Advanced Data Management Technologies Written Exam

10.02.2014

First name	Last name	
Student number	Signature	

Instructions for Students

- Write your name, student number, and signature on the exam sheet.
- This is a **closed book** exam: the only resources allowed are blank paper, pens, and your head. Use a pen, not a pencil.
- You have 2 hours for the total exam (DW and DM part).
- Guidelines for answering the questions:
 - each question has exactly **one** correct answer
 - -+1 for each correct answer
 - -1 for each wrong answer
 - 0 if you abstain

Advise: if you are not sure about an answer, it is better to abstain.

Good luck!

Reserved for the Teacher

Max. points	Plus Points	Minus Points	Sum
60			

- 1. What is typical for OLAP?
 - A complex data model
 - The system is always available for updates and reads
 - Frequent read operations and infrequent updates
- 2. What is true for query-driven data integration?
 - Query performance is high
 - Query is executed on the most up-to-date data
 - Query processing does not interfere with the local processing at the data sources.
- 3. The multidimensional model
 - is less flexible and general than the ER model
 - serves many purposes and is very flexible
 - contains facts that describe important things and dimensions that are the important things
- 4. At which granularity level should facts be stored in the multidimensional model?
 - lowest (finest) granularity
 - depends on the specific application
 - highest (coarsest) granularity
- 5. Which statement about the multidimensional model is correct?
 - Dimensions should contain much information, which is then useful for the analysis
 - Dimensions should contain as little information as possible to save disk space
 - Dimensions can store at most one hierarchy
- 6. Which of the following statements is correct?
 - Surrogate keys produce larger fact tables
 - Surrogate keys make the DW independent from operational changes
 - Surrogate keys contain "intelligence" which is helpful for data analysis
- 7. Which measures are easiest to handle in a DW?
 - additive
 - semi-additive
 - non-additive
- 8. A data warehouse bus matrix specifies
 - which dimensions are used by which business processes
 - the attributes of the dimension tables
 - the hierarchies in the dimension tables
 - the measures

- 9. The use of shared dimensions helps to
 - increase the query performance
 - to break down the development process into small chunks
 - design data marts that can be easily integrated
- 10. Compared to the star schema, the snowflake schema
 - has a better query performance
 - requires more joins at query time
 - uses more space
 - hides the hierarchies
- 11. Role-playing in the multidimensional model means that
 - a single dimension appears several times in the same fact table
 - a measure in the fact table represents different values
 - multiple hierarchies coexist in a dimension table
- 12. How many groupings are produced by the following GROUP BY clause?

```
GROUP BY ROLLUP(a, b), GROUPING SETS ((c,d),(e,f)), CUBE(g,h)
```

- 24
- 32
- 48
- 13. Which function can be used to programmatically determine the rollup level in SQL?
 - GROUPING_ID
 - ROLLUP
 - RANK
- 14. What is the correct processing order of an SQL statement?
 - FROM, WHERE, GROUP BY, HAVING, NTILE(4) OVER ()
 - FROM, WHERE, HAVING, GROUP BY, NTILE(4) OVER ()
 - NTILE(4) OVER (), FROM, WHERE, HAVING, GROUP BY
- 15. How many result tuples are produced by the following SQL statement, if a, b and c have 4, 5 and 2 different values, respectively?

```
SELECT a, b, SUM(c)
RANK() OVER (PARTITION BY a ORDER BY SUM(c) DESC)
FROM r
GROUP BY a, b
```

- 9
- 11
- 20
- 40

- 16. A composite column in the SQL GROUP_BY extensions
 - allows to skip aggregation across certain levels
 - is a shorthand for a set of columns
 - is a compact way to generate all possible groupings among individual columns
- 17. How many different rankings over a data set can be computed in a single (unnested) SQL query using window functions?
 - one
 - two
 - an arbitrary number
- 18. What is a core feature of the Generalized MD-Join?
 - Always sorts the data in the result table
 - The base table is automatically derived from the detail table
 - Allows to compute several complex aggregates with a single scan of the detail table
- 19. Which of the following statements is not correct?
 - SQL window functions can efficiently compute 1D and 2D cumulative aggregates
 - The GMDJ operator can efficiently compute 2D cumulative aggregates
 - The GMDJ operator can efficiently compute distributive and algebraic aggregates
- 20. The GMDJ can be systematically transformed to SQL by using
 - a combination of JOIN and CASE clauses
 - WINDOW functions
 - GROUP BY extensions and WINDOW functions
- 21. Pre-aggregation in DW aims to
 - reduce space requirements
 - increase query performance
 - reduce the update cost
- 22. How many pre-aggregates can be computed in an *n*-dimensional data cube?
 - \bullet 2^n
 - \bullet n^2
 - \bullet 2n
 - \sqrt{n}

- 23. In the greedy algorithm for pre-aggregate selection, the benefit of a view \boldsymbol{v} depends
 - only on the views w that depend on v, i.e., $w \leq v$
 - on the set of all views
 - \bullet on the set of already selected views and the views that depend on v
- 24. The greedy algorithm for pre-aggregate selection
 - is optimal if all benefits are equal
 - is optimal if the benefit of the first view is much larger than the other benefits
 - is never optimal
- 25. Incremental view maintenance for the min/max aggregate functions needs to scan the base table
 - if the current min/max is deleted
 - if a new tuple is inserted in the base table
 - only at the beginning when the view is created
- 26. The compressed bitmap index of 000100100000100 is
 - 10010010001
 - 10100010001
 - 10110011001
- 27. What is the maximal space consumption of a compressed bitmap index for a table with n records?
 - 2n
 - $2n\log_2 n$
 - $n^2 \log_2 n$
- 28. Indices based on bit vectors can be used for
 - numeric attributes only
 - non-numeric attributes only
 - numeric and non-numeric attributes
- 29. Which of the following statements is correct?
 - ETL is the most underestimated and time-consuming part of DW development
 - ETL does not care about data quality but only efficiency
 - ETL must be done daily
- 30. What is a good strategy for ETL?
 - Implement all transformation in one single programm
 - Implement the transformations in a sequence of small operations/programms
 - Implement the transformations in the source database

- 31. Data cleansing
 - is extremely important since data almost never has decent quality
 - is only needed if data comes from many different sources
 - is rarely needed in DW
- 32. In the ETL process, what must be updated first?
 - Fact table
 - Dimension tables
 - Indices
- 33. What happens if old values in a dimension table are overwritten?
 - Old facts point to incorrect information in the dimension table
 - New facts (inserted after changing the dimension table) point to incorrect information in the dimension table
 - Old and new facts point to correct information in the dimension table
- 34. What is a major problem for RDBMs to scale to big data?
 - (a) Lack of efficient index structures
 - (b) ACID properties
 - (c) XML data cannot be stored in relational tables
- 35. The CAP theorem states about the 3 properties Consistency, Availability, and Partition tolerance:
 - (a) at most 2 of the 3 properties can be achieved at any time
 - (b) at least 2 of the 3 properties must be satisfied at any time
 - (c) exactly 2 of the 3 properties are satisfied at any time
- 36. Which of the following is not a BASE property:
 - (a) an application works basically all the time
 - (b) an application does not have to be consistent all the time
 - (c) an application will always be in a consistent state
- 37. Wich of the following NoSQL data models offers high performance, scalability and flexibility?
 - (a) key-value stores
 - (b) column stores
 - (c) graph databases
- 38. In MapReduce, the programmer
 - (a) must only specify a map and a reduce function
 - (b) must also specify how to distribute the data
 - (c) must also specify how to partition intermediate key-value pairs

- 39. What is the correct signature of the map and reduce functions?
 - (a) map: $(k, v) \to (k', v')^*$, reduce: $(k', v'[]) \to (v'')^*$
 - (b) map: $(k, v) \to (k, v')^*$, reduce: $(k, v'[]) \to (v'')^*$
 - (c) map: $(k, v) \rightarrow (k', v')^*$, reduce: $(k', v') \rightarrow (v'')^*$
- 40. Which of the following statements about the map function is wrong?
 - (a) Can do something to each individual key-value pair, but cannot look at other key-value pairs
 - (b) Can emit only one intermediate key-value pair for each incoming key-value pair
 - (c) Can emit data with specific keys to all reducers
- 41. In MapReduce, the reducer is called once for each
 - (a) intermediate key-value pair
 - (b) intermediate key and set of values with that key
 - (c) intermedidate value
- 42. In MapReduce, a combiner function can be used to
 - (a) merge the output of all map tasks together before sending to the reduce tasks
 - (b) store the output of the reduce tasks into a single file
 - (c) minimize the data that is shuffled between map and reduce tasks
- 43. In MapReduce, the reduce tasks can start to work
 - (a) when a map task produces the first output
 - (b) when the first map task has completed
 - (c) only after all map tasks have completed
- 44. The following reduce function computes the relative word frequency across a set of documents:

Which code snippet is missing in the if-block?

- (a) total_word_count = 0;
 ForEach v in values do total_word_count += ParseInt(v);
- (b) ForEach v in values do total_word_count += ParseInt(v);
- (c) total_word_count += ParseInt(values);

- 45. In the MapReduce Top Ten pattern, how many records are sent to the reducer if Top-K is computed and M mappers are used?
 - (a) $K \cdot M$ records
 - (b) all input records
 - (c) K records
- 46. Which is the most flexible join pattern in MapReduce?
 - (a) Reduce side join
 - (b) Replicated join
 - (c) Composite join
- 47. The DistributedCache in Hadoop can be used
 - (a) to share data among map tasks that is different from the input data
 - (b) to store and share input splits
 - (c) to cache the intermediate results before sending them to the reducers
- 48. How does the pull-scheduling strategy of MapReduce work?
 - (a) Job tracker pushes tasks to Task tracker
 - (b) Task tracker requests tasks from the Job tracker
 - (c) Map tasks are requested by the task tracker, whereas reduce tasks are pushed by the job tracker.
- 49. Speculative execution in Hadoop means that
 - (a) a redundant task is started for slow tasks (stragglers)
 - (b) a redundant task is started if an error occurs
 - (c) a task is aborted and restarted again if it does not send a heartbeat meassage for a given time
- 50. What is not true for P2P networks?
 - (a) Nodes can be both client and server, but not at the same time
 - (b) Nodes enter and leave the network frequently
 - (c) Nodes have widely varying capabilities
- 51. Which replication policy should be used if throughput should be maximized?
 - (a) Eager replication with primary copy
 - (b) Eager replication without primary copy
 - (c) Lazy replication with primary copy
 - (d) Lazy replication without primary copy
- 52. What is stored in the client image in the GFS?
 - (a) Meta-information about where the chunks of a file that has been read before are stored
 - (b) A part of the global file system namespace
 - (c) Information about where the local data is replicated

- 53. What is a major problem with a naive solution of a distributed hash index, where each hash key is assigned to a different peer?
 - (a) If the hash function changes, the hash value of most objects changes too.
 - (b) The data are not evenly distributed among the available peers
 - (c) Lookup is slow
- 54. Which is the correct lookup function for centralized linear hashing $(p = \text{split pointer}, h_n, h_{n+1} \text{ are hash functions})$?

```
(a) Lookup(k) a = h_n(k); if (a < p) then a = h_{n+1}(k);
```

- (b) Lookup(k) $a = h_n(k);$ if $(a \ge p)$ then $a = h_{n+1}(k);$
- (c) Lookup(k) $a = min(h_n(k), h_{n+1}(k));$
- 55. In distributed linear hashing, the so-called forward algorithm
 - (a) has to cope with lookup errors due to outdated local information
 - (b) handles bucket overflows by forwarding data to other peers
 - (c) forwards a lookup request to a central server
- 56. Which statement about consistent hashing is not correct?
 - (a) Nodes and data keys are mapped to the same range
 - (b) Peers are arranged in a logical ring
 - (c) A key is stored at the closest node (predecessor or successor)
- 57. In consistent hashing, if a new node joins the network
 - (a) all keys need to be reassigned
 - (b) no keys need to be reassigned
 - (c) some keys of the new node's successor need to be reassigned
- 58. With the help of finger tables the lookkup performance in Chord is improved from O(n) to
 - (a) O(1)
 - (b) $O(n \log n)$
 - (c) $O(\log n)$
- 59. Which is a critical aspect for data representation in main memory databases?
 - (a) Access locality
 - (b) Valiable length data fields
 - (c) Compressing the size of the data
- 60. Which is the most important index structure in main memory databases?
 - (a) B-tree
 - (b) T-tree
 - (c) R-tree