turn this definition into an
optimization rule, we need syntactic criteria to identify
completed tuples. While this is impossible in the general
case without performing the complete computation, for a
number of interesting queries such criteria exist. Two
specific cases are considered next.

First, consider a y-MDA followed by a selection with
predicate P, i.e., s½P�Gyð� � �Þ. If the processing of a detail
tuple, ri 2 R, changes the result tuple, xj 2 X, such that the
selection predicate P will return false for xj, then tuple xj is
completed. A specific instance of this case is formalized in
the following proposition.

Proposition 2 (Range selection on y-MDA). Consider the

algebraic expression

s½ ¼ 0�GyðB,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞÞ

The set of completed tuples in X after processing ri 2 R is

defined as

ComðX,riÞ ¼ fxjx 2 X4ðy1ðx,riÞ3 � � �3ymðx,riÞÞg

The selection s½ ¼0� filters the y-MDA result with
condition CNT1¼ 04 � � �4CNTm¼ 0. For any tuple x in the
result table, for which there exists a detail tuple r such
that at least one yi evaluates to true, one of the counters
will be greater than 0. The selection predicate will
evaluate to false, and tuple x is discarded from the final
result. Since no other detail tuples can affect the output of
x, the tuple x is said to be completed after processing r. An
important class of queries for the application of Proposi-
tion 2 is the computation of SQL subqueries using the
y-MDA [2].

The second case considers a y-MDA call where the
tuples of the detail table are sorted (clustered) on an
attribute A and each grouping condition performs an
equality comparison on A. Then we can determine tuple
completion when transitioning to a new cluster.

Proposition 3 (Clustered detail data). Let GyðB,R,ðl1, . . . ,lmÞ,
ðy1, . . . ,ymÞÞ be a y-MDA call, R be a detail table with tuples

sorted on attribute A, and ri, ri+1 be two tuples of R that are

processed consecutively in that order. If y1, . . . ,ym are

conjunctive conditions, and each yj, 1r jrm, contains an

equality comparison, B.A = R.A, the set of completed tuples is
defined as

ComðX,riÞ ¼ fxjx 2 X4x:A¼ ri:A4x:Aariþ1:Ag

Proposition 3 minimizes the memory requirements for
y-MDA processing in a highly efficient way since, instead
of maintaining the entire result table in memory, we
maintain only the result tuples with a matching clustering
attribute. If the result tuples with a matching clustering
attribute fit in MX pages the algorithm can clear the
memory buffer in pace with the fetching of detail tuples
from disk. Thus, the y-MDA is computed in a single pass
over the result table (and a single scan of the detail table),
although the complete X exceeds the available memory
(i.e., VX 4MX). Note that this specific instance of com-
pleted result tuples, cf. Example 7, is a simple but effective
optimization that also relational DBMSs use (a merge join
with a streaming aggregate).

Example 7. Consider a simplified version of Query Q1,
where only the first aggregate CntDD is computed, i.e., the
number of sales orders per day and discount rate. This
query can be formulated as GyðB,Lineitem-L,ðl1Þ,ðy1ÞÞ,
where

B : p½Shipdate,Discount�Lineitem

l1 : ðcountðQuantityÞ-CntDDÞ

y1 : L:Shipdate¼ B:Shipdate4L:Discount¼ B:Discount

Let the Lineitem relation be sorted first on Shipdate and
then on Disc (as shown in Fig. 1) and assume that the
tuples are processed in this order. Fig. 7 shows the
evolution of the result table and detail table at different
steps during the query evaluation when tuple completion
is applied. Only the result tuples printed in bold have to
be maintained in main memory.
8. Experimental studies

This section reports the results of various experimental
studies that we run with a prototype implementation of
the y-MDA operator.
8.1. The y-MDA query engine

For the experimental studies we implemented a
y-MDA engine in GNU C on top of Oracle. The query
engine implements the BasicTCMDA algorithm, enhanced
with indexes and partitioning on the result table.
Depending on the y conditions, hashing, binary search,
or linear search is used. Partitioning is applied if the result
table does not fit in memory. The OCI API is used to
extract the base table and the detail table from the
database. Simple algebraic operations (e.g., projections,
selections, and grouping of the base and detail relations)
that the DBMS can handle efficiently are pushed down to
the DBMS. This is the case, for example, when algebraic
transformations from Section 6 are applied, e.g., instead of
extracting R, the y-MDA query engine requests s½P�R from
the DBMS.

X
Shipdate Disc CntDD

x1 2008.01.23 0.00 0
x2 2008.01.23 0.05 0
x3 2008.01.23 0.10 0
x4 2008.01.24 0.00 0
x5 2008.01.24 0.05 0
x6 2008.01.24 0.10 0

Lineitem
. . . Disc Shipdate

r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Shipdate Disc CntDD
x1 2008.01.23 0.00 1
x2 2008.01.23 0.05 0
x3 2008.01.23 0.10 0
x4 2008.01.24 0.00 0
x5 2008.01.24 0.05 0
x6 2008.01.24 0.10 0

. . . Disc Shipdate
r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Shipdate Disc CntDD
x1 2008.01.23 0.00 1
x2 2008.01.23 0.05 2
x3 2008.01.23 0.10 0
x4 2008.01.24 0.00 0
x5 2008.01.24 0.05 0
x6 2008.01.24 0.10 0

. . . Disc Shipdate
r1 0.00 2008.01.23
r2 0.05 2008.01.23
r3 0.10 2008.01.23
r4 0.10 2008.01.23
r5 0.00 2008.01.24
r6 0.05 2008.01.24
r7 0.05 2008.01.24
r8 0.10 2008.01.24

Fig. 7. Step-wise processing with tuple completeness.

M. Akinde et al. / Information Systems 36 (2011) 341–358352
8.2. Setup and data

The experiments were run on an Intel Pentium work-
station with a 3.06 GHz processor and 1 GB main memory.
The DBMS and the y-MDA engine were on the same
machine.

For the experiments we use five Lineitem relations of
different size from the TPC-H benchmark that were
created using dbgen: 1.3 GB (10M tuples), 2.6 GB (20M
tuples), 3.9 GB (30M tuples), 5.2 GB (40M tuples), and
6.5 GB (50M tuples). We use Query Q1 of our running
example, i.e., the y-MDA formulation in Example 3, the
SQL reduction in Example 4, and the optimized SQL
solution in Example 5.

Unless stated otherwise we assume that the result
table fits in memory. This is a realistic assumption for
many OLAP applications where the result is small
compared to the large input relation. We run a separate
experiment to show the scalability of y-MDA when the
result table does not fit into memory and partitioning of
the group table has to be applied. We did not create
indexes on the Lineitem relation and we did not declare
key attributes. Instead we rely on the indexes that are
computed on the fly by the y-MDA and Oracle’s query
engine, respectively.
8.3. Experiments

We report the results of a number of experiments that
compare the y-MDA evaluation with the SQL evaluation.
We analyze the time and the scale-up properties in
various settings and study the performance of selected
optimizations discussed in Section 6.

Varying the size of the detail table and base table: Fig. 8(a)
shows the processing time for Q1 with the size of the detail
table varying from 1.3 GB (10M tuples) to 6.5 GB (50M
tuples), and a base table with 550 tuples. The y-MDA is
more than one order of magnitude faster than both SQL
solutions. The poor performance of the SQL solution that is
based on Proposition 1 (SQL) is due to the join, which here
degenerates to a Cartesian product and produces a large
intermediate result. The highly optimized SQL solution that
we discussed in Example 5 (SQLOPT) performs better, but is
still far less efficient than the y-MDA. The main reason for
that are the inequality join, the four scans of the input
relation, and the subsequent joins. An analysis of the query
plan revealed that Oracle performs a sort-merge join for the
plain SQL solution and hash joins for the optimized solution
SQLOPT. The execution time of the y-MDA increases linearly
with the size of the detail table. Thus, y-MDA scales up to
large detail tables.

0

5000

10000

15000

20000

25000

30000

1.3 2.6 3.9 5.2 6.5

Ti
m

e
(s

ec
on

ds
)

Size of Detail Table (GB)

SQL
SQLOPT

θ-MDA

0

5000

10000

15000

20000

25000

30000

110 220 330 440 550

Ti
m

e
(s

ec
on

ds
)

Number of Tuples in Base Table

SQL
SQLOPT

θ-MDA

Fig. 8. Varying the size of the detail table and base table. (a) Varying detail table (jBj= 550 tuples). (b) Varying base table (jRj= 50M tuples).

 1

 10

 100

 1000

 10000

1.3 2.6 3.9 5.2 6.5

Ti
m

e
(s

ec
on

ds
)

Size of Detail Table (GB)

SQL
θ-MDA

SQL
θ-MDA

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Number of Nested TCMDAs

Fig. 9. Varying base table/detail table and number of nested y-MDA calls. (a) Varying B and R. (b) Multiple nestings.

M. Akinde et al. / Information Systems 36 (2011) 341–358 353
Fig. 8(b) shows the runtime for Query Q1 with a fixed
detail table of 6.5 GB (50M tuples) and varying sizes of the
base table. The base table varies between 55 and 550
tuples, corresponding to 0.0002% and 0.001% of the detail
table, respectively. Again, the y-MDA is the clear winner
with a slow linear increase because it does not produce a
large intermediate result and does not require multiple
scans of the detail relation.

Varying the size of base/detail table and varying the

number of nested calls: Fig. 9(a) shows the results of
varying both the size of the base table and the size of the
detail table. The detail table ranges from 10M to 50M
tuples, and the base table ranges from 110 to 550 tuples.
As before, y-MDA is significantly faster than the SQL
solution.

Fig. 9(b) demonstrates the effect of an increasing number
of nested y-MDAs to compute correlated aggregates that
cannot be coalesced into a single y-MDA. We simulate such
a query by repeatedly calling Q1. Each call uses the result of
the previous call as base table. The size of the detail table is
6.5 GB, and the size of the base table is 550 tuples. Similar to
the findings of the previous experiments, y-MDA clearly
outperforms the SQL solution.

Partitioning the result table: Fig. 10 demonstrates the
scalability of y-MDA for a large base table that does not fit
in memory, hence partitioning is applied. The horizontal
axis shows the number of partitions that are used. We fixed
the size of the base table and measured the evaluation
from one partition (when the entire base table fits in
memory) up to five partitions (when only 20% of the base
table fit in memory).

Note that with large base tables it is more common to
have window aggregates (e.g., aggregate over the past
month; see Section 4) rather than cumulative aggregates.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Number of Partitions

Q1
Q1win

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Number of Partitions

Q1win

Fig. 10. Partitioning the result table. (a) Base table with 550 tuples. (b) Base table with 5M tuples.

Table 4
Detailed runtime analysis.

B-size Empirical values Cost Estimation

Init Hash Compute Total CRead:B CInit:X CHash CRead:R CUpdate:X Total

1M 3 1 634 631 2.5 0.75 0.75 125 375 504

2M 7 3 969 980 5.0 1.50 1.50 125 750 883

3M 9 6 1257 1273 7.5 2.25 2.25 125 1125 1262

4M 12 8 1596 1617 10.0 3.00 3.00 125 1500 1641

5M 16 10 1895 1922 12.5 3.75 3.75 125 1875 2020

M. Akinde et al. / Information Systems 36 (2011) 341–358354
Q1win is equivalent to Q1, but uses a window aggregate
rather than a cumulative aggregate. Specifically, the
window constrains the shipdate to be within a window
of 1 month, i.e., y3 � L:ShipdaterB:Shipdate4L:ShipdateZ

B:Shipdate�INTERVAL u1u MONTH4L:DiscountrB:Discount,
and similar for y2.

In Fig. 10(a) the base table has 550 tuples as in our
previous experiments, and the detail table has 50M
tuples. We force a partitioned evaluation for this setting
to work out the differences between the partitioned and
unpartitioned evaluation. As expected, the runtime is
linearly increasing in the number of partitions, since each
partition requires an additional scan of the detail table.
Q1win is faster since the window selects fewer tuples
from the base table that have to be updated.

In Fig. 10(b) the base table has 5M tuples, and the
detail table has 50M tuples. For Q1win on average a detail
tuple matches 12 base tuples (between 0 tuples and
maximal 50 tuples). As before, the runtime of Q1win

increases linearly with the number of partitions, since
each partition requires an additional scan of the detail
table.

Validation of the cost model: Table 4 demonstrates the
correspondence between our cost model and the runtime
values from the empirical evaluation. In the experiment
we use Query Q1win with a detail table of 50M tuples, and
we vary the size of the base table from 1M to 5M. The
table shows in the left part the total runtime (Total)
broken down into the initialization of the result table
including the reading of the base table (Init), the creation
of indexes (Hash), and the computation of the aggregates
including the scanning of the result table (Compute). The
right part shows the cost estimation using the cost
formulas from Section 7.2. We assume the following
parameters in the cost formulas: a block size of 400 tuples
for the base table, the detail table, and the result table; a
block transfer time of 0.001 s; time for updating/hashing/
y-MDAing a block of the result table Tu = Th = Tj =
0.0001 s; and HX = 3 indexes (one hash index and two
ordered indexes).

The cost estimation follows the trend of the empirical
values. Roughly the sum of the two columns CRead:B and
CInit:X of the cost estimation corresponds to the column Init

of the empirical values. Similarly, the sum of the columns
CRead:R and CUpdate:X corresponds to the column Compute.

Algebraic transformations: The final experiment
investigates the effects of applying selected algebraic
transformations from Section 6, namely Rule E4 to push
selections down to the detail table and Rule E7 to coalesce
nested y-MDAs. The same transformations have also been
applied to the SQL solution.

Fig. 11(a) compares the result of evaluating Q1 on the
entire detail table and when restricting the detail table
by applying Rule E4. To this end, we extend the y
condition of Q1 with a term Shipdateov to consider
only line-items with a shipdate that is smaller than value

 1

 10

 100

 1000

 10000

 100000

 1e+06

1% 2% 3% 4% 5%

Ti
m

e
(s

ec
on

ds
)

Selectivity

θ-MDA
θ-MDA + E4

SQL
SQL + E4

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Nesting Level

θ-MDA nested
θ-MDA coalesced

SQL nested
SQL coalesced

Fig. 11. Applying transformation rules. (a) Rule E4. (b) Rule E7.

M. Akinde et al. / Information Systems 36 (2011) 341–358 355
v, i.e., y1 � L:Shipdate¼ B:Shipdate4L:Discount¼ B:Discount4
Shipdateov. The selectivity of this condition over the
(full) detail table varies between 1% and 5%. The use of
this transformation results in a significant reduction of
the query time. Both SQL and y-MDA take advantage of
this optimization rule. In the SQL implementation the
restriction on the detail table allows the DBMS to reduce
the size of the join. The y-MDA engine receives the benefit
of extracting less data from the DBMS. However, without
specifically rewriting the SQL query to take advantage of
this transformation, the target DBMS is unable to detect
the potential for this optimization rule due to the
complexity of the SQL expressions.

In Fig. 11(b) we analyze transformation Rule E7 which
allows to coalesce independent nested y-MDA calls.
Coalescing nested y-MDAs is not very effective. The
reason for this is that the y-MDA evaluation has very
little overhead besides the updating of aggregate values.
Since for each y condition most argument tuples con-
tribute to a large number of base tuples, the main part of
the computation costs comes from the necessary update
of aggregate values in the result table. For the SQL
evaluation the coalescing rule is very effective, since it
reduces the query to a single Cartesian product (rather
than a Cartesian product for each nesting level).

8.4. Summary

The experimental studies confirm the following main
results. First, for Query Q1, which is representative for
multi-dimensional analytic queries with y-constrained
aggregation groups, the y-MDA clearly outperforms the
SQL solutions in all possible settings. Second, the y-MDA
scales to large base tables (partitioning) and detail tables
(one scan only). Third, the transformation rules are
effective. It is interesting to note that the SQL implemen-
tation actually performs well when optimized using
y-MDA transformations; for some rules the increase in
performance is comparably better for SQL than for y-MDA.
Still, y-MDA remains more efficient than SQL.

In experiments using queries with y-conditions that
include equality conditions only (such as y1 in Query Q1)
we found a comparable performance of the y-MDA and
the SQL solutions.

9. Conclusion

Many real-world applications require complex analysis
of large data sets, e.g., the analysis of meteorological data,
the diagnosis of network flows, the analysis of telecommu-
nications records, or the analysis of cash card transactions
(for fraud detection purposes) to name a few examples.
However, complex OLAP queries are often difficult and
expensive to evaluate using conventional query processing
techniques.

This paper defines the y-MDA, a general algebraic
operator for complex OLAP queries. Different from
window functions in SQL, the y-MDA is not based on an
ordering of the argument relation, over which the
aggregates are computed. Instead, it allows the specifica-
tion of complex grouping conditions along multiple
dimensions. This provides a tremendous amount of
flexibility in expressing OLAP queries, including queries
for which the data cannot be sorted to apply SQL window
functions. Such queries are termed multi-dimensional
OLAP queries with y-constrained aggregation groups. The
y-MDA unifies these queries in a single relational frame-
work and facilitates the implementation of efficient and
optimized query plans.

We develop and prove the correctness of a series of
algebraic transformations for the y-MDA and provide cost
formulas that permit to incorporate the operator into a
cost-based query optimizer. We ran a series of experi-
ments with a prototype implementation of the operator
and observed that the y-MDA clearly outperforms equiva-
lent SQL-based solutions.

M. Akinde et al. / Information Systems 36 (2011) 341–358356
Future research is possible in various directions. It
could be interesting to identify sub-classes of y-MDA
expressions that can benefit from specialized evaluation
algorithms. This would be particularly relevant for queries
with very large results, e.g., data cube queries. Another
direction is to study the interaction of the y-MDA with
specialized algebraic operators, such as the apply

operator that is implemented in commercial database
engines. Finally, given the formal framework, concrete
algorithms, and detailed cost formulas in this paper, an
interesting next step would be to integrate the y-MDA
into a full-featured query optimizer. This could be done
either by implementing the y-MDA within an extensible
query optimizer (e.g., Starburst [27] or Volcano [22]) or by
using user-defined routines that work directly in the
database engine (e.g., DataBlades in Informix).

Appendix A. Monoid comprehension calculus and proofs

This appendix presents the proofs for the transforma-
tion Rules E1 and E4 from Section 6. For the proofs, the
monoid comprehension calculus is used.

A.1. Monoid comprehension calculus

Queries in the monoid comprehension calculus (MCC)
[18] are expressed as monoid comprehensions. Infor-
mally, a monoid comprehension over the monoid 	 takes
the form 	feJq1, . . . ,qng. The merge function 	 is called
the accumulator of the comprehension, and expression e

is called the head of the comprehension. Each term in q1,
y, qn is called a qualifier and can either be a generator of
the form v’eu, where v is a range variable and eu is an
expression that constructs a collection, or a filter P, where
P is a predicate. Examples of monoids are þ , � , [,].
Monoids like + and � are called primitive monoids
because they construct values of a primitive type. [and]
are called collection monoids; [collects values into a set,
whereas] collects values into a multi-set.

Definition 3 (Monoid comprehension calculus). The mono-
id comprehension calculus consists of the syntactic forms
in Table 5, where 	 is a monoid, e, e1, y, en are terms in
the monoid calculus, v is a variable, t is a monoid type,
and q1, y, qn are qualifiers of the form v’e or e.

In the MCC, relations and tables correspond to set and
multi-set expressions, and they can be collected using the
Table 5
Monoid comprehension calculus elements used in the paper.

Element Description

NULL Null value

c Constant

v Variable

e.A Record projection

/A1 ¼ e1 , . . . ,An ¼ enS Record construction

e1 op e2 op is a primitive binary function, such as þ ,

¼ , o , 4
	feJq1 , . . . ,qng Comprehension
[and] monoids, respectively. Thus, a duplicate preser-
ving projection, p½A�R, is written as]fr:AJr’Rg. The multi-
set collection monoid collects the tuples generated by
r’R, and conforms them to the record projection r.A. For
a duplicate-eliminating projection, the set collection
monoid, [, is used instead. Similarly, a selection s½P�R is
expressed as]frJr’R,Pg. The join of two relations
R1(A1,A2) and R2(A2,A3) is expressed as [ff ðr1,r2ÞJr1’

R1,r2’R2,Pðr1,r2Þg, where P is the join predicate, and f

constructs an output set element given two elements
from R1 and R2, respectively. A join of two tables (instead
of relations) is expressed by using] instead of [.

The monoid comprehension calculus can be put into a
canonical form by a number of rewrite rules. The
following are of interest for this paper:

	feJq,v’
 feuJrg,sg�!	 feJq,r ,v� eu,sg ð1Þ

This normalization rule is meaning preserving [18]. The
shorthand notation x� u represents the binding of the
variable x to the value u. The meaning of this construct is
given by the following rule:

	feJr ,x� u,sg�!	 fe½u=x�Jr ,s½u=x�g ð2Þ

e[u/x] is the expression e with u substituted for all the free
occurrences of x.

Definition 4 (MCC definition of y-MDA). Let t be our
collection monoid, that is the set collection [for relations
and the multi-set collection] for multi-sets. The y-MDA,
X ¼ GyðB,R,ðl1, . . . ,lmÞ,ðy1, . . . ,ymÞÞ, where li ¼ ðfi1 ðAi1 Þ- Ci1 ,
. . . ,fiki

ðAiki
Þ-Ciki

Þ, is defined in the monoid comprehension
calculus as

X ¼ t fb:B,

C11
: f11
fr:A11

Jr’R,y1g,

. . .

Cij : fij fr:AijJr’R,yig,

. . .

Cmkm
: fmkm

fr:Amkm
Jr’R,ymgJb’Bg

Thus, for each tuple in the generator B, we compute the
aggregate function fiij

over all tuples in R that satisfy
condition yi.

The following shorthand notations will be used: ~l
for ðl1, . . . ,lmÞ, ~y for ðy1, . . . ,ymÞ, and ~C : fij fr:AijJr’R,yig

for C11
: f11
fr:A11

Jr’R,y1g,y, Cmkm
: fmkm

fr:Amkm
Jr’R,ymg.

C¼ fC11
, . . . ,Cmkm

g denotes the aggregates computed by
the y-MDA.

A.2. Proof of Rule E1
Proof. In order to prove Rule E1 (cf. Table 2) we rewrite
both sides using the MCC and show their equivalence. The
left-hand side is expressed as

tfx:Au,x:CijJx’ t fb:A,b:~C : fij fr:AijJr’R,yigJb’Bg

Let bZ ¼ fb:A,b:~C : fij fr:AijJr’R,yigg. By applying the
rewrite rules of the MCC we transform the above

M. Akinde et al. / Information Systems 36 (2011) 341–358 357
expression into

¼
ð1Þ
t fx:Au,x:~CJb’B,x� bZg

¼
ð2Þ
t fb:Au,b:~C : fij fr:AijJr’R,yigJb’Bg

Similarly, we can formulate the right-hand side of Rule E1 as

tfx:Au,x:~C : fij fr:AijJr’R,yigJx’ t fb:Au,b’Bgg

and with bY ¼ fb:Aug we can rewrite it as

¼
ð1Þ
t fx:Au,x:~C : fij fr:AijJr’R,yigJb 2 B,x� bYg

¼
ð2Þ
t fb:Au,b:~C : fij fr:AijJr’R,yigJb’Bg

This proves the equivalence of both sides of Rule E1. &

A.3. Proof of Rule E4

Proof. In order to prove Rule E4 (cf. Table 2) the left-hand
side of Rule E4 is formulated in MCC as

tfb:A,b:~C : fij fr:AijJr’R,yigJb’Bg

With yR
¼ yR

13 � � �3yR
m, the right-hand side translates into

tfb:A,b:~C : fij fv:AijJv’ t frJr’R,yR
g,yigJb’Bg

¼
ð1Þ
t fb:A,b:~C : fij fv:AijJr’R,yR,v� r,yigJb’Bg

¼
ð2Þ
t fb:A,b:~C : fij fr:AijJr’R,yR,yigJb’Bg

Now, if yi � yR4yui for all 1r irm, it follows that the left-
hand and right-hand side of Rule E4 are equivalent. The
essential claim is that

ðyR
13 � � �3yR

i 3 � � �3yR
mÞ4yR

i 4yiu� yR
i 4yiu

Note that ðC3DÞ4C is equivalent to C, i.e., if C is true then
ðC3DÞ4C is true, if C is false then ðC3DÞ4C is false. This
proves the above equivalence, and hence Rule E4. &

References

[1] M.O. Akinde, M.H. Böhlen, Generalized MD-joins: evaluation and
reduction to SQL, in: Databases in Telecommunications II, Interna-
tional Workshop Co-located with VLDB-01, Lecture Notes in
Computer Science, vol. 2209, Rome, Italy, September 2001,
pp. 52–67.

[2] M.O. Akinde, M.H. Böhlen, Efficient computation of subqueries in
complex OLAP, in: Proceedings of the 19th International Conference
on Data Engineering (ICDE’2003), Bangalore, India, March 2003,
12pp.

[3] M.O. Akinde, M.H. Böhlen, T. Johnson, L.V.S. Lakshmanan,
D. Srivastava, Efficient OLAP query processing in distributed data
warehouses, Information Systems 28 (1–2) (2003) 111–135.

[4] E. Baralis, S. Paraboschi, E. Teniente, Materialized views selection in
a multidimensional database, in: VLDB’97, Proceedings of 23rd
International Conference on Very Large Data Bases, Athens, Greece,
August 1997, pp. 156–165.

[5] L. Cabibbo, R. Torlone, Querying multidimensional databases, in:
Database Programming Languages, Sixth International Workshop,
DBPL-6, Lecture Notes in Computer Science, vol. 1369, Estes Park,
Colorado, USA, August 1997, pp. 319–335.

[6] D. Chatziantoniou, Evaluation of ad hoc OLAP: in-place computa-
tion, in: 11th International Conference on Scientific and Statistical
Database Management (SSDBM), Proceedings, Cleveland, Ohio, USA,
July 1999, pp. 34–43.

[7] D. Chatziantoniou, The PanQ tool and EMF-SQL for complex data
management, in: Proceedings of the Fifth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San
Diego, California, USA, August 1999, pp. 420–424.

[8] D. Chatziantoniou, M.O. Akinde, T. Johnson, S. Kim, MD-join: an
operator for complex OLAP, in: Proceedings of the 17th Interna-
tional Conference on Data Engineering (ICDE’2001), Heidelberg,
Germany, April 2001, pp. 524–533.

[9] D. Chatziantoniou, K.A. Ross, Querying multiple features of groups
in relational databases, in: VLDB’96, Proceedings of 22th Interna-
tional Conference on Very Large Data Bases, Mumbai (Bombay),
India, September 1996, pp. 295–306.

[10] D. Chatziantoniou, K.A. Ross, Groupwise processing of relational
queries, in: VLDB’97, Proceedings of 23rd International Conference
on Very Large Data Bases, Athens, Greece, August 1997,
pp. 476–485.

[11] S. Chaudhuri, R. Kaushik, J. Naughton, On relational support for
XML publishing: beyond sorting and tagging, in: ACM SIGMOD,
Conference on Management of Data, 2003, pp. 476–485.

[12] S. Chaudhuri, K. Shim, Including group-by in query optimization,
in: VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases, Santiago de Chile, Chile, September 1994,
pp. 354–366.

[13] S. Chaudhuri, K. Shim, Optimizing queries with aggregate views, in:
Advances in Database Technology—EDBT’96, Fifth International Con-
ference on Extending Database Technology, Lecture Notes in Computer
Science, vol. 1057, Avignon, France, March 1996, pp. 167–182.

[14] S. Cluet, G. Moerkotte, Nested queries in object bases, in: DBPL,
1993, pp. 226–242.

[15] U. Dayal, Of nests and trees: a unified approach to processing
queries that contain nested subqueries, aggregates, and quantifiers,
in: VLDB’87, Proceedings of 13th International Conference on Very
Large Data Bases, Brighton, England, September 1987, pp. 197–208.

[16] J.-P. Dittrich, D. Kossmann, A. Kreutz, Bridging the gap between
OLAP and SQL, in: VLDB, 2005, pp. 1031–1042.

[17] R. Elmasri, S.B. Navathe, Fundamentals of Database Systems, second
ed., Benjamin/Cummings Publishers, 1994.

[18] L. Fegaras, D. Maier, Optimizing object queries using an effective
calculus, ACM Transactions on Database Systems 26 (4) (2000)
457–516.

[19] C. Galindo-Legaria, Parameterized queries and nesting equiva-
lences, Technical Report, Microsoft, MSR-TR-2000-31, 2001.

[20] C.A. Galindo-Legaria, M.M. Joshi, Orthogonal optimization of
subqueries and aggregation, in: VLDB’2001, Proceedings of 27th
International Conference on Very Large Data Bases, Santa Barbara,
California, USA, May 2001.

[21] G. Graefe, U. Fayyad, S. Chaudhuri, On the efficient gathering of
sufficient statistics for classification from large SQL databases, in:
Proceedings of International Conference on Knowledge Discovery
and Data Mining (KDD’98), New York City, New York, USA, August
1998, pp. 204–208.

[22] G. Graefe, W.J. McKenna, The Volcano optimizer generator:
extensibility and efficient search, in: Proceedings of the Ninth
International Conference on Data Engineering (ICDE’93), Vienna,
Austria, April 1993, pp. 209–218.

[23] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data cube: a relational
aggregation operator generalizing group-by, cross-tab, and sub-
total, in: Proceedings of the 12th International Conference on Data
Engineering (ICDE’96), New Orleans, Louisiana, USA, February 1996,
pp. 152–159.

[24] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, H. Pirahesh, Datacube: a relational aggrega-
tion operator generalizing group-by cross-tab and sub-totals, Data
Mining and Knowledge Discovery 1 (1) (1997) 29–53.

[25] A. Gupta, V. Harinarayan, D. Quass, Aggregate-query processing in
data warehousing environments, in: VLDB’95, Proceedings of 21st
International Conference on Very Large Databases, Zurich, Switzer-
land, September 1995, pp. 358–369.

[26] M. Gyssens, L.V.S. Lakshmanan, A foundation for multi-dimensional
databases, in: VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, Athens, Greece, August
1997, pp. 106–115.

[27] L.M. Haas, W. Chang, G.M. Lohman, J. McPherson, P.F. Wilms, G.
Lapis, B. Lindsay, H. Pirahesh, M.J. Carey, E.J. Shekita, Starburst mid-
flight: as the dust clears, IEEE Transactions on Knowledge and Data
Engineering 2 (1) (1990) 143–160.

[28] T. Johnson, D. Chatziantoniou, Joining very large data sets, in:
Databases in Telecommunications, International Workshop
Co-located with VLDB-99, Lecture Notes in Computer Science, vol.
1819, Edinburgh, Scotland, UK, September 1999, pp. 170–179.

[29] A.Y. Levy, I.M. Mumick, Reasoning with aggregation constraints, in:
Advances in Database Technology—EDBT’96, Fifth International
Conference on Extending Database Technology, Lecture Notes
in Computer Science, vol. 1057, Avignon, France, March 1996,
pp. 514–534.

M. Akinde et al. / Information Systems 36 (2011) 341–358358
[30] C. Li, X.S. Wang, A data model for supporting on-line analytical
processing, in: CIKM ’96, Proceedings of the Fifth International
Conference on Information and Knowledge Management, Rockville,
Maryland, USA, November 1996, pp. 81–88.

[31] M. Muralikrishna, Improved unnesting algorithms for join aggre-
gate SQL queries, in: VLDB’92, Proceedings of 18th International
Conference on Very Large Data Bases, Vancouver, British Columbia,
Canada, August 1992, pp. 91–102.

[32] K.A. Ross, D. Srivastava, D. Chatziantoniou, Complex aggregation at
multiple granularities, in: Advances in Database Technology—

EDBT’98, Sixth International Conference on Extending Database
Technology, Lecture Notes in Computer Science, vol. 1377, Valencia,
Spain, March 1998, pp. 263–277.

[33] S. Sarawagi, S. Thomas, R. Agrawal, Integrating mining with
relational database systems: alternatives and implications, in:
SIGMOD 1998, Proceedings of the ACM SIGMOD International
Conference on Management of Data, Seattle, Washington, USA, June
1998, pp. 343–354.

[34] SQL Standards Committee—American National Standards Institute, ISO/
IEC 9075:1999 Information Technology—Database Languages—SQL,
1999.

[35] SQL Standards Committee—American National Standards Institute,
Information Technology—Database Languages—SQL—AMENDMENT
1: On-Line Analytical Processing (SQL/OLAP), 2001, Supplement to
ISO/IEC 9075:1999.

[36] H.J. Steenhagen, P.M.G. Apers, H.M. Blanken, Optimization of
nested queries in a complex object model, in: Advances in
Database Technology—EDBT’94, Fourth International Conference
on Extending Database Technology, Lecture Notes in Computer
Science, vol. 779, Cambridge, United Kingdom, March 1994,
pp. 337–350.

[37] P. Vassiliadis, Modeling multidimensional databases, cubes and
cube operations, in: 10th International Conference on Scientific and
Statistical Database Management, Proceedings, (SSDBM’98), Capri,
Italy, July 1998, pp. 53–62.

[38] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert,
A. Gupta, L. Sheng, S. Subramanian, Spreadsheets in RDBMS for OLAP,
in: ACM SIGMOD, Conference on Management of Data, 2003,
pp. 52–63.

[39] A. Witkowski, S. Bellamkonda, T. Bozkaya, N. Folkert, A. Gupta,
J. Haydu, L. Sheng, S. Subramanian, Advanced SQL modeling in
RDBMSs, ACM Transactions on Database Systems 30 (1) (2005)
83–121.

[40] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat, L. Sheng,
S. Subramanian, A. Waingold, Query by excel, in: VLDB, 2005,
pp. 1204–1215.

[41] W.P. Yan, P. Larson, Performing group-by before join, in: Proceed-
ings of the 10th International Conference on Data Engineering
(ICDE’1994), Houston, Texas, USA, February 1994, pp. 89–100.

[42] W.P. Yan, P. Larson, Eager aggregation and lazy aggregation,
in: VLDB’95, Proceedings of 21th International Conference on
Very Large Data Bases, Zurich, Switzerland, September 1995,
pp. 345–357.

	thetahyphenConstrained multi-dimensional aggregation
	Introduction
	Problem definition and running example
	Contribution
	Organization

	Related work
	thetahyphenConstrained multi-dimensional aggregation
	Application area
	Reducing the thetahyphenMDA to SQL
	Algebraic transformations
	Projections
	Selections
	thetahyphenMDAs
	Joins and union

	Evaluation algorithms
	Basic evaluation algorithm
	Indexing the result table
	Advanced memory management
	Partitioning the result table
	Result completion

	Experimental studies
	The thetahyphenMDA query engine
	Setup and data
	Experiments
	Summary

	Conclusion
	Monoid comprehension calculus and proofs
	Monoid comprehension calculus
	Proof of Rule E1
	Proof of Rule E4

	References

