Advanced Data Management Technologies
Unit 21 — Main Memory Databases

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

ADMT 2017/18 — Unit 21 J. Gamper 1/32



R
Outline

© Main Memory Databases

© SAP HANA and Oracle TimesTen

ADMT 2017/18 — Unit 21 J. Gamper 2/32



)
Outline

© Main Memory Databases

ADMT 2017/18 — Unit 21 J. Gamper 3/32



Technological Transition

@ Computer architecture has changed a lot in the past decades.

@ Today’s multicore, multi-CPU server provide fast communication between
processor cores via main memory or shared cache.

@ Main memory is no longer a
limited resource.

o In 2012 servers with more than 2
terabytes of RAM are available.

@ Server processors with 100 cores
and more are able to process more
and more data per time unit.

Performance bottleneck
today: CPU waiting for data
to be loaded from memory
into cache

Main memory

@ With all data in memory, disk
access is no longer a limiting factor
for performance.

Performance bottleneck
in the past: Disk 170

@ New bottleneck is CPU waiting for
data from memory!

@ Modern computer architectures create new possibilities and challenges for
data management and processing — main memory databases.
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Definition

o Disk resident database (DRDB)

o The primary copy of data is permanently disk resident.
o Data can be temporarily cached in main memory for access speed-up.

@ Main memory database (MMDB)

e The primary copy of data lives permanently in main memory.
@ There can be a backup copy resident on disk.

@ Advantages of MMDBs
o MMDBs avoid the disk 10 bottleneck of DRDBs
No buffer cache management
High throughput
High availability
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Main Memory Databases

@ Data are accessed via a buffer manager, which (given the disk address)
checks if the relevant block is in MM cache and then copies it to the MM
application working area.
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Main Memory Databases

MMDB

@ Data are accessed by directly referring to their memory address.
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Memory Hierarchy

@ DRAM is 100,000 times faster than disk, but DRAM access is still 6-200

times slower than on-chip caches.

L1 Cache 0.5 NS
L2 Cache 7.0 NS

SSD: 150K N§
HD: 10M NS
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Main Memory vs. Disk Storage

@ Access time
o Access time of MM orders of magnitude faster than for disks (100 nsec vs.
10 msec)
@ Access pattern
e Memory is better for random access than disks.
o Disks have high fixed cost per access, independent of the amount of
retrieved data (block-oriented access)
e MM does not care of sequential access (?).
@ Stableness
o Memory is volatile; content lost if system crashes.
o If a single memory board fails the entire machine must be powered down
loosing all the data.
o Even if special HW can enhance MM reliability, periodic backup is necessary.
e Disk is nonvolatile (permanent).
@ Security

o Memory is more vulnerable to software errors, since memory can be directly
accessed by the processor/applications.
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Hybrid MM-DR Database Systems

@ Some DB are so large that they will never fit in MM
@ Data can belong to different classes
e Hot: frequently accessed, low volume, timing sensitive (e.g., bank account
records)
o Cold: rarely accessed, voluminous, non time critical (e.g., bank customers
records, historical records)
@ Hybrid MM-DR DBMSs consist of a collection of databases, some MM
others DR
@ Objects can migrate among the dbms, changing their structure accordingly
(e.g., IBM IMS Fast Path)
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MMDBMs Concurrency Control/1

@ Lock duration is short

o Reduced contention
o Large granules (up to the entire database)

@ This almost eliminates the need of concurrency control
— mainly serial transaction processing
@ Concurrency control still necessary when

e mixed length transactions coexist
e a multiprocessor system shares the DB among the different units
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MMDBMs Concurrency Control /2

@ Traditional implementation
o Lock (hash) tables holding entries for currently locked objects
e No lock information attached to data

@ Implementation in MMDBs
e Add some bits of locking information to the data, e.g.,

@ 1st bit is the X-LOCK SET bit
@ 2nd bit is the WAITING FOR bit
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MMDBMs Commit Processing/1

@ ACID properties of transactions

@ Durability of transaction forces a log record to be written to stable storage
before committing

@ Logging affects response time and throughput
@ Problem: Log |/O becomes a bottleneck!
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MMDBMs Commit Processing/2

@ Solution 1: Store log tail in stable memory

o Reduces response time

Main
Memory

Log tails

Stable Memory

@ Solution 2: Group commit

o Accumulate log until page is full
o Flush log page to disk only once
e Reduces the total number of disk accesses

@ Solution 3: Precommit transactions

o Release lock (i.e., precommit) when log is written to log buffer

o Commit when log buffer flushed to disk
o Reduces blocking time of other transactions
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Data Representation/1

@ Relational data are traditionally stored in flat files

o Slotted page structure

o Tuples are store sequentially
o Attribute values are “embedded” in the tuples

@ Space consuming due to duplicate values.

o Access is local

@ Indexes for efficient access
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Data Representation/2

@ Access locality is not an issue in MMDBs
@ Any location can be accessed at the same speed

@ Variable length fields are not problematic

o Pointers to heap space

@ Compressing data size is a major goal of MMDBs — domain storage

Store domain values of enumerated types in a domain table
In the tuples, store pointers to the domain table
Domain tables can be shared among columns and relations
Yields fixed size tuples

VALUE 1

.

VALUE 2

§

:
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Main Memory Databases

T-Tree Index

@ T-tree is the most important index structure in MMDBs

o Modified binary AVL tree

@ binary search

e A node contains more than two values

@ Storage and update efficiency (as in B-trees)

e Balanced by rotating nodes

k1| k2] k
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@ Advantages

e Space efficient
o Logarithmic performance
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SAP Vision and Challenge

Unify transaction processing and analytics
Single system
Same data instance

Run analytics in real-time

Run analytics and transactions at the “speed of thought”

@ Solution: in-memory computing

o Store large blocks of data directly in random access memory (RAM)
o Keep it there for continued analysis

— SAP HANA
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SAP HANA Database

@ The SAP HANA platform implements a new approach to big data analytics

@ At the core is a full database management system with a standard SQL
interface, transactional isolation and recovery (ACID), and high availability

@ But includes much more than the DBMS

@ In-memory is much more than simple caching of disk data structures in

SaLSert

App extensions

main memory

o Data is completely stored in main
memory

o Highly tuned access structures

o Row-based and column-based
stores

o Data compression techniques
o Parallelization of query processing

e etc.
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Predictive analysis library

Parallel calculation engine

Row based

Columnar
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HANA Column Store

@ In analytics, frequently only a small subset of columns is needed
@ Extreme fast scan of columns

@ Fast on-the-fly aggregation over columns

Order Count Produ Sale [ 456 [France [ corn [1000 |
ry ct s

456 | France | corn | 1000 [ 457 [ italy [ wheat [ 900 |

457 Italy wheat | 900

458 Italy corn | 600 [ 458 [ Italy [ corn | 600 |

459 Spain rice 800

| 459 | Spain | rice [ 800 |
: Typical Database

Y N Pay
456 | [France | [ ‘corn
457 Italy SELECT Country, SUM(sales) FROM SalesOrders
458 Italy . WHERE Product = ‘com’ S

GROUP BY Country

rt

459 Spain
\%

SAP HANA: column order
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HANA Data Compression

e Efficient compression methods (dictionary, run length, cluster, prefix, etc.)

@ Compression works well with columns and can speedup operations on
columns (= factor 10)
@ Because of compression (slow!), write changes into less compressed delta

storage
e High write performance not affected by compression
o Data is written to delta storage with less compression which is optimized for
write access
o Merged into columns from time to time or when a certain size is exceeded
@ Delta merge can be done in background

o Trade-off between compression ratio and delta merge runtime
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HANA Dictionary Compression

Column ,Name* Column ,Name* (dictionary compressed )
(uncompressed )
Value-ID sequence -
One element for each row in column Dictionary
Miller ___| 4]
n,:)'“es %\b—ff Baker
an inti 1] Jones
Baker ol dictionary Tohnson
L 4] (4] Miller
el 2] (5] Millman
Miller i .
Johnson 3| o
Jones Kl mzs_”wa%f
47 H /

Value
Value ID implicitly given
by sequence in which
values are stored
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SAP HANA and Oracle TimesTen

HANA Temporal Tables

@ All updates and deletes are handled as inserts

@ e.g., update T1 set Size = 'Large’ where ID = '12345’

Column
“D"

(primary key)

Column
“Description”

Column
“Size”

102 12345 Shirt, blue Medium
235 12345 Shirt, blue Large
A AN
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HANA Multi-core Parallelization

SAP HANA and

Core 1

Core2

[Cox Wt
1000032 4545 2500
67867868 76 21
2345 6347264 78675
89886757 435 3432423
234123 3434 89089
21 1252 562356
2342343 342455 K
78787 3333333 -
8789 123
13427777 4523523 56743
23423 6767312 342564
123123123 789976 4523523
1212 20002 1343414
2009 2346098 33129089
454544711 78787 3665364
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HANA Single Instruction Multiple Data (SIMD)

@ Scalar processing @ SIMD processing
o traditional mode e with Intel SSE(2,3,4)
@ one instruction produces e one instruction produces multiple
one result results

SSE/2/3 OP
Scalar OP

ey TN -

DEST
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HANA Persistence Layer

. Data is always written
directly into memory

3 | Data is automatically
saved from memory to
disk at regular intervals
(customizable)
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Log Volume
SSD, PCI-Flash

Data Volume
SSD, High-speed SAS

Persistence Storage

HANA Appliance
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Just like any database
all the data changes are
captured in redo logs and
saved from memory to
disk for each committed
database transaction

Note:

Data Models, configurations,
security etc. are all considered a
part of the database and stored
in the data volume

Log Volume supports overwriting
of log segments that have been
already backed-up
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HANA Scalability

@ Scales from very small servers to very large clusters

.

Single Server Scale Out Cluster Cloud Deployment
2CPU 128GBto 8 CPU 1TB 2to n servers per cluster

Largest certified configuration: 16
servers

Largest tested configuration: 100+
servers

Support for high availabiity
and disaster tolerance
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HANA High Availability

@ High availability configuration
o N active servers in one cluster senvert [ |
e M standby server(s) in one cluster Secver2 |
o Shared file system for all servers
@ Services Server 3 — g
e Name and index server on all nodes g
o Statistics server (only on active Server 4 - 2
servers) E
o Failover X 1 °
e Server X fails Server 6 |
o Server N + 1 reads indexes from
shared storage and connects to Cold Standiy Server F
logical connection of server X
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SAP HANA and Oracle TimesTen

HANA Inside

BICS OoDBO

NetWeaver BW MDX MS Excel

SAP BOBJ 3rd Party OLAP Tools
JSON/

ODBC / JDBC Blcs XML HTTP )

3rd Party Apps RESTIul services

3rd Party Tools OData Compliant

Parallel Unstructured
Execution (Text) Query 1Q/ASE
Federation Teradata / Oracle
Out I Scripting / ACID Compliant XS App Hadoop

Database
In-Memory
Column Store

Engine Server

In l Business e “gy®
HANA Function In t?g :ti)n R
Studio Library
Predctive  Spatial /
nalysis .
Library Geospatial
Data Repligation
Batch Transfer Services Near Real Time

SAP & Non-SAP Services

Extensive Transformations
Structured & Unstructured
Hadoop Integration

Non-SAP
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Oracle TimesTen In-Memory Database

@ In-memory RDBMS Client-Server
i i Application
o Entire database in memory Tmeeren
o Interfaces: Standard SQL with LY
JDBC, ODBC, OClI, Pro*C, Client/ Direct-Linked

S Application
NET, PL/SQL
Libraries |

e Compatible with Oracle

(voBC/ 0DBC/ ADO NET /0CI/PLSaL)e |

Database
@ Persistent and durable
e Transactions with ACID
- Checkpoint
properties data Files
@ Extreme performance aceess ll

Transactlon
LogFiles

L.

o Instantaneous response time
e Very high throughput

@ Embeddable

Memory-Resident
Database
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|
Summary

@ New technological changes brought that main memory is no longer a
limited resource — new opportunities for data processing
@ Main memory databases keep the primary copy of data permanently in
main memory
e Backup copy on resident disk
@ Data is accessed directly in memory and not via buffer manager
@ Main memory is much faster than disk, and data locality is no longer an
issue (any location can be accessed at the same time)
e High fixed cost of disks due to block access is avoided
@ Main memory is more vulnerable to software errors and volatile
@ Concurrency is still there, but less important and crucial
@ Optimized data representation
e Use of pointers instead of repeating values or foreign keys
o Advanced data compression techniques are applied
@ T-tree is main index structure
@ SAP HANA and Oracle TimesTen are two commercial main memory
databases
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