
Advanced Data Management Technologies
Unit 18 — MapReduce Design Patterns

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

ADMT 2017/18 — Unit 18 J. Gamper 1/66

Outline

1 Motivation

2 Overview of MR Design Patterns

3 Summarization Patterns

4 Filtering Patterns
Filtering
Bloom Filtering
Top Ten
Distinct

5 Join Patterns
Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 2/66

Motivation

Outline

1 Motivation

2 Overview of MR Design Patterns

3 Summarization Patterns

4 Filtering Patterns
Filtering
Bloom Filtering
Top Ten
Distinct

5 Join Patterns
Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 3/66

Motivation

MapReduce Recap

Programmers must specify:

map: (k, v)→ (k ′, v ′)∗

reduce: (k ′, v ′[])→ (v ′′)∗

All values with the same key are reduced together

Optionally, also:
partition (k ′, number of partitions)→ partition for k ′

Often a simple hash of the key, e.g., hash(k ′) mod n
Divides up key space for parallel reduce operations.

combine: (k ′, v ′[])→ (k ′, v ′′)∗

Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

The execution framework handles everything else

But what should be done by these modules is not always easy

ADMT 2017/18 — Unit 18 J. Gamper 4/66

Motivation

Average Income Example/1

Task: Compute average income in each city in 2007

Input data (sorted by SSN)

SSTable 1

SSN Personal Information

123456 (John Smith; Sunnyvale, CA)
123457 (Jane Brown; Mountain View, CA)
123458 (Tom Little; Mountain View, CA)

SSTable 2

SSN year, income

123456 (2007, $70000), (2006, $65000), (2005, $6000), . . .
123457 (2007, $72000), (2006, $70000), (2005, $6000), . . .
123458 (2007, $80000), (2006, $85000), (2005, $7500), . . .

The two tables need to be “joined” (mimic join in MR)

ADMT 2017/18 — Unit 18 J. Gamper 5/66

Motivation

Average Income Example/2

ADMT 2017/18 — Unit 18 J. Gamper 6/66

Motivation

Common Mistakes to Avoid/1

Mapper and reducer should be stateless

Don’t use static variables

After map and reduce return, they should remember nothing about the
processed data!

Reason: No guarantees about which key-value pairs will be processed by
which workers!

ADMT 2017/18 — Unit 18 J. Gamper 7/66

Motivation

Common Mistakes to Avoid/2

Don’t try to do your own I/O!

Don’t try to read from, or write to, files in the file system

The MapReduce framework does all the I/O for you

All the incoming data will be fed as arguments to map and reduce.
Any data your functions produce should be output via emit.

ADMT 2017/18 — Unit 18 J. Gamper 8/66

Motivation

Common Mistakes to Avoid/3

Mapper must not map too much data to the same key

In particular, don’t map everything to the same key!

Otherwise the reduce worker will be overwhelmed.

It’s okay if some reduce workers have more work than others.

Example: In WordCount, the reduce worker that works on the key ’and’ has
a lot more work than the reduce worker that works on ’syzygy’.

ADMT 2017/18 — Unit 18 J. Gamper 9/66

Motivation

Designing MapReduce Algorithms

Key decision: What should be done by map and what by reduce?

map
Can do something to each individual key-value pair, but it cannot look at
other key-value pairs

Example: Filtering out key-value pairs we don’t need

Can emit more than one intermediate key-value pair for each incoming
key-value pair

Example: Incoming data is text, map produces (word, 1) for each word

Can emit data with specific keys to all reducers, e.g., EmitToAllReducers()

reduce

Can aggregate data
Can look at multiple values, as long as map has mapped them to the same
(intermediate) key

Example: Count the number of words, add up the total cost, . . .

Important to get the intermediate form right!

Design pattern help to develop algorithms.

ADMT 2017/18 — Unit 18 J. Gamper 10/66

Overview of MR Design Patterns

Outline

1 Motivation

2 Overview of MR Design Patterns

3 Summarization Patterns

4 Filtering Patterns
Filtering
Bloom Filtering
Top Ten
Distinct

5 Join Patterns
Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 11/66

Overview of MR Design Patterns

What are Design Patterns?

Reusable solutions to problems

Domain independent

Not a cookbook, but a guide

Not a finished solution

Makes the intent of code easier to understand

Provides a common language for solutions

Be able to reuse code

Known performance profiles and limitations of
solutions

ADMT 2017/18 — Unit 18 J. Gamper 12/66

Overview of MR Design Patterns

Why MapReduce Design Patterns?

Recurring patterns in data-related problem solving

Groups are building patterns independently

Lots of new users every day

MapReduce is a new way of thinking

Foundation for higher-level tools (Pig, Hive, . . .)

Community is reaching the right level of maturity

ADMT 2017/18 — Unit 18 J. Gamper 13/66

Overview of MR Design Patterns

MapReduce Design Patterns

Book by Donald Miner & Adam Shook

Building effective algorithms and analytics
for Hadoop and other systems.

23 pattern grouped into six categories

Summarization
Filtering
Data Organization
Joins
Metapatterns
Input and output

ADMT 2017/18 — Unit 18 J. Gamper 14/66

Overview of MR Design Patterns

Pattern Categories/1

Filtering patterns: Extract interesting subsets of the data

Filtering
Bloom filtering
Top ten
Distinct

Summarization patterns: Top-down summaries to get a top-level view

Numerical summarizations
Inverted index
Counting with counters

Data organization patterns: Reorganize and restructure data to work with
other systems or to make MapReduce analysis easier

Structured to hierarchical
Partitioning
Binning
Total order sorting
Shuffling

ADMT 2017/18 — Unit 18 J. Gamper 15/66

Overview of MR Design Patterns

Pattern Categories/2

Join patterns: Bringing and analyze different data sets together to discover
interesting relationships.

Reduce-side join
Replicated join
Composite join
Cartesian product

Metapatterns: Piece together several patterns to solve a complex problem
or to perform several analytics in the same job.

Job chaining
Chain folding
Job merging

Input and output patterns: Custom the way to use Hadoop to input and
output data.

Generating data
External source output
External source input
Partition pruning

ADMT 2017/18 — Unit 18 J. Gamper 16/66

Summarization Patterns

Outline

1 Motivation

2 Overview of MR Design Patterns

3 Summarization Patterns

4 Filtering Patterns
Filtering
Bloom Filtering
Top Ten
Distinct

5 Join Patterns
Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 17/66

Summarization Patterns

Numerical Summarizations

Numerical Summarizations

A general pattern for calculating aggregate statistical values over your data,
e.g., minimum, maximum, average, median, and standard deviation.
Group records together by a key field and calculate a numerical aggregate
per group to get a top-level view of a large data set.

Applications

Word count, record count
Min, max, count of a particular event
Average, median, standard deviation

SQL resemblance

SELECT MIN(numericalcol1), MAX(numericalcol1), COUNT(*)

FROM table

GROUP BY groupcol2;

ADMT 2017/18 — Unit 18 J. Gamper 18/66

Summarization Patterns

Numerical Summarizations Structure

Mapper: outputs keys that consist of each field to group by, and values
consisting of any pertinent numerical items.

Reducer: receives a set of numerical values (v1, v2, v3, . . . , vn) associated
with a group-by key and performs the (aggregate) function θ(v1, . . . , vn).

ADMT 2017/18 — Unit 18 J. Gamper 19/66

Summarization Patterns

Performance Analysis

Aggregations typically perform well when the combiner is properly used.
These types of operations are what MR was built for

Data skew of reduce groups is problematic
many more intermediate key/value pairs with a specific key than other keys;
one reducer is going to have a lot more work to do than others.

ADMT 2017/18 — Unit 18 J. Gamper 20/66

Summarization Patterns

Numerical Summarizations Example/1

Given a list of user comments in a mailing list, determine the first and last
time a user commented and the total number of comments from that user.

User comment

<row Id="8189677" PostId="6881722" Text="Have you looked at

Hadoop?" CreationDate="2011-07-30T07:29:33.343"

UserId="831878" />

After a grouping operation, the reducer has to iterate over all values
associated with a group and to compute the aggregate functions.

ADMT 2017/18 — Unit 18 J. Gamper 21/66

Summarization Patterns

Numerical Summarizations Example/2

Create Writable object MinMaxCountTuple to store the mapper output
(instead of using a Text object)

public class MinMaxCountTuple implements Writable {
private Date min = new Date(), max = new Date();
private long count = 0;

public Date getMin() { return min; }
public void setMin(Date min) { this.min = min; }
public Date getMax() { return max; }
public void setMax(Date max) { this.max = max; }
public long getCount() { return count; }
public void setCount(long count) { this.count = count; }
public void readFields(DataInput in) throws IOException {

// Read the data out in the order it is written
min = new Date(in.readLong());
max = new Date(in.readLong());
count = in.readLong();

}
public void write(DataOutput out) throws IOException {

// Write the data out in the order it is read
out.writeLong(min.getTime());
out.writeLong(max.getTime());
out.writeLong(count);

}
}
ADMT 2017/18 — Unit 18 J. Gamper 22/66

Summarization Patterns

Numerical Summarizations Example/3

public static class MinMaxCountMapper extends Mapper<Object,Text,Text,MinMaxCountTuple>...{
// Our output key and value Writables
private Text outUserId = new Text();
private MinMaxCountTuple outTuple = new MinMaxCountTuple();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
Map<String, String> parsed = transformXmlToMap(value.toString());

// Grab the "CreationDate" and UserID field, and parse the string into a Date object
String strDate = parsed.get("CreationDate");
String userId = parsed.get("UserId");
Date creationDate = frmt.parse(strDate);

// Set the minimum and maximum date values and the count
outTuple.setMin(creationDate);
outTuple.setMax(creationDate);
outTuple.setCount(1);

// Set our user ID as the output key
outUserId.set(userId);

// Write out the userID and the values
context.write(outUserId, outTuple);

}
}

ADMT 2017/18 — Unit 18 J. Gamper 23/66

Summarization Patterns

Numerical Summarizations Example/4

public static class MinMaxCountReducer extends
Reducer<Text, MinMaxCountTuple, Text, MinMaxCountTuple> {
// Our output value Writable
private MinMaxCountTuple result = new MinMaxCountTuple();

public void reduce(Text key, Iterable<MinMaxCountTuple> values, Context context)...{
// Initialize result
result.setMin(null);
result.setMax(null);
result.setCount(0);
int sum = 0;

// Iterate through all input values for this key
for (MinMaxCountTuple val : values) {

if (result.getMin() == null || val.getMin().compareTo(result.getMin()) < 0) {
result.setMin(val.getMin());

}
if (result.getMax() == null || val.getMax().compareTo(result.getMax()) > 0) {

result.setMax(val.getMax());
}
sum += val.getCount();

}
result.setCount(sum);

context.write(key, result);
}

}
ADMT 2017/18 — Unit 18 J. Gamper 24/66

Filtering Patterns

Outline

1 Motivation

2 Overview of MR Design Patterns

3 Summarization Patterns

4 Filtering Patterns
Filtering
Bloom Filtering
Top Ten
Distinct

5 Join Patterns
Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 25/66

Filtering Patterns

Filtering Patterns

To understand a smaller piece/subset of data

e.g., a top-ten listing, the results of a de-duplication

Sampling as a special form of filtering

Get a small representative sample of a data set.

Filtering does not change the actual records

Filtering Patterns:

Filtering
Bloom Filtering
Top Ten
Distinct

ADMT 2017/18 — Unit 18 J. Gamper 26/66

Filtering Patterns Filtering

Filtering

Filtering is the most basic pattern and evaluates each record separately
based on some condition.

Intent

Filter out records that are not of interest.
You want to focus your analysis on a subset of a large data set.

Applications

Closer view of data
Tracking a thread of events
Distributed grep
Data cleansing
Removing low scoring data (if you can score your data)

SQL resemblance

SELECT * FROM table WHERE value < x

ADMT 2017/18 — Unit 18 J. Gamper 27/66

Filtering Patterns Filtering

Filtering Structure

No reducer needed, i.e., no further processing/aggregation of the data

map(key, record) {
if we want to keep record then

emit key, value

}

ADMT 2017/18 — Unit 18 J. Gamper 28/66

Filtering Patterns Filtering

Performance Analysis

No reducers

Both the sort phase and the reduce phase are cut out
Data never has to be transmitted between the map and reduce phase.

With one single reducer, all data would be collected into a single file.

Most of the map tasks pull data off of their locally attached disks and then
write back out to that node.

ADMT 2017/18 — Unit 18 J. Gamper 29/66

Filtering Patterns Filtering

Random Sampling Example

Task: Grab a random subset of a dataset

Random number generator produces a number: if the value is below a
threshold, keep the record, otherwise skip it

Hadoop provides a setup method that is called once for each mapper prior
to the many calls to map.

public static class SRSMapper extends Mapper<Object, Text, NullWritable, Text> {
private Random rands = new Random();
private Double percentage;

protected void setup(Context context) throws ... {
// Retrieve the percentage that is passed in via the configuration
// like this: conf.set("filter percentage", .5) for .5%
String strPercentage = context.getConfiguration().get("filter percentage");
percentage = Double.parseDouble(strPercentage) / 100.0;

}

public void map(Object key, Text value, Context context) throws ... {
if (rands.nextDouble() < percentage) {

context.write(NullWritable.get(), value);
}

}
}

ADMT 2017/18 — Unit 18 J. Gamper 30/66

Filtering Patterns Bloom Filtering

Bloom Filtering/1

Intent

Keep records that are member of a predefined set of hot values
Some false positives are acceptable, i.e., some records will get through the
filter although they are not in the hot values

Applications

Removing most of the non-watched values
Prefiltering a data set for an expensive set membership check

ADMT 2017/18 — Unit 18 J. Gamper 31/66

Filtering Patterns Bloom Filtering

Bloom Filtering/2

A Bloom filter (B.H. Bloom, 1970) is a space-efficient probabilistic data
structure that is used to test set membership.
Filter returns either possibly in set or definitely not in set

i.e., false positive matches are possible, but not false negatives

The filter is represented by a bit vector of size m and k different hash
functions that map each element (hot value) of the set to one of the m bits.

Training phase: for all elements in the set, the k hash functions are
computed and the corresponding bits are set to 1.
Check membership: compute the k hash functions for the element

if all hash functions map to 1 → possibly in the set
if at least one hash functions maps to 0 → not in the set

ADMT 2017/18 — Unit 18 J. Gamper 32/66

Filtering Patterns Bloom Filtering

Bloom Filtering Structure

Structure

The Bloom filter is first
trained and stored in
the HDFS.
The mapper then calls
the setup method to
load the Bloom filter
before processing the
input data.
The DistributedCache

is a Hadoop utility that
ensures that a file in the
HDFS is present on the
local file system of each
task that requires it.

ADMT 2017/18 — Unit 18 J. Gamper 33/66

Filtering Patterns Bloom Filtering

Performance Analysis

Loading up the Bloom filter is not that expensive since the file is relatively
small.

Checking a value against the Bloom filter is also a relatively cheap
operation by O(1) hashing

ADMT 2017/18 — Unit 18 J. Gamper 34/66

Filtering Patterns Bloom Filtering

Bloom Filtering Example

Task: Given a list of user comments, filter out a majority of the comments
that do not contain any of a set of predefined keywords

public static class BloomFilteringMapper extends Mapper<Object, Text, Text, NullWritable> {
private BloomFilter filter = new BloomFilter();

protected void setup(Context context) throws ... {
// Get Bloom filter from the DistributedCache
URI[] files = DistributedCache.getCacheFiles(context.getConfiguration());
DataInputStream strm = new DataInputStream(new FileInputStream(files[0].getPath()));
filter.readFields(strm);
strm.close();

}

public void map(Object key, Text value, Context context) throws ... {
Map<String, String> parsed = transformXmlToMap(value.toString());

// Get the value for the comment
String comment = parsed.get("Text");
StringTokenizer tokenizer = new StringTokenizer(comment);

// For each word: if the word is in the filter, output the record and break
while (tokenizer.hasMoreTokens()) {

String word = tokenizer.nextToken();
if (filter.membershipTest(new Key(word.getBytes()))) {

context.write(value, NullWritable.get());
break;

}
} } }

ADMT 2017/18 — Unit 18 J. Gamper 35/66

Filtering Patterns Top Ten

Top Ten

Intent

Retrieve a small number of top K records, according to some
ranking/criterion

The number of output records should be significantly lower than the
number of input records.

It must be possible to determine an ranking.

Applications

Outlier analysis
Select interesting data (most valuable data)

SQL Resemblance

SQL: SELECT * FROM table WHERE col4 DESC LIMIT 10

ADMT 2017/18 — Unit 18 J. Gamper 36/66

Filtering Patterns Top Ten

Top Ten Structure

Mapper: find local top K

(only one) Reducer: K ·M records → the final top K

ADMT 2017/18 — Unit 18 J. Gamper 37/66

Filtering Patterns Top Ten

Performance Analysis with one Reducer

Reducer gets K ∗M records

The sort can become expensive if the reducer gets too many records and
sorting needs to be done on local disk instead of in memory

The reducer host will receive a lot of data over the network
⇒ might create a network resource hot spot

Scanning through all the data in the reduce will take a long time if there
are many records to look through.

Writes to the output file are not parallelized

ADMT 2017/18 — Unit 18 J. Gamper 38/66

Filtering Patterns Top Ten

Top Ten Example

Hadoop provides a cleanup method that is called once after all key/value
pairs have been through map (just like setup which is called before)

class mapper:

setup():
initialize top ten sorted list

map(key, record):
insert record into top ten sorted list
if length of array > 10 then

truncate list to a length of 10

cleanup():
for record in top sorted ten list:

emit null, record

class reducer:
setup():

initialize top ten sorted list

reduce(key, records):
sort records
truncate records to top 10
for record in records:

emit record

ADMT 2017/18 — Unit 18 J. Gamper 39/66

Filtering Patterns Distinct

Distinct

Intent

Find a unique set of values from similar records with potential duplicates

Applications

Deduplicate data
Getting distinct values
Protecting from an inner join explosion

SQL Resemblance

SQL: SELECT DISTINCT * FROM table;

ADMT 2017/18 — Unit 18 J. Gamper 40/66

Filtering Patterns Distinct

Distinct Structure

Exploits MapReduce’s ability to group keys together to remove duplicates

The mapper outputs the input value as intermediate key

Reducer groups all duplicates together and simply outputs the key

Duplicate records are often located close to each other in a data set, so a
combiner will deduplicate most of them in the map phase

map(key, record):

emit (record, null)

reduce(key, records):

emit (key)

ADMT 2017/18 — Unit 18 J. Gamper 41/66

Filtering Patterns Distinct

Performance Analysis

Finding the right number of reducers is crucial

If duplicates are very rare within an input split, almost all of the data is
sent to the reduce phase, hence use many reducers

If there are many duplicates, many reducers might produce very small
output files, and therefore unecessary overhead

ADMT 2017/18 — Unit 18 J. Gamper 42/66

Join Patterns

Outline

1 Motivation

2 Overview of MR Design Patterns

3 Summarization Patterns

4 Filtering Patterns
Filtering
Bloom Filtering
Top Ten
Distinct

5 Join Patterns
Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 43/66

Join Patterns

Join Patterns

An SQL query walks into a bar, sees two
tables and asks them “May I join you?”

Joins are very important in RDBMS, but among the most complex
operations in MapReduce

MR is good in processing datasets by looking at each record in isolation
Joining/combining datasets does not fit gracefully into the MR paradigm

Refresh of RDMS equality joins

Inner Join
Outer Join
Cartesian Product
Anti Join = full outer join − inner join

Join patterns in MR

Reduce Side Join
Replicated Join
Composite Join
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 44/66

Join Patterns Reduce Side Join

Reduce Side Join

Reduce Side Join: Reducer executes the actual join

Join large multiple data sets by a foreign key
Simple to implement in Reducers
Supports all different join operations
No limitation on the size of the data sets

SQL resemblance

SELECT users.ID, users.Location, comments.upVotes

FROM users [INNER|LEFT|RIGHT] JOIN comments

ON users.ID = comments.UserID

ADMT 2017/18 — Unit 18 J. Gamper 45/66

Join Patterns Reduce Side Join

Reduce Side Join Structure

Mapper prepares (key, record)
key is the join attribute, the (data) record is flagged with ID of data set

Reducer performs join operation on identical keys
Creates for each key a list for each data set and joins them

ADMT 2017/18 — Unit 18 J. Gamper 46/66

Join Patterns Reduce Side Join

Performance Analysis

Cluster’s network bandwidth is bottleneck!!!

Pretty much all of the data is sent to the shuffle and sort step

Utilize relatively more reducers than for other analytic tasks

ADMT 2017/18 — Unit 18 J. Gamper 47/66

Join Patterns Reduce Side Join

Reduce Side Join Example/1

Task: Enrich comments with user information
Table A contains user information, table B contains user comments
Connected by user ID

Mapper
The UserJoinMapper adds “A” in front of each value/record

Thus, the reducer knows from which relation the value comes

Similar, the CommentJoinMapper prepends “B”

public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {
private Text outkey = new Text();
private Text outvalue = new Text();

public void map(Object key, Text value, Context context) throws ...{
// Parse the input string and extract the user ID
String userId = value.toString().get("Id");

// The foreign join key is the user ID
outkey.set(userId);

// Flag this record for the reducer and then output
outvalue.set("A" + value.toString());
context.write(outkey, outvalue);

}
}

ADMT 2017/18 — Unit 18 J. Gamper 48/66

Join Patterns Reduce Side Join

Reduce Side Join Example/2

Reducer iterates through all values of each group and separates the values
Join logic is applied then on these lists (and differs depending on the join)

public static class UserJoinReducer extends Reducer<Text, Text, Text, Text> {
private ArrayList<Text> listA = new ArrayList<Text>();
private ArrayList<Text> listB = new ArrayList<Text>();
private String joinType = null;

public void setup(Context context) {
joinType = context.getConfiguration().get("join.type");

}

public void reduce(Text key, Iterable<Text> values, Context context) throws ...{
listA.clear(); listB.clear();

// Iterate through all values and separate them into an A-list and B-list
while (values.hasNext()) {

tmp = values.next();
if (tmp.charAt(0) == ’A’) {

listA.add(new Text(tmp.toString().substring(1)));
} else if (tmp.charAt(’0’) == ’B’) {

listB.add(new Text(tmp.toString().substring(1)));
}

}
// Execute our join logic now that the lists are filled
executeJoinLogic(context);

}
...

ADMT 2017/18 — Unit 18 J. Gamper 49/66

Join Patterns Reduce Side Join

Reduce Side Join Example/3

executeJoinLogic computes the actual join as part of the reducer task

Inner join: if both lists are not empty, simply perform two nested loops and
join each of the values.

private void exectueJoinLogic(Context context) throws ... {
...
if (joinType.equalsIgnoreCase("inner")) {

// If both lists are not empty, join A with B
if (!listA.isEmpty() && !listB.isEmpty()) {

for (Text A : listA) {
for (Text B : listB) {

context.write(A, B);
}

}
}

}
...

ADMT 2017/18 — Unit 18 J. Gamper 50/66

Join Patterns Reduce Side Join

Reduce Side Join Example/4

Left outer join:

if the right list is not empty, join A with B;
otherwise, output each record of A with an empty string.

Right outer join is similar.

...
else if (joinType.equalsIgnoreCase("leftouter")) {

// For each entry in A
for (Text A : listA) {

if (!listB.isEmpty()) {
// Join A and B
for (Text B : listB) {

context.write(A, B);
}

} else {
// Output A with empty string
context.write(A, "");

}
}

}
...

ADMT 2017/18 — Unit 18 J. Gamper 51/66

Join Patterns Reduce Side Join

Reduce Side Join Example/5

Full outer join: all records need to be kept
if list A is not empty, for every element in A:

join with B if B is not empty;
otherwise, output A;

if A is empty, just output B.

else if (joinType.equalsIgnoreCase("fullouter")) {
if (!listA.isEmpty()) {

for (Text A : listA) {
if (!listB.isEmpty()) {

// Join A with B
for (Text B : listB) {

context.write(A, B);
}

} else {
// Output A with empty string
context.write(A, "");

}
}

} else {
// list A is empty: just output B
for (Text B : listB) {

context.write("", B);
}

}
}

ADMT 2017/18 — Unit 18 J. Gamper 52/66

Join Patterns Reduce Side Join

Reduce Side Join Example/6

Anti join: if exactly one of the lists is empty, output the records from the
non-empty list with an empty text.

Recall that the anti-join contains only those tuples from both relations that
do not have a match in the other relation.

...
else if (joinType.equalsIgnoreCase("anti")) {

// If list A is empty and B is not empty or vice versa
if (listA.isEmpty() XOR listB.isEmpty()) {

// Iterate over both A and B
// The previous XOR check will make sure exactly one of
// these lists is empty and therefore the list will be skipped
for (Text A : listA) {

context.write(A, EMPTY TEXT);
}
for (Text B : listB) {

context.write(EMPTY TEXT, B);
}

}
}
...

ADMT 2017/18 — Unit 18 J. Gamper 53/66

Join Patterns Replicated Join

Replicated Join

Replicated Join: Mapper implements the actual join, no reducer is used

All data sets, except a large one, are read into memory during the setup
phase of each map task

The large data set is the “left” part of the join.

ADMT 2017/18 — Unit 18 J. Gamper 54/66

Join Patterns Replicated Join

Replicated Join Structure

Map-only pattern, i.e., no combiner,
partitioner or reducer is used

Read all files from the distributed cache
during the setup of the mapper method
and store them into in-memory lookup
tables.

Mapper processes each record and joins
it with all the data stored in memory.

ADMT 2017/18 — Unit 18 J. Gamper 55/66

Join Patterns Replicated Join

Performance Analysis

Eliminates the need to shuffle any data to the reduce phase.

A replicated join can be the fastest type of join because no reducer is
required

Limited by the amount of data that can be stored safely inside JVM.

ADMT 2017/18 — Unit 18 J. Gamper 56/66

Join Patterns Replicated Join

Replicated Join Example/1

Task: Enrich comments (large relation) with user information (small
relation)

public static class ReplicatedJoinMapper extends Mapper<Object, Text, Text, Text> {
private HashMap<String, String> userIdToInfo = new HashMap<String, String>();
private Text outvalue = new Text();
private String joinType = null;

public void setup(Context context) throws ... {
Path[] files = DistributedCache.getLocalCacheFiles(context.getConfiguration());
// Read all files in the DistributedCache
for (Path p : files) {

BufferedReader rdr = new BufferedReader(... new File(p.toString())...);
String line = null;

while ((line = rdr.readLine()) != null) {
// Get the user ID for this record
String userId = line.get("Id");
// Map the user ID to the record
userIdToInfo.put(userId, line);

}
}
// Get the join type from the configuration
joinType = context.getConfiguration().get("join.type");

}
...

ADMT 2017/18 — Unit 18 J. Gamper 57/66

Join Patterns Replicated Join

Replicated Join Example/2

...
public void map(Object key, Text value, Context context) throws ... {

String userId = value.toString().get("UserId");
String userInformation = userIdToInfo.get(userId);

if (userInformation != null) {
// If the user information is not null, then output
outvalue.set(userInformation);
context.write(value, outvalue);

} else if (joinType.equalsIgnoreCase("leftouter")) {
// For a left outer join output the record with an empty value
context.write(value, "");

}
}

}

ADMT 2017/18 — Unit 18 J. Gamper 58/66

Join Patterns Composite Join

Composite Join

Composite join is performed on the map-side with many very large inputs.

Completely eliminates the need to shuffle and sort all the data to the
reduce phase.

Data need to be already organized or prepared in a very specific way:

Sorted by foreign key, partitioned by foreign key, and read in a very
particular manner.

Particularly useful if you want to join very large data sets together.

ADMT 2017/18 — Unit 18 J. Gamper 59/66

Join Patterns Composite Join

Composite Join Applicability

All data sets can be read with the
foreign key as the input key to the
mapper.

All data sets have the same
number of partitions.

Each partition is sorted by foreign
key, and all the foreign keys reside
in the associated partition of each
data set.

The data sets do not change often
(if they have to be prepared).

ADMT 2017/18 — Unit 18 J. Gamper 60/66

Join Patterns Composite Join

Composite Join Structure

Map-only

Mapper is very trivial.

Two values are retrieved from the input
tuple and output to file system, e.g.,
(key, value1, value2)

Most of the work is done by the driver
code CompositeInputFormat

parses all the input files and outputs
records to the mapper.

ADMT 2017/18 — Unit 18 J. Gamper 61/66

Join Patterns Composite Join

Composite Join Performance Analysis

Can be executed relatively quickly over large data sets.

Data Preparation = sorting cost

The cost of preparing the data is averaged out over all of the runs.

ADMT 2017/18 — Unit 18 J. Gamper 62/66

Join Patterns Cartesian Product

Cartesian Product

Intent

Pair up and compare every single record with every other record in one or
more data sets

A Cartesian product does not fit nicely into the MapReduce paradigm

The operation is not intuitively splittable and cannot be parallelized very well

Applications

You want to analyze relationships between all pairs of individual records.

SQL Resemblance

SELECT * FROM tableA, tableB;

ADMT 2017/18 — Unit 18 J. Gamper 63/66

Join Patterns Cartesian Product

Cartesian Product Structure

Map-only

Essentially a RecordReader
job

Cross product of input splits
is determined during job
setup.

Each record reader is
responsible for generating the
cross product of records from
both input splits.

ADMT 2017/18 — Unit 18 J. Gamper 64/66

Join Patterns Cartesian Product

Cartesian Product Performance Analysis

A massive explosion in data size O(n2)

If a single input split contains a thousand records → the right input split
needs to be read a thousand times before the task can finish.

If a single task fails for an odd reason, the whole thing needs to be
restarted.

ADMT 2017/18 — Unit 18 J. Gamper 65/66

Summary

MapReduce requires a new way of thinking and problem solving.

Common pitfalls:
Mappers and reducers should be stateless.
Avoid your own IO and too much data to the same key.

Design patterns are helpful for designing MapReduce algorithms.
Provide templates for solving common data manipulation problems.
Different categories of patterns.

Filtering patterns are used to extract a small subset of the data.
Filter analyse each record individually, and data is not modified.
Sampling as a special form of filtering
Different filtering patterns: Filtering, Bloom filtering, Top Ten, Distinct.

Numerical summarization patterns for calculating aggregate values.

Join patterns combine data from different sources
Among the most complex patterns in MR
Combining data does not fit gracefully into the MR paradigm (which
considers tuples individually)
Different join patterns: Reduce Side Join, Replicated Join, Composite Join,
Cartesian Product

ADMT 2017/18 — Unit 18 J. Gamper 66/66

	Motivation
	Overview of MR Design Patterns
	Summarization Patterns
	Filtering Patterns
	Filtering
	Bloom Filtering
	Top Ten
	Distinct

	Join Patterns
	Reduce Side Join
	Replicated Join
	Composite Join
	Cartesian Product

