Advanced Data Management Technologies Unit 5 — Logical Design and DW Applications

J. Gamper

Free University of Bozen-Bolzano Faculty of Computer Science IDSE

Acknowledgements: I am indebted to Michael Böhlen and Stefano Rizzi for providing me their slides, upon which these lecture notes are based.

Outline

- 2 Star and Snowflake Schema
- Facts, Dimensions, and Measures

OW Applications

5 DW Implementation

Outline

Multidimensional Model

- 2 Star and Snowflake Schema
- **3** Facts, Dimensions, and Measures
- DW Applications
- 5 DW Implementation

Logical Design

- The logical design transforms the conceptual schema for a DM into a logical schema.
 - Choice of the type of logical schema, e.g., snowflake vs. star schema
 - Translation of conceptual schemata
 - Optimization (view materialization, fragmentation)

$$\fbox{Conceptual Schema} \Longrightarrow \fbox{Logical Design} \Longrightarrow \fbox{Logical Schema}$$

- Different principles from the one used in operational databases
 - data redundancy
 - denormalization of relations
- Frequently, DM design starts with a logical model.
- The logical model is based on the so-called multidimensional model

The Multidimensional Model/1

• The Multidimensional Model divides data into facts (with measures) and dimensions

Facts

- are the important entity, e.g., a sale
- have measures that can be aggregated, e.g., sales price
- Dimensions
 - describe facts
 - e.g., a sale has the dimensions Product, Store and Time

The Multidimensional Model/2

- Multidimensional model is a logical model with one purpose: data analysis
- Better at that purpose than ERM since it has more built in "meaning":
 - What is important
 - What describes the important
 - What we want to optimize
 - $\bullet~$ Automatic aggregations $\rightarrow~$ easy querying
- Less flexible and not suited for OLTP systems.
- Most popular data model for DW.
- Recognized and supported by OLAP/BI tools.
- Goal for dimensional modeling
 - Surround facts with as much context (dimensions and attributes) as possible;
 - Redundancy is ok in well-chosen places.
 - But you should not try to model all relationships (unlike ER/OO modeling!)

MD Cubes/1

- Facts (data) "live" in a multidimensional cube.
- Example: Sales cube with 3 dimensions

MD Cubes/2

- A cube consists of cells.
 - A given combination of dimension values.
 - A cell can be empty (no data for this combination).
 - A sparse cube has many empty cells.
 - A dense cube has few empty cells.
 - Cubes become sparser for many/large dimensions.
- A cube may have many dimensions.
 - For more than 3 dimensions, the term hypercube is sometimes used.
 - Theoretically, there is no limit for the number of dimensions.
 - Typical cubes have 4-12 dimensions.
- Only 2-3 dimensions can be viewed at a time.
 - Dimensionality reduced by queries via projection/aggregation.

Outline

2 Star and Snowflake Schema

3 Facts, Dimensions, and Measures

4 DW Applications

5 DW Implementation

Star Schema

- A common approach to draw a multidimensional model (in relational systems) is the star schema, which consists of
 - a set of dimension tables, DT_1, \ldots, DT_n , with a primary key k_i and dimensional attributes;
 - a fact table including measures and foreign keys k_i to the dimensional tables.
- As we will see later, a star schema is a relational implementation of the multidimensional model.

Example: Star schema for sales facts with 3 dimensions

Translating Conceputal Schema to Star Schema

- Create a fact table including all measures
- For each dimension, create a dimension table with a primary key and one column for each dimensional attribute
- Besides this simple rule, specific solutions are required for different advanced constructs of the DFM

Instance of Star Schema

OLAP Query on Star Schema

 Query: Total quantity sold for each product type, week, and city, only for food products.

SELECT	City, Week, Type, SUM(Quantity)							
FROM	WeekDT, StoreDT, ProductDT, SaleFT							
WHERE	WeekDT.WeekID = SaleFT.WeekID AND							
	<pre>StoreDT.StoreID = SaleFT.StoreID AND</pre>							
	ProductDT.ProductID = SaleFT.ProductID AND							
	<pre>ProductDT.Category = 'Food'</pre>							
GROUP B	Y City, Week, Type:							

```
ADMT 2018/19 - Unit 5
```

J. Gamper

Star Schema

PROS

- Simple and easy overview \rightarrow ease-of-use
- Relatively flexible
- Fact table is normalized
- Dimension tables often relatively small
- $\bullet~$ "Recognized" by many RDBMSes \rightarrow good performance
- CONS
 - Hierarchies are "hidden" in the columns
 - Dimension tables are de-normalized

Snowflake Schema

 The star schema can be optimized in terms of space if one or more dimensions are normalized → snowflake schema.

Instance of Snowflake Schema

OLAP Query on Snowflake Schema

• Query: Total quantity sold for each product type, week, and city, only for food products.

SELECT	City, Week, Type, SUM(Quantity)
FROM	WeekDT, StoreDT, ProductDT, CityDT, TypeDT, SaleFT
WHERE	WeekDT.WeekID = SaleFT.WeekID AND
	<pre>StoreDT.StoreID = SaleFT.StoreID AND</pre>
	ProductDT.ProductID = SaleFT.ProductID AND
	<pre>StoreDT.CityID = CityDT.CityID AND</pre>
	ProductDT.TypeID = TypeDT.TypeID AND
	<pre>ProductDT.Category = 'Food'</pre>
GROUP BY	City, Week, Type;n

Snow-flake Schema

PROS

- Hierarchies are made explicit/visible
- Very flexible
- Dimension tables use less space
 - However this is a minor saving
 - Disk space of dimensions is typically less than 5 percent of disk for DW

CONS

- Harder to use due to many joins
- Worse performance
 - e.g., efficient bitmap indexes are not applicable

Redundancy in DW

- Only very little redundancy in fact tables.
 - The same fact data (generally) only stored in one fact table.
- Redundancy is mostly in dimension tables.
 - Star dimension tables have redundant entries for the higher levels.
 - Redundancy problems?
 - Inconsistent data: the central load process helps with this.
 - Update time: the DW is optimized for querying, not updates.
 - Space use: dimension tables typically take up less than 5% of DW.
- So: controlled redundancy is good, up to a certain limit.

Strengths

- Many-to-one relationship from fact to dimension
- Many-to-one relationships from lower to higher levels in the hierarchies
- Therefore, it is impossible to "count/sum wrong"

Outline

Multidimensional Model

2 Star and Snowflake Schema

Facts, Dimensions, and Measures

DW Applications

5 DW Implementation

Dimensions/1

- **Dimensions** are the core of multidimensional databases.
 - Other types of data models do not explicitly support dimensions.
- Dimensions are used for the
 - selection of data;
 - grouping/aggregating data at the right level of detail.
- Dimensions consist of (discrete) dimension values
 - Product dimension has values "milk", "cream", ...
 - Time dimension has values "01/10/2013", "02/10/2013", ...
- Dimension values may have an ordering.
 - Used for comparing cube data across values,
 - e.g., percentage of sales increase compared with last month.
 - Especially used for Time dimension.

Dimensions/2

• Dimensions encode hierarchies with levels.

- Typically 3-5 levels (of detail).
- Dimension values are organized in a tree structure or lattice
 - Product: Product \rightarrow Type \rightarrow Category
 - $\bullet \ \ \mathsf{Store}: \ \mathsf{Store} \to \mathsf{Area} \to \mathsf{City} \to \mathsf{County}$
 - $\bullet \ \ \mathsf{Time:} \ \ \mathsf{Day} \to \mathsf{Month} \to \mathsf{Quarter} \to \mathsf{Year}$
- Dimensions have a
 - bottom level: most detailed;
 - top level (ALL): most general.
- General rule: dimensions should contain much information
 - Time dimensions may contain holiday, season, events,
 - Good dimensions have 50-100 or more attributes/levels.

Concept Hierachy Example

• A Location dimension with attributes street, city, province_or_state, and country encodes implicitly the following hierarchy.

Facts

- Facts represent the subject of the desired analysis.
 - The "important" in the business that should be analyzed.
- A fact is identified via its dimension values.
 - A fact is a non-empty cell.
 - Some models give facts an explicit identity.
- Generally, a fact should
 - be attached to exactly one value in each dimension;
 - only be attached to dimension values in the bottom levels,
 - e.g., if the lowest time granularity is day, for each fact the exact day should be specified;
 - some models do not require this.

Different Types of Facts

- Event facts (transaction)
 - A fact for every business event, e.g., sale.
 - Event happened for a combination of dimension values and has measures.
- "Fact-less" facts
 - A fact per event, e.g., customer contact.
 - Has no numerical measures.
 - Event just happened for a combination of dimension values.
- (Periodic) Snapshot facts
 - Captures current status, e.g., inventory, sales of today.
 - A fact for every dimension combination for a given time interval.
- Cumulative snapshot facts
 - Captures cumulative status of a process up to now, e.g, sales order.
 - Typically several date stamps, which are updated as the process is completed, e.g., order date, shipping date, paying date.
- Every type of facts answers different questions.
- Event facts and snapshot facts are most frequent.

Granularity

• Granularity of facts is important.

- What does a single fact mean?
- Determines the level of detail.
- Given by the combination of bottom dimension levels
 - e.g., total sales per store per day per product.
- Has an impact on the number of facts, hence the scalability!
- Often the granularity is a single business transaction, e.g., sale.
- Sometimes the data is aggregated, e.g., total sales per store per day per product.
 - Aggregation might be necessary for scalability.
- Generally, transaction detail can be handled
 - Except perhaps huge clickstreams, etc.

Measures

- Measures represent the fact property that users want to study and analyze,
 - e.g., total sales or average sales per day.
- A measure has two components
 - Numerical value: used to describe a fact/event, e.g., sales price, # of items in a transaction.
 - Aggregation formula: used for aggregating/combining a number of measure values into one, e.g., SUM, AVG, MAX.
- Single fact table rows/measures are (almost) never retrieved, but aggregations over millions of fact rows.

Additivity of Measures

- A measure is called **additive along a dimension** if the SUM operator can be used to aggregate it along that dimension (hierarchy); otherwise it is **non-additive** along that dimension.
- Additivity is an important property of measures
 - Provides flexibility in aggregation and navigation.
 - Most frequently the case.
- Classification of measures based on additivity.

Different Types of Measures/1

• Additive measures (flow measures):

- Additive along all dimensions
- Refer to a timeframe, at the end of which they are evaluated cumulatively
- Typically the case for event facts,
 - e.g., the number of products sold in a day, monthly receipts, yearly number of births, gross profit per year, cost, etc.

• Semi-additive measures (level measures)

- Additive only over some dimensions (typically non-temporal dimensions)
- Are evaluated at particular times and often occur in snapshot facts
 - e.g., the number of products in inventory: non-additive across time
 - customer_count: additive across store, non-additive across product
 - the number of inhabitants in a city

• Non-additive measures (unit measures)

- Additive over none of the dimensions
- Are evaluated at particular times but are expressed in relative terms
 - e.g., product unit price, discount percentage, currency exchange: SUM makes no sense along any dimension, but AVG, MIN, MAX.

Different Types of Measures/2

Measures	Temporal hierarchies	Nontemporal hierarchies				
Additive (Flow)	SUM, AVG, MIN, MAX	SUM, AVG, MIN, MAX				
Semi-additive (Level)	AVG, MIN, MAX	SUM, AVG, MIN, MAX				
Non-additive (Unit)	AVG, MIN, MAX	AVG, MIN, MAX				

Non-aggregable Measures

• A measure is called **non-aggregable along a dimension** if it cannot be aggregated along that dimension using any aggregation operator.

- **Example:** A measure numberOfCustomers with dimensions product, store, and day that is estimated from the number of receipts.
- Non-aggregable along product dimension, since a receipt is likely to contain several products.
 - many-to-many relationship between receipts and products (instead of many-to-one)
- Can be aggregated over store and date dimension.

Outline

- Multidimensional Model
- 2 Star and Snowflake Schema
- **3** Facts, Dimensions, and Measures
- OW Applications

5 DW Implementation

Reporting

- **Reporting** is for users who need a regular access to information in an almost static way.
 - e.g., local health authorities must send monthly reports to state offices.
- Report is defined by a query (multiple queries) and a layout (diagrams, histograms, etc.).

CdC 8090		2.008				BUDGET			2009			BUC	GET 2010
VOLUNE NIK E DURLITIK PROBUZIONE	FIND AL	and some state	PIANO	PESO	Limite	Limite	FROIE2.	SCOST.	MATURATO	BUDGET	PESO	Limita	Limito supotiore
Dimessi proirreri	31.08.	293	298	0%	0	0	270	-8,8%	0%	270			
Traditrimento	31.02	1	2				0	-100,0%	0%	0			
go di dogenza	31.09.	990	939				993	5,6%	6%	993			-
n. pasti letto	31.00.	5	5				5		0%				
Accessil day hospital/surgery	51.08	887	981	0%	c	0	1,168	19,0%	6%	1.168			
n. pasti letto day hosp.isurg.	31.08.	4	5				0		0%	8			
Tutate all vità per esterni	31.08.	45.570	46.356	0%	. 0	0	44.039	-6,3%	C%5	44.039			
Totale etc.vita per interni	33.09.	566	54.8	0%	0	0	559	1,9%	0%	559			
Totale attività rice v.da	30.96	2.561	9	0%	0	0	2.502		6%	2.502			
- di cui di laboratoria	31.09	2.295	2.202	0%	0	0	2.340	8,3%	e%	2.340	-	-	Techen box Techen
 di cui di radiciogie 	31.03.	1.85	175	0%	0	0	102	-40,6%	6%	102			
n' prest, di lab, g dimessi ordinari	31.03.	7,83					8.67		e%	8.67	479,		8,67
n° prest, di rad, x dimessi ordinari	31.00.	0,63					0,38		e%	0,38	33%		0,36
COST ED EFFICIENZA	1												
Consumi beni sanitari	21.09	486.504	411,792	50%	6	432.352	501.299	21,7%	100000000000000000000000000000000000000	501.299			
PHT + H-G8P2	33.02		Contraction of	0.225	1000000	an china and	0		6%	· 0			
Consumi beni non santari	33.09	3.645	3.728	0%	0	. 0	3.264	-11,9%	6%	0.284			
altri ccetti	33.09.	4.459	3.831	0%	0	0	6.524	70,3%	e%.	6.524			
Totale consumi		494.411	419.351	0%	0	0	\$11.107	21,9%	6%	511.107			
costi personale (con da pianificare)	30.05	994.834					1.029.189						
unità personale	30.09	5,75	7,00	0%	0.00	0.00	6,26	-10,6%	6%	6,44			
preserva medit	21.08	5,16					6,44						
Tease officer latti	31.00	54 10%	51.31%	0%	0.00%	0.00%	54 20%		6%	54 20%			
TBSS/ UTNEED WOT		29.9	5.16	0%	6.00	0.00	3.60		616	3,60			
degletiza interna	- SLUB	20.78%	87 23%	0%	0.00%	0.00%	70.73%		6%	70,73%	B.0.1 (10) 1.7		
Manager and the second		7.64%	2.00%	50%	0.00%	3,00%	6.40%		CONTRACTOR OF	5.40%	825		8,40%
and another or region into	20.05	0.66	0.61		CALL AND A REAL PROPERTY.		0.89	And in Table States		0.09			
mobility conversions papelling	1110	151 395		0%	0	D	133,248		9%				
maketa provincial passion		610 010	n		ALC: NO.		954 940		016				
mobile proversed SEVS		30 775					24.448		9%				
Analysis interest, of actions	28.02	52		0%			21		015				
pervan nespore in pazenti	21.06	1.556					999		8%				
Sectors respond		1.000											
Summo Gowichtung				100%					0%				

OLAP/1

- **OLAP (Online Analytical Processing)** is the most popular way to exploit information in a DW.
- Provides more flexibility, especially when the analysis needs are not defined beforehand.
- Interactive way to explore data on the basis of the multidimensional model.
 - Each step is the result of the outcome of preceding steps.
- Each step of an analysis session applies an OLAP operator.
- OLAP tools typically use tables with multiple headers and colors to visualize multidimensional query results.

OLAP/2

- Two kinds of OLAP operators/queries:
 - Aggregation operators summarize fact data, e.g., with SUM.
 - Navigation operators allow to examine data from different viewpoints and detail levels.
- Analysis starts at some level, e.g. (Quarter, Product).
 - Roll Up: less detail, e.g., Quarter \rightarrow Year
 - Drill Down: more detail, e.g., Quarter \rightarrow Month
 - Slice/Dice: selection, e.g., Year=1999
 - Drill Across: "join" on common dimensions

OLAP Example/1

• Sales Cube

OLAP Example/2

• Slicing and Dicing: select specific (ranges of) values for dimension attributes

OLAP Example/3

• Aggregation

Dashboards

- **Dashboards** display a limited amount of information in a easy-to-read graphical format.
- Frequently used by senior managers who need a quick overview of the most significant changes,
 - e.g., real-time overview of trends.
- Not useful for complex and detailed analysis.

ADMT 2018/19 - Unit 5

Visual Analytics

- Visual Analytics is about analytical reasoning supported by interactive visual interfaces.
- Graphical presentation of complex result.
- Color, size, and form help to give a better overview.

Data Mining

- Data mining is automatic knowledge discovery.
- Has its roots in AI and statistics.
- Different tasks:
 - Classification
 - Partition data into pre-defined classes.
 - Clustering
 - Partition data into groups such that the similarity within individual groups ist greatest and the similarity between groups is smallest.
 - Affinity grouping/associations
 - Find associations/dependencies between data.
 - Rules: $A \rightarrow B(c\%, s\%)$: if A occurs, B occurs with confidence c and support s.
 - Prediction
 - Predict/estimate unknown value based on similar cases.
- Important to choose the granularity for mining.
 - Too small granularity gives no good results (shirt brand, ...).

Outline

- Multidimensional Model
- 2 Star and Snowflake Schema
- **3** Facts, Dimensions, and Measures
- **DW Applications**

5 DW Implementation

Relational OLAP (ROLAP)

- Data/Cube is stored in relational tables.
 - Fact table stores facts.
 - One column for each measure and dimension.
 - Dimension tables store dimensions.
 - SQL is used for querying.
- PROS
 - Leverages investments in relational technology.
 - Huge amount of literature and broad experience with RDBMSs.
 - Scalable to billions of facts.
 - Flexible design and easier to change.
 - New techniques adapted from MOLAP.
 - Indexes (e.g., bitmap), materialized views, special handling of star schemas.
- CONS
 - Storage use often 3-4 times higher than in MOLAP.
 - Higher response times due to joins.

Relational OLAP (ROLAP) Schemas

• One completely de-normalized table

• Bad: inflexibility, storage use, bad performance, slow update.

Star schema

- One fact table
- De-normalized dimension tables
- One column per level/attribute

Snowflake schema

- Dimensions are normalized
- One dimension table per level
- Each dimension table has integer key, level name, and one column per attribute

Multidimensional OLAP (MOLAP)

- Data/cube is stored in special multidimensional data structures.
 - Arrays with positional access.
- PROS
 - Less storage use ("foreign keys" are not stored).
 - Multidimensional operations can be performed without complex and costly joins.
 - Faster query response times.
- CONS
 - Up till now not so good scalability.
 - Less flexible, e.g., cube must be re-computed when design changes.
 - Does not reuse an existing investment (but often bundled with RDBMS).
 - "New technology", not an open technology.
 - No standards yet available, very specific optimizations are used.

Hybrid OLAP (HOLAP)

• ROLAP and MOLAP elements are combined into a single architecture.

- Aggregates stored in multidimensional structures (MOLAP)
- Detail data stored in relational tables (ROLAP)

PROS

- Scalable and fast.
- Largest amount of data and sparse subcubes are stored in RDBMS.
- Dense subcubes of aggregated data (DMs) are stored in multidimensional structures.
 - Most frequently needed by the user.
- CONS
 - Complexity

Summary

- Logical design transforms the conceputal model into a logical model
- Multidimensional model is de facto standard logical model.
 - Consists of dimensions, facts, and measures
 - Facts are the important entities, dimensions describe the important entities/facts.
 - Data lives in multidimensional cubes.
- In relational systems, the multidimensional model is materialized as star or snowflake schema: 1 fact table and several dimension tables.
- Different fact types:
 - event facts, fact-less facts, snapshot facts, cumulative snapshot facts.
- Additivity is an important property of measures.
 - Additive measures, semi-additive measures, non-additive measures.
- Different DW applications: Reporting, OLAP, dashboards, visual analytics, and data mining.
- Different DW implementations
 - ROLAP
 - MOLAP
 - HOLAP