
Advanced Data Management Technologies
Unit 11 — SQL Analytic Functions

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

Acknowledgements: I am indebted to M. Böhlen for providing me the lecture
notes.

ADMT 2018/19 — Unit 11 J. Gamper 1/48

Outline

1 SQL Analytic Functions

2 Ranking and Percentiles

3 Nested Aggregates

4 Moving Windows

5 Densification

ADMT 2018/19 — Unit 11 J. Gamper 2/48

SQL Analytic Functions

Outline

1 SQL Analytic Functions

2 Ranking and Percentiles

3 Nested Aggregates

4 Moving Windows

5 Densification

ADMT 2018/19 — Unit 11 J. Gamper 3/48

SQL Analytic Functions

Window Functions/1

ISO SQL:2003 has enhanced SQL’s analytical processing capabilities by
introducing so-called analytic functions (also known as window functions).

All major database systems support window functions.

These window functions permit things such as:

Rankings and percentiles: cumulative distributions, percent rank, and
N-tiles.
Reporting aggregate functions (nested aggregations, moving averages)
Lag and Lead
Data densification
Linear regression

ADMT 2018/19 — Unit 11 J. Gamper 4/48

SQL Analytic Functions

Window Functions/2

Basic syntax:
WFctType(expr) OVER (WPartitioning WOrdering Wframe)

Window functions may only be used in the SELECT (or ORDERING) clause

Query processing takes place in three stages:

FROM, WHERE,
GROUP BY, and
HAVING clauses

Creation of partitions:
Analytic functions are applied
to each row in each partition

Final ORDER BY

Result set of first step is made available to window/analytic functions.

ADMT 2018/19 — Unit 11 J. Gamper 5/48

SQL Analytic Functions

Window Functions/3

Basic syntax:
WFctType(expr) OVER (WPartitioning WOrdering Wframe)

WPartitioning

Divides the table into partitions, i.e., groups of rows.
Division can be based upon any number of columns or expressions (e.g.,
aggregates).
Partitions are created after groupings (GROUP BY and its extensions) and
aggregations, and can therefore refer to any aggregate results.

WOrdering

Determines the ordering in which the rows are passed to the window
function.
Many window functions are sensitive to the ordering of rows.

ADMT 2018/19 — Unit 11 J. Gamper 6/48

SQL Analytic Functions

Window Functions/4

Basic syntax:
WFctType(expr) OVER (WPartitioning WOrdering Wframe)

WFrame

Each calculation with an window
function is based on the current
row.
For each (current) row within a
partition, a sliding frame of data
can optionally be defined.
The window frame determines the
rows that are used to calculate
values for the current row.
Windows can be defined as

physical number of rows or
logical range of rows.

ADMT 2018/19 — Unit 11 J. Gamper 7/48

Ranking and Percentiles

Outline

1 SQL Analytic Functions

2 Ranking and Percentiles

3 Nested Aggregates

4 Moving Windows

5 Densification

ADMT 2018/19 — Unit 11 J. Gamper 8/48

Ranking and Percentiles

Ranking and Percentiles

A ranking function computes the rank of a record (row) compared to
other records in the data set based on the values of a set of measures.

The following ranking functions are available:

RANK() OVER ([WPartitioning] WOrdering)

DENSE RANK() OVER ([WPartitioning] WOrdering)

CUME DIST() OVER ([WPartitioning] WOrdering)

PERCENT RANK () OVER([WPartitioning] WOrdering)

NTILE(expr) OVER ([WPartitioning] WOrdering)

ROW NUMBER() OVER([WPartitioning] WOrdering)

ADMT 2018/19 — Unit 11 J. Gamper 9/48

Ranking and Percentiles

RANK Example/1

SELECT m desc,

SUM(s amount sold),

RANK() OVER (ORDER BY SUM(s amount sold))

FROM bi.tpch

WHERE m desc IN (’Direct Sales’, ’Internet’)

AND t cal month desc IN (’2000-09’, ’2000-10’)

AND n iso code = ’US’

GROUP BY m desc;

RANK() assigns the rank to each row according to the order of the total
amount sold.

The ordering attribute or expression must be specified.

The ordering can be ASC (default) or DESC.

ADMT 2018/19 — Unit 11 J. Gamper 10/48

Ranking and Percentiles

RANK Example/2

SELECT m desc,

SUM(s amount sold),

RANK() OVER (ORDER BY SUM(s amount sold))

FROM tcph

WHERE m desc IN (’Direct Sales’, ’Internet’, ’Partners’)

AND t cal month desc IN (’2000-09’, ’2000-10’)

AND n iso code = ’US’

GROUP BY m desc;

M DESC SUM(S AMNT SOLD) RANK

Internet 261278.04 1

Partners 800871.37 2

Direct Sales 1320497.4 3

Note that the aggregate result SUM(s amount sold) need not necessarily
be reported.

ADMT 2018/19 — Unit 11 J. Gamper 11/48

Ranking and Percentiles

RANK with Partitioning Example/1

SELECT m desc,

t cal month desc,

SUM(s amnt sold),

RANK() OVER (PARTITION BY m desc

ORDER BY SUM(s amnt sold) DESC)

) AS RankByMedia

FROM bi.tpch

WHERE t cal month desc IN

(’2000-08’,’2000-09’,’2000-10’,’2000-11’)

AND m desc IN (’Direct Sales’, ’Internet’)

GROUP BY m desc, t cal month desc;

If a PARTITION BY clause is specified, the rank is computed independently
for each group specified by the partitioning,

i.e., the rank is reset for each group.

Partitions are created on top of the groups produced by the GROUP BY

clause.
ADMT 2018/19 — Unit 11 J. Gamper 12/48

Ranking and Percentiles

RANK with Partitioning Example/2

Media Month AmntSold RankByMedia

Direct Sales 2000-08 1236104.31 1

Direct Sales 2000-10 1225584.31 2

Direct Sales 2000-09 1217807.75 3

Direct Sales 2000-11 1115239.03 4

Internet 2000-11 284741.77 1

Internet 2000-10 239236.26 2

Internet 2000-09 228241.24 3

Internet 2000-08 215106.56 4

ADMT 2018/19 — Unit 11 J. Gamper 13/48

Ranking and Percentiles

Multiple RANK Functions

A query block can contain more than one ranking function, each
partitioning the data into different groups.

Example: Rank products based on their dollar sales within each month
and within each channel.

RANK() OVER (PARTITION BY m desc

ORDER BY SUM(amount sold)) AS RankByMedia,

RANK() OVER (PARTITION BY cal month desc

ORDER BY SUM(amount sold)) AS RankByMonth

Media Month AmntSold RankByMedia RankByMonth

Direct Sales 2000-08 1236104.31 1 1

Direct Sales 2000-10 1225584.31 2 1

Direct Sales 2000-09 1217807.75 3 1

Direct Sales 2000-11 1115239.03 4 1

Internet 2000-11 284741.77 1 2

Internet 2000-10 239236.26 2 2

Internet 2000-09 228241.24 3 2

Internet 2000-08 215106.56 4 2

ADMT 2018/19 — Unit 11 J. Gamper 14/48

Ranking and Percentiles

DENSE RANK

DENSE RANK leaves no gaps in the ranking sequence when there are ties.

Example: Rank and dense rank of amount sold.

SELECT ...

RANK() OVER (ORDER BY SUM(amount sold)) AS Rank,

DENSE RANK() OVER (ORDER BY SUM(amount sold)) AS Dense Rank

FROM ...

Media Month AmntSold Rank Dense Rank

Direct Sales 2000-09 1200000 1 1

Direct Sales 2000-10 1200000 1 1

Partners 2000-09 600000 3 2

Partners 2000-10 600000 3 2

Internet 2000-09 200000 5 3

Internet 2000-10 200000 5 3

ADMT 2018/19 — Unit 11 J. Gamper 15/48

Ranking and Percentiles

Ranking Examples/1

Rank the media (’Internet’ versus ’Direct sales’) used for selling products
according to their dollar sales. Use the number of unit sales to break ties. Do
the analysis for August until November 2000.

SELECT m desc,

t cal month desc,

SUM(s amnt sold),

SUM(s quantity sold),

RANK() OVER (ORDER BY SUM(s amnt sold) DESC,

SUM(s quantity sold) DESC

) AS Rank

FROM bi.tpch

WHERE m desc IN (’Direct Sales’, ’Internet’),

AND t cal month desc IN

(’2000-08’, ’2000-09’, ’2000-10’, ’2000-11’)

GROUP BY m desc, t cal month desc;

ADMT 2018/19 — Unit 11 J. Gamper 16/48

Ranking and Percentiles

Ranking Examples/2

M DESC T CAL MO SUM(S AMNT SOLD) SUM(S QUANTITY SOLD) RANK

Direct Sales 2000-08 1236104.31 12230 1

Direct Sales 2000-10 1225584.31 12584 2

Direct Sales 2000-09 1217807.75 11995 3

Direct Sales 2000-11 1115239.03 11357 4

Internet 2000-11 284741.77 1913 5

Internet 2000-10 239236.26 1450 6

Internet 2000-09 228241.24 1887 7

Internet 2000-08 215106.56 1132 8

ADMT 2018/19 — Unit 11 J. Gamper 17/48

Ranking and Percentiles

Ranking Examples/3

Determine the two least and the two most successful sales media, respectively
(in terms of total amount sold).

SELECT *

FROM (SELECT m desc,

SUM(s amnt sold),

RANK() OVER (ORDER BY SUM(s amnt sold)) worst,

RANK() OVER (ORDER BY SUM(s amnt sold) DESC) best

FROM bi.tpch

GROUP BY m desc

)

WHERE worst < 3 OR best < 3;

M DESC SUM(S AMNT SOLD) Worst Best

Direct Sales 57875260 4 1

Partners 26346342 3 2

Internet 13706802 2 3

Tele Sales 277426 1 4

ADMT 2018/19 — Unit 11 J. Gamper 18/48

Ranking and Percentiles

Ranking Examples/4

Rank sales per media and country, per media, and per country, respectively.
Consider US, JP, and DK during September 2000.

SELECT m desc,

n iso code,

SUM(s amnt sold),

RANK() OVER (PARTITION BY GROUPING ID(m desc,n iso code)

ORDER BY SUM(s amnt sold) DESC

) AS RANK PER GROUP

FROM bi.tpch

WHERE t cal month = ’2000-09’

AND n iso code IN (’DK’, ’US’, ’JP’)

GROUP BY CUBE(m desc, n iso code)

HAVING GROUPING ID(m desc, n iso code) <> 3

ORDER BY GROUPING ID(m desc, n iso code);

ADMT 2018/19 — Unit 11 J. Gamper 19/48

Ranking and Percentiles

Ranking Examples/5

M DESC N SUM(S AMNT SOLD) RANK PER GROUP

Direct Sales US 638200.81 1

Partners US 376813.18 2

Internet US 124223.75 3

Direct Sales JP 81073.81 4

Partners JP 43347.12 5

Internet JP 23862.29 6

Direct Sales DK 17640.33 7

Partners DK 16561.62 8

Internet DK 2060.56 9

Direct Sales 736914.95 1

Partners 436721.92 2

Internet 150146.6 3

US 1139237.74 1

JP 148283.22 2

DK 36262.51 3

ADMT 2018/19 — Unit 11 J. Gamper 20/48

Ranking and Percentiles

Ranking Examples/6

Determine the output of the following statement:

SELECT c id, p id,

RANK() OVER (ORDER BY p id) AS r1,

RANK() OVER (ORDER BY c id) AS r2,

RANK() OVER (ORDER BY 1) AS r3,

RANK() OVER (PARTITION BY c id ORDER BY p id) AS r4,

RANK() OVER (PARTITION BY p id ORDER BY c id) AS r5

FROM bi.tpch

WHERE c id in (214, 608, 699)

AND p id in (42, 98, 123)

GROUP BY c id, p id;

C ID P ID R1 R2 R3 R4 R5

214 123

608 42

608 123

699 42

699 123

ADMT 2018/19 — Unit 11 J. Gamper 21/48

Ranking and Percentiles

CUME DIST Example/1

SELECT t cal month desc AS MONTH,

m desc,

SUM(s amnt sold),

CUME DIST() OVER (PARTITION BY t cal month desc

ORDER BY SUM(s amnt sold)

) AS CUME DIST

FROM bi.tpch

WHERE t cal month desc IN (’2000-09’, ’2000-07’,’2000-08’)

GROUP BY t cal month desc, m desc;

CUME DIST() (cumulative distribution) computes the position of a value
relative to a set of values, i.e.,

CUME DIST(x) = (# of values smaller or equal to x) / (total # of values).

PERCENT RANK() is similar, but uses rank values rather than row counts in
the denominator, i.e.,

PERCENT RANK() = (rank of row - 1) / (# of rows - 1).
Row with rank 1 has percent rank 0.

ADMT 2018/19 — Unit 11 J. Gamper 22/48

Ranking and Percentiles

CUME DIST Example/2

MONTH M DESC SUM(S AMNT CUME DIST (PERCENT RANK)

2000-07 Internet 140423.34 .333333333 0.0

2000-07 Partners 611064.35 .666666667 0.5

2000-07 Direct Sales 1145275.13 1 1.0

2000-08 Internet 215106.56 .333333333 0.0

2000-08 Partners 661044.92 .666666667 0.5

2000-08 Direct Sales 1236104.31 1 1.0

2000-09 Internet 228241.24 .333333333 0.0

2000-09 Partners 666171.69 .666666667 0.5

2000-09 Direct Sales 1217807.75 1 1.0

ADMT 2018/19 — Unit 11 J. Gamper 23/48

Ranking and Percentiles

NTILE Example/1

SELECT t cal month desc AS MONTH,

SUM(s amnt sold),

NTILE(4) OVER (ORDER BY SUM(s amnt sold)) AS TILE4

FROM bi.tpch

WHERE t cal year=2000

AND p cat = ’Electronics’

GROUP BY t cal month desc;

NTILE(n) divides an ordered partition into n equal sized buckets and
assigns to each bucket a number.

Each bucket shall contain the same number of rows.

If the rows cannot be distributed evenly, the highest buckets have one row
less.

ADMT 2018/19 — Unit 11 J. Gamper 24/48

Ranking and Percentiles

NTILE Example/2

MONTH SUM(S AMNT SOLD) TILE4

2000-02 242416.38 1

2000-01 257285.89 1

2000-03 280010.94 1

2000-06 315950.95 2

2000-05 316824.18 2

2000-04 318105.67 2

2000-07 433823.77 3

2000-08 477833.26 3

2000-12 553534.39 3

2000-10 652224.76 4

2000-11 661146.75 4

2000-09 691448.94 4

ADMT 2018/19 — Unit 11 J. Gamper 25/48

Ranking and Percentiles

ROW NUMBER Example/1

SELECT m desc,

t cal month desc,

SUM(s amnt sold),

ROW NUMBER() OVER (ORDER BY SUM(s amnt sold) DESC)

AS Row Number

FROM bi.tpch

WHERE t cal month desc IN (’2001-09’, ’2001-10’)

GROUP BY m desc, t cal month desc;

ROW NUMBER assigns a unique number (sequentially, starting from 1, as
defined by ORDER BY) to each row within the partition.

ADMT 2018/19 — Unit 11 J. Gamper 26/48

Ranking and Percentiles

ROW NUMBER Example/2

M DESC MONTH SUM(S AMNT SOLD) ROW NUMBER

Direct Sales 2001-09 1100000 1

Direct Sales 2001-10 1000000 2

Internet 2001-09 500000 3

Internet 2001-10 700000 4

Partners 2001-09 600000 5

Partners 2001-10 600000 6

Ties can be reported in any order (see last 2 rows)

Use additional column(s) in ORDER BY clause to break ties.

ADMT 2018/19 — Unit 11 J. Gamper 27/48

Nested Aggregates

Outline

1 SQL Analytic Functions

2 Ranking and Percentiles

3 Nested Aggregates

4 Moving Windows

5 Densification

ADMT 2018/19 — Unit 11 J. Gamper 28/48

Nested Aggregates

Nested Aggregates

After a query has been processed (FROM, WHERE, GROUP BY, HAVING),
aggregate values like the number of rows or an average value or sum in a
column can be made available to window functions.

This yields nested aggregations, which are frequently used in analytic
aggregate functions.

Nested aggregate functions return the same value for each row in a window.

For example, reporting functions often relate partial totals to grand totals,
etc.

They are based on nested aggregations.

The RATIO TO REPORT function computes the ratio of a value to the sum
of a set of values.

ADMT 2018/19 — Unit 11 J. Gamper 29/48

Nested Aggregates

RATIO TO REPORT Example

For each media, compute the total amount sold and the ratio wrt the overall
total amount sold (across all media) for October 11, 2000.

SELECT m desc,

SUM(s amnt sold) AS SALES,

SUM(SUM(s amnt sold)) OVER () AS TOTAL SALES,

RATIO TO REPORT(SUM(s amnt sold)) OVER () AS RATIO

FROM bi.tpch

WHERE s t id = TO DATE(’11-OCT-2000’)

GROUP BY m desc;

M DESC SALES TOTAL SALES RATIO

Direct Sales 14447.23 23183.45 .623169977

Internet 345.02 23183.45 .014882168

Partners 8391.2 23183.45 .361947855

ADMT 2018/19 — Unit 11 J. Gamper 30/48

Moving Windows

Outline

1 SQL Analytic Functions

2 Ranking and Percentiles

3 Nested Aggregates

4 Moving Windows

5 Densification

ADMT 2018/19 — Unit 11 J. Gamper 31/48

Moving Windows

Window Frame

Syntax: WFctType(expr) OVER (WPartitioning WOrdering Wframe)

Window frames are used to
compute cumulative, moving and
centered aggregates.

Window frames return a value for
each row that depends on the
other rows in the window.

Window frames provide access to
more than one row without a self
join.

FIRST VALUE and LAST VALUE

return the first and last value of
the window, respectively.

ADMT 2018/19 — Unit 11 J. Gamper 32/48

Moving Windows

Examples of Window Frame Specifications

ROWS UNBOUNDED PRECEDING

Takes all rows in the window/partition up to and including the current row.

ROWS 2 PRECEDING

Takes the 2 preceding rows.

RANGE BETWEEN INTERVAL ’1’ DAY PRECEDING AND

INTERVAL ’1’ DAY FOLLOWING

Takes all rows that fall within the given logical offset (wrt the expression in
the ORDERING clause).
In this example rows with a timestamp that differs by at most 1 day.

RANGE BETWEEN INTERVAL ’10’ DAY PRECEDING AND CURRENT ROW

Takes all rows with a timestamp that is at most 10 days before the
timestamp of the current row.

ADMT 2018/19 — Unit 11 J. Gamper 33/48

Moving Windows

Centered Aggregate Example/1

The centered 3 day moving average of all sales during week 51 in 1999.

SELECT t id,

SUM(s amnt sold) AS SALES,

AVG(SUM(s amnt sold))

OVER (ORDER BY t id

RANGE BETWEEN INTERVAL ’1’ DAY PRECEDING

AND INTERVAL ’1’ DAY FOLLOWING

)

FROM bi.tpch

WHERE t cal week num = 51

AND t cal year = 1999

GROUP BY t id

ORDER BY t id;

Notice the use of nested aggregates.

ADMT 2018/19 — Unit 11 J. Gamper 34/48

Moving Windows

Centered Aggregate Example/2

T ID SALES CENTERED 3 DAY AVG

20-DEC-99 134336.84 106675.93

21-DEC-99 79015.02 102538.713

22-DEC-99 94264.28 85341.7533

23-DEC-99 82745.96 93322.3067

24-DEC-99 102956.68 82936.7

25-DEC-99 63107.46 87062.2167

26-DEC-99 95122.51 79114.985

The window frame in the first and last row contains only two rows.

e.g., (63107.46 + 95122.51)/2 = 79114.985

ADMT 2018/19 — Unit 11 J. Gamper 35/48

Moving Windows

Ranking Example/1

Rewrite the following statement to a semantically equivalent one that does not
use the RANK function.

SELECT m desc,

t cal month desc,

RANK() OVER (ORDER BY SUM(s amnt sold) DESC) AS rank

FROM bi.tpch

WHERE t cal month desc

IN (’200008’, ’200009’, ’200010’, ’200011’)

AND m desc IN (’Direct sales’, ’Internet’)

GROUP BY m desc, t cal month desc;

Consider also the case that several rows might have the same rank!

Hint: Rank of a row is the number of rows with equal or larger values −
number of rows with the same value + 1

ADMT 2018/19 — Unit 11 J. Gamper 36/48

Moving Windows

Ranking Example/2

SELECT m desc, t cal month desc,

(COUNT(*) OVER (ORDER BY SUM(s amnt sold) DESC

ROWS UNBOUNDED PRECEDING)

- COUNT(*) OVER (ORDER BY SUM(s amnt sold) DESC

ROWS CURRENT ROW)

) + 1 AS Rank

FROM bi.tpch

WHERE t cal month desc IN (’200008’, ’200009’, ’200010’, ’200011’)

AND m desc IN (’Direct sales’, ’Internet’)

GROUP BY m desc, t cal month desc;

M DESC T CAL MO RANK

Direct Sales 2000-08 1

Direct Sales 2000-10 2

Direct Sales 2000-09 3

Direct Sales 2000-11 4

Internet 2000-11 5

Internet 2000-10 6

Internet 2000-09 7

Internet 2000-08 8

ADMT 2018/19 — Unit 11 J. Gamper 37/48

Moving Windows

LAG and LEAD Example/1

LAG and LEAD functions give access to rows that are at a certain distance
from the current row.

LAG(): row at a given offset prior to the current position.
LEAD(): row at a given offset after the current position.

Example: Report with amounts sold between 10.8.2000 and 14.8.2000.
Include with each row the amount of the previous and the following day.

SELECT s t id,

SUM(s amnt sold),

LAG(SUM(s amnt sold),1) OVER (ORDER BY s t id),

LEAD(SUM(s amnt sold),1) OVER (ORDER BY s t id)

FROM bi.tpch

WHERE s t id >= TO DATE(’10-OCT-2000’)

AND s t id <= TO DATE(’14-OCT-2000’)

GROUP BY s t id;

ADMT 2018/19 — Unit 11 J. Gamper 38/48

Moving Windows

LAG and LEAD Example/2

S T ID SUM(S AMNT LAG1 LEAD1

10-OCT-00 238479.49 23183.45

11-OCT-00 23183.45 238479.49 24616.04

12-OCT-00 24616.04 23183.45 76515.61

13-OCT-00 76515.61 24616.04 29794.78

14-OCT-00 29794.78 76515.61

ADMT 2018/19 — Unit 11 J. Gamper 39/48

Densification

Outline

1 SQL Analytic Functions

2 Ranking and Percentiles

3 Nested Aggregates

4 Moving Windows

5 Densification

ADMT 2018/19 — Unit 11 J. Gamper 40/48

Densification

Densification/1

Example of sparse data set, i.e., some combinations of Prod, Year, Week
do not have any values.

PROD YEAR WEEK SALES

Deluxe 2001 25 5560

Mouse P 2001 24 2083

Mouse P 2001 26 2501

Standar 2001 24 2394

Standar 2001 26 1280

Goal: produce dense report for weeks 24, 25, and 26.

Can be important for reports or subsequent aggregations (3 months
average), time series analysis, etc.

ADMT 2018/19 — Unit 11 J. Gamper 41/48

Densification

Densification/2

Data is often stored in sparse form, e.g., in relational tables.

e.g., if no value exists for a given combination of dimension values, no row
exists in the fact table.

For reporting or analysis purposes, it can make sense to selectively densify
data.

Data densification is the process of converting sparse data into dense
form.

The key technique is a partitioned outer join.

A partitioned outer join extends the regular outer join by applying the outer
join to each partition.

This allows to fill in values for the partitioned attributes.

ADMT 2018/19 — Unit 11 J. Gamper 42/48

Densification

Densification Example/1

SELECT p Name,

t.Year,

t.Week,

NVL(Sales,0) AS dense sales

FROM (SELECT P Name, T Cal Year Year, t Cal Week num AS Week,

SUM(S Amnt Sold) AS Sales

FROM bi.tpch

GROUP BY p Name, T Cal Year, t Cal Week num

) AS v

PARTITION BY (v.p Name)

RIGHT OUTER JOIN

(SELECT DISTINCT t Cal Week num Week, T Cal Year AS Year

FROM bi.tpch

WHERE T Cal Year IN (2000, 2001)

AND t Cal Week num BETWEEN 24 AND 26

) AS t

ON (v.week = t.week AND v.Year = t.Year)

ORDER BY p name, year, week;

ADMT 2018/19 — Unit 11 J. Gamper 43/48

Densification

Densification Example/2

PROD YEAR WEEK DENSE SALES

Deluxe 2000 24 0.0

Deluxe 2000 25 0.0

Deluxe 2000 26 0.0

Deluxe 2001 24 2260.72

Deluxe 2001 25 1871.3

Deluxe 2001 26 5560.51

Mouse P 2000 24 1685.52

Mouse P 2000 25 494.91

Mouse P 2000 26 1548.2

Mouse P 2001 24 2083.29

Mouse P 2001 25 0.0

Mouse P 2001 26 2501.79

Standar 2000 24 1007.37

Standar 2000 25 339.36

Standar 2000 26 183.92

Standar 2001 24 2394.04

Standar 2001 25 0.0

Standar 2001 26 1280.97

ADMT 2018/19 — Unit 11 J. Gamper 44/48

Densification

Reporting Examples

Use the reporting functions to determine the answers to the following
queries:

1 Media that contributed with more than 1/3 to the total sales. Formulate
with and without analytic functions.

2 For customer 6510 determine the 3 month moving average of sales (current
month plus preceding two months) in 1999.

3 For each product category find the region in which it had maximum sales on
Oct 11, 2001.

4 On October 11, 2000, find the 5 top-selling products for each product
subcategory that contributes more than 20% of the sales within its category.

ADMT 2018/19 — Unit 11 J. Gamper 45/48

Densification

Reporting Examples – Query 3

SELECT p cat, n region, sales

FROM (SELECT p cat, n region,

SUM(s amnt sold) AS sales,

MAX(SUM(s amnt sold)) OVER (PARTITION BY p cat)

AS MAX REG SALES

FROM bi.tpch

WHERE s t id = TO DATE(’11-OCT-2001’)

GROUP BY p cat, n region

)

WHERE sales = MAX REG SALES;

P CAT N REGION SALES

Electron Americas 581.92

Hardware Americas 925.93

Peripher Europe 4290.38

Software Americas 4445.7

ADMT 2018/19 — Unit 11 J. Gamper 46/48

Densification

Reporting Examples – Query 4

SELECT p cat, p subcat, p id, SALES

FROM (SELECT p cat, p subcat, p id,

SUM(S Amnt Sold) AS Sales,

SUM(SUM(S Amnt Sold)) OVER (PARTITION BY p cat)

AS Cat Sales,

SUM(SUM(S Amnt Sold)) OVER (PARTITION BY p subcat)

AS Subcat Sales,

RANK() OVER (PARTITION BY p subcat

ORDER BY SUM(s amnt sold)) DESC

AS Rank in line

FROM bi.tpch

WHERE s t id = TO DATE(’11-OCT-2000’)

GROUP BY p cat, p subcat, p id

ORDER BY p cat, p subcat

)

WHERE subcat Sales > 0.2 * Cat Sales

AND Rank in line <= 5;

ADMT 2018/19 — Unit 11 J. Gamper 47/48

Summary

Window/Analytic Functions

WFuncType(Expr) OVER (WPartition WOrder WFrame)

RANK, CUME, NTILE

RATIO TO REPORT, LAG, LEAD

CURRENT ROW AND INTERVAL ’1’ DAY FOLLOWING

Provide an important SQL extension for analysis and reporting in DW
environments.

Window frames allow efficient access to more than one row without a
self-join.

Nested aggregates are frequently used in combination with analytic
functions.

Allow to relate subtotals to grand totals, compute percentages, etc.

Densification allows to convert sparse data into dense data.

Essential technique for this is a partitioned outer join

ADMT 2018/19 — Unit 11 J. Gamper 48/48

	SQL Analytic Functions
	Ranking and Percentiles
	Nested Aggregates
	Moving Windows
	Densification

