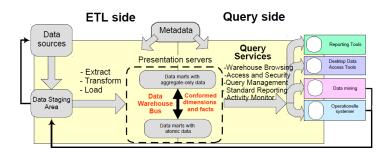
Advanced Data Management Technologies

Unit 8 — Extract, Transform, Load

J. Gamper

Free University of Bozen-Bolzano Faculty of Computer Science IDSE

Acknowledgements: I am indebted to M. Böhlen for providing me the lecture notes.


- 1 The ETL Process
- 2 Extract
- Transform
- 4 Load
- Other Issues

- 1 The ETL Process
- 2 Extract
- Transform
- 4 Load
- Other Issues

The ETL Process

- Extract
 - Extract relevant data
- Transform
 - Transform data to DW format
 - Build keys, etc.
 - Cleansing of data
- Load
 - Load data into DW
 - Build aggregates, etc.
- The ETL system is the foundation of the DW/BI project
 - its success makes or breaks the data warehouse.
- The most underestimated and time-consuming process in DW development
 - Often, 80% of development time is spent on ETL

ETL – Big Picture

Data Staging Area

- Data staging area (DSA) is a transit storage for data underway in the ETL process.
 - Transformations/cleansing done here
- No user queries (some do it)
- Sequential operations (few) on large data volumes
 - Performed by central ETL logic
 - Easily restarted
 - No need for locking, logging, etc.
 - RDBMS or flat files? (DBMSs have become better at this)
- Finished dimension and fact data copied from DSA to relevant data marts.

ADMT 2018/19 - Unit 8 J. Gamper

The 34 ETL Subsystems

- Kimball et al. report 34 subsystems to compose the ETL system
 - Extracting
 - Gathering raw data from the source systems and usually writing it to disk in the ETL environment
 - 3 subsystems
 - Cleaning and conforming
 - Sending source data through a series of processing steps in the ETL system to improve the quality of the data and merging data.
 - 4 subsystems
 - Delivering
 - Physically structuring and loading the data into the dimensional model.
 - 13 subsystems
 - Managing (usually considered a separate component)
 - Managing the related systems and processes of the ETL environment.
 - 13 subsystems

ADMT 2018/19 — Unit 8 J. Gamper 7/30

ETL Construction Process

- Plan
 - Make high-level diagram of source-destination flow.
 - Test, choose and implement ETL tool.
 - Outline complex transformations, key generation and job sequence for every destination table.
- Construction of dimensions
 - Construct and test building static dimension.
 - Construct and test change mechanisms for one dimension.
 - Construct and test remaining dimension builds.
- Construction of fact tables and automation
 - Construct and test initial fact table build.
 - Construct and test incremental update.
 - Construct and test aggregate build (will be done later).
 - Design, construct, and test ETL automation.

Building Dimension Tables

- Static dimension table
 - Relatively easy
 - Assignment of production keys to DW keys using a mapping table.
 - Combination of data sources: find common key.
 - Check one-one and one-many relationships (using sorting).
- Handling dimension changes
 - Find newest DW key for a given production key.
 - Table for mapping production keys to DW keys must be updated.
- Load of dimensions
 - Small dimensions: replace
 - Large dimensions: load only changes

Building Fact Tables

- Two types of load are distinguished
 - Initial load
 - ETL for all data up till now.
 - Done when DW is started the first time.
 - Often problematic to get correct historical data.
 - Very heavy large data volumes
 - Incremental update
 - Move only changes since last load.
 - Done periodically (.../month/week/day/hour/...) after DW start.
 - Less heavy smaller data volumes.
- Dimensions must be updated before facts.
 - The relevant dimension rows for new facts must be in place.
 - Special key considerations if initial load must be performed again.

- 1 The ETL Process
- 2 Extract
- Transform
- 4 Load
- Other Issues

Extract

- Goal: fast extract of relevant data
 - Extract from source systems can take a long time.
- Different types of extraction methods
 - Extract applications (SQL): co-existence with other applications.
 - DB unload tools: much faster than SQL-based extracts.
 - Extract applications sometimes the only solution.
- Often too time consuming to ETL all data at each load.
 - Extracts can take days/weeks.
 - Drain on the operational systems.
 - Drain on DW systems.
- Alternative: Extract/ETL only changes since last load (delta).

Computing Deltas

- Much faster to only "ETL" changes since last load
 - A number of methods can be used.
- Store sorted total extracts in DSA.
 - Delta can easily be computed from current+last extract
 - + Always possible
 - + Handles deletions
 - Does not reduce extract time
- Put update timestamp on all rows to reduce extract time
 - Updated by DB trigger
 - Extract only where "timestamp > time for last extract"
 - + Reduces extract time
 - + Less operational overhead
 - Deletions cannot be handled (alone)
 - Source system must be changed, e.g., change of DB schema

Capturing Changed Data

Messages

- Applications insert messages in a "queue" at updates
- + Works for all types of updates and systems
- Operational applications must be changed+operational overhead

DB triggers

- Triggers execute actions on INSERT/UPDATE/DELETE
- + Operational applications need not be changed
- + Enables real-time update of DW
- Operational overhead
- Replication based on DB log
 - Find changes directly in DB log which is written anyway
 - + Operational applications need not be changed
 - + No operational overhead
 - Not possible in some DBMS (SQL Server, Oracle, DB2 can do it)

ADMT 2018/19 — Unit 8 J. Gamper 14/30

Data Quality

- Data almost never has decent quality
- Data in DW must be
 - Precise
 - DW data must match known numbers or explanation needed!
 - Complete
 - DW has all relevant data and the users know
 - Consistent
 - No contradictory data: aggregates fit with detail data.
 - Unique
 - The same things is called the same and has the same key (customers).
 - Timely
 - Data is updated "frequently enough" and the users know when.

- 1 The ETL Process
- 2 Extract
- Transform
- 4 Load
- Other Issues

Data Transformations

- Data type conversions
 - ullet EBCDIC o ASCII/UniCode
 - String manipulations
 - Date/time format conversions
- Normalization/denormalization
 - To the desired DW format
 - Depending on source format
- Building keys
 - Table that maps production keys to surrogate DW keys.
 - Observe correct handling of history especially for total reload.

ADMT 2018/19 — Unit 8 J. Gamper 17/30

Cleansing/1

- BI does not work on "raw" data.
 - Pre-processing necessary for good results.
 - Can "disturb" BI analyses if not handled (e.g., duplicates).
- Handle inconsistent data formats.
 - Spellings, codings, . . .
- Remove unneeded attributes
 - Production keys, comments, ...
- Replace codes with text
 - City name instead of ZIP code, 0/1 by Yes/No, ...
- Combine data from multiple sources with common key
 - Customer data. . . .
- Find attributes with several uses
 - Extra values used for "programmer hacks".

ADMT 2018/19 — Unit 8 J. Gamper 18/30

Cleansing/2

- Mark facts with data status dimension
 - Normal, abnormal, outside bounds, impossible,
 - Facts can be taken in/out of analyses
- Recognize random or noise values
 - Can disturb BI tools
 - Replace with NULLs (or estimates)
- Uniform treatment of NULL
 - Use explicit NULL value rather than "normal" value (0, -1, ...)
 - Use NULLs only for measure values (estimates instead?)
 - Use special dimension keys for NULL dimension values
- Aggregate fact data?
 - Performance
 - Statistical significance only for higher levels

Data Cleansing Example

John White

Downing St. 10

TW1A 2AA London (UK)

normalization

firstName: John lastName: White

address: Downing St. 10 **ZIP Code:** TW1A 2AA

City: London

Country: UK

 \Downarrow standardization

firstName: John lastName: White

address: **10, Downing St** ZIP Code: **SW1A 2AA**

City: London

Country: United Kingdom

cor<u>recti</u>on

firstName: John lastName: White

address: 10, Downing St ZIP Code: TW1A 2AA

City: London

Country: United Kingdom

Data Mining Transformations

- Can often **not** be done generally for the whole DW.
- Divide data into training, test, and evaluation sets.
 - Training: used to train model.
 - Test: used to check the model's generality (overfitting).
 - Evaluation: model uses evaluation set to find "real" clusters, . . .
- Add computed attributes as inputs or "targets"
 - Derived attributes often more interesting for mining (profit,...)
 - Means more possibilities for data mining
- Mappings
 - Continuous values to intervals, textual values to numerical
- Normalization of values between 0 and 1
 - Demanded by some tools (neural nets)
- Emphasizing the rare case
 - Duplicate rare elements in training set

ADMT 2018/19 — Unit 8 J. Gamper 21/30

Improving Data Quality

- Appoint "data stewards" responsible for data quality
 - A given steward has the responsibility for certain tables
 - Includes manual inspections and corrections!
- DW-controlled improvement
 - Default values
 - "Not yet assigned 157" note to data steward
- Source-controlled improvements
 - The optimal solution, but not feasible in most cases.
- Construct programs to automatically check data quality
 - Are totals as expected?
 - Do results agree with alternative source?
- Do not fix all problems with data quality
 - Allow management to see "weird" data in their reports.

- 1 The ETL Process
- 2 Extract
- Transform
- 4 Load
- Other Issues

Load/1

- Goal: fast loading into DW.
 - Loading deltas is much faster than total load.
- SQL-based update is slow
 - Large overhead (optimization, locking, etc.) for every SQL call.
- DB load tools are much faster.
 - Some load tools can also perform UPDATEs.
- Index on tables slows load a lot.
 - Drop index and rebuild after load.
 - Can be done per partition.
- Parallelization
 - Dimensions can be loaded concurrently.
 - Fact tables can be loaded concurrently.
 - Partitions can be loaded concurrently.

Load/2

- Relationships in the data
 - Referential integrity must be ensured.
 - Can be done by loader.
- Aggregates
 - Must be built and loaded at the same time as the detail data.
 - Today, RDBMSs can often do this.
- Load tuning
 - Load without log
 - Sort load file first
 - Make only simple transformations in loader
 - Use loader facilities for building aggregates
 - Use loader within the same database
- Should DW be on-line 24*7?
 - Use partitions or several sets of tables

- 1 The ETL Process
- 2 Extract
- Transform
- 4 Load
- **10** Other Issues

ETL Tools

- ETL tools from the big vendors
 - Oracle Warehouse Builder/Oracle Data Integrator
 - IBM DB2 Warehouse Manager
 - Microsoft Data Transformation Services
- Offer much functionality at a reasonable price
 - Data modeling
 - ETL code generation
 - Scheduling DW jobs
 - ...
- Many others
 - Hundreds of tools
 - Often specialized tools for certain jobs (insurance cleansing, . . .)
- The "best" tool does not exist.
 - Choose based on your own needs.
 - Check first if the "standard tools" from the big vendors are ok.

ADMT 2018/19 — Unit 8 J. Gamper 27/30

Other ETL Issues

- Files versus streams/pipes?
 - Streams/pipes: no disk overhead, fast throughput
 - Files: easier restart, often only possibility
- ETL tool or not?
 - Code: easy start, co-existence with IT infrastructure
 - Tool: better productivity on subsequent projects
- Load frequency?
 - ETL time depends on data volumes
 - Daily load is much faster than monthly
 - Applies to all steps in the ETL process

A Few Hints on ETL Design

- Do **not** try to implement all transformations in one step!
- Do one (or just a few) thing(s) at the time
 - Copy source data one-one to DSA
 - Compute deltas
 - Only if doing incremental load
 - Handle versions and DW keys
 - Versions only if handling slowly changing dimensions
 - Implement complex transformations
 - Load dimensions
 - Load facts

Summary

- ETL is very time consuming (80% of entire DW project).
 - Not a single-step process, but needs to be implemented as a sequence of many small steps.
 - Data quality plays a crucial role in ETL.
 - Data has almost never good quality, which need to be fixed in ETL.
- Extraction of data from source systems might be very time consuming.
 - Incremental approach is suggested.
- Transformation into DW format includes many steps, such as
 - building key, cleansing the data, handle inconsistent/duplicate data, etc.
- Load includes the loading of the data in the DW, updating indexes and pre-aggregates, etc.
- ETL tools are available from big vendors, but also many other (open source) tools
 - Offer good functionality at a reasonable price
 - "Best tool" does not exist

ADMT 2018/19 — Unit 8 J. Gamper 30/30