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Introduction

Motivation

In pioneer days they used oxen for heavy pulling, and
when one ox couldn’t budge a log, they didn’t try to grow
a larger ox. We shouldn’t be trying for bigger computers,
but for more systems of computers.

— Grace Hopper

Many problems cannot be easily scaled to the Web, e.g., ≈ 20TB per
Google crawl

Document inversion
PageRank computation
Web log mining

Traditional programming is serial.

Parallel programming breaks processing into parts that can be executed
concurrently on multiple processors.

Large clusters of commodity Hardware/PCs are networked.

Challenge
Provide a simple framework for distributed/parallel data processing based on
the available commmodity hardware.
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Introduction

Simplest Environment for Parallel Processing

No dependency among data

Data can be split into equal-size chunks

Each process can work on a chunk

Master/worker approach
Master

Splits data into chunks according to # of workers
Sends each worker a chunk
Receives the results from each worker

Worker

Receives a chunk from master
Performs processing
Sends results to master
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Introduction

Challenges of Parallel/Distributed Processing

There are dependencies among data

Identify tasks that can run concurrently

Identify groups of data that can be processed concurrently

Not all problems can be parallelized!

Communication and synchronization between distributed nodes

Distribute and balance tasks/data to optimize the throughput

Error handling if node or parts of the network are broken
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Introduction

MapReduce

A distributed programming model

Created by Google in 2004 (Jeffrey Dean and Sanjay Ghemawat)

Inspired by LISP’s map and reduce functions
Map(function, set of values)

Applies function to each value in the set
(map ’length’(() (a) (a b) (a b c))) ⇒ (0 1 2 3)

Reduce(function, set of values)

Combines all the values using a binary function (e.g., +)
(reduce ’+’(1 2 3 4 5)) ⇒ 15
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Introduction

MapReduce Features

Complete framework for parallel and distributed computing

Programmers get a simple but powerful API

map function
reduce function

Programmers don’t have to worry about handling

parallelization
data distribution
load balancing
fault tolerance

Detects machine failures and redistributes work

Implementation within hours, not weeks

Allows to process huge amounts of data (terabytes and petabytes) on
thousands of processors.
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MR Programming Model

Common Data Processing Pattern

The following five steps characterize much of our data processing
1 Iterate over large amounts of data
2 Extract something of interest
3 Group things of interest
4 Aggregate interesting things
5 Produce output

MapReduce provides an abstraction of these steps into two operations

Map function: combines step 1 + 2
Reduce function: combines step 3 + 4 + 5
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MR Programming Model

Basic MapReduce Programming Model

User specifies two functions that have key/value pairs in input and output

Map : (k , v)→ list(k ′, v ′)

Function is applied to each input key/value pair
Produces one or more intermediate key/value pairs

Reduce : (k ′, list(v ′))→ list(v ′′)

All intermediate values for a particular key are first merged
Function is applied to each key/(merged) values to aggregate them

Input Map : (k , v)→ list(k ′, v ′) Reduce : (k ′, list(v ′))→ list(v ′′) Output

Mapper Reducer
Shuffling

Shuffling is the process of grouping and copying the intermediate data from
the mappers’ local disk to the reducers
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MR Programming Model

MapReduce Example

Compute the total adRevenue for the following relation:
UserVisits(sourceIP, destURL, adRevenue, userAgent, ...):

Map function

Assumes that input tuples are strings separated by “|”
Generates key/value pairs (sourceIP, adRevenue)

map(String key, String value);

String[] array = value.split(‘‘|’’);

EmitIntermediate(array[0], ParseFloat(array[2]);

Reduce function

Intermediate key/value pairs are grouped into (sourceIP, [adRevenue1, . . . ])
Sum of adRevenue values for each sourceIP are output

reduce(String key, Iterator values);

float totalRevenue = 0;

while values.hasNext() do
totalRevenue += values.next();

Emit(key, totalRevenue);
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MR Programming Model

MapReduce Architecture

MapReduce processing engine has two types of nodes:
Master node: controls the execution of the tasks;
Worker nodes: responsible for the map and reduce tasks.

Basic MapReduce engine includes the following modules:
Scheduler: assigns map and reduce tasks to worker nodes
Map module: scans a data chunk and invokes the map function
Reduce module: pulls intermediate key/values pairs from the mappers,
merges the data by keys, and applies the reduce function
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MR Programming Model

MapReduce Execution Overview
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MR Programming Model

MR Step 1: Split Input Files

Input can be many files or a single big file.

Break up the input data into M pieces (typically 64 MB)
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MR Programming Model

MR Step 2: Fork Processes

Start up many copies of the program on a cluster of machines

One master node: scheduler & coordinator
Lots of worker nodes

Idle workers are assigned either

map tasks (each works on a shard) – there are M map tasks/workers
reduce tasks (each works on intermediate files) – there are R reduce tasks
(R = # of partitions defined by the user)

ADMT 2017/18 — Unit 16 J. Gamper 16/53



MR Programming Model

MR Step 3: Map Task

Reads contents of the input shard assigned to it

Parses key/value pairs out of the input data

Passes each pair to the user-defined map function

map : (k , v)→ list(k ′, v ′)

which produces intermediate key/value pairs

They are buffered in local memory
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MR Programming Model

MR Step 4: Intermediate Files and Partitioning

Intermediate key/value pairs are periodically written from memory to local
disk.

Thereby, key/value pairs are sorted by keys and grouped into R partitions

Default partitioning function: hash(key) mod R

Master node is notified about the position of the intermediate result

Reduce nodes will read the associated partition from every Map node
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MR Programming Model

MR Step 5: Sorting

Reduce worker gets notified by the master about the location of
intermediate files for its partition.

Uses RPCs to read the data from the local disks of the map workers.

When the reduce worker reads intermediate data:

it merge-sorts the data from the different map tasks by the intermediate keys
such that all occurrences of the same key are grouped together.
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MR Programming Model

MR Step 6: Reduce Task

Key and set of intermediate values for that key is given to the reduce
function:

reduce : (k ′, [v ′
1, v

′
2, v

′
3, v

′
4, . . . ])→ list(v ′′)

The output of the Reduce function is appended to an output file.

The reduce function can only start when all mappers are done!

ADMT 2017/18 — Unit 16 J. Gamper 20/53



MR Programming Model

MR Step 7: Return to User

When all map and reduce tasks have completed, the master wakes up the
user program.

The MapReduce call in the user program returns and the program can
resume execution.

Output of MapReduce is available in R output files.
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MR Programming Model

Word Count Example/1

Task: Count # of occurrences of each word in a collection of documents

Input: Large number of text documents

Output: Word count across all the documents

MapReduce solution

Map: Parse data and output (word , ”1”) for every word in a document.
Reduce: For each word, sum all occurrences and output (word , total count)

map(String key, String value);

// key: document name

// value: document contents

foreach word w in value do
EmitIntermediate(w, "1");

reduce(String key, Iterator values);

// key: a word

// values: a list of counts

int result = 0;

foreach v in values do
result += ParseInt(v);

Emit(key, AsString(result));
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MR Programming Model

Word Count Example/2
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MR Programming Model

Word Count Example/3

Input documents
(1, “the apple”)
(2, “is an apple”)
(3, “not an orange”)
(4, “because the”)
(5, “orange”)
(6, “unlike the apple”)
(7, “is orange”)
(8, “not green”)

Map task
(“an”, 1)
(“an”, 1)
(“apple”, 1)
(“apple”, 1)
(“is”, 1)
(“not”, 1)
(“orange”, 1)
(“the”, 1)

Map task
(“apple”, 1)
(“because”, 1)
(“orange”, 1)
(“the”, 1)
(“the”, 1)
(“unlike”, 1)

Map task
(“green”, 1)
(“is”, 1)
(“not”, 1)
(“orange”, 1)

Reduce (A–N)
(“an”, [1, 1])
(“apple”, [1, 1, 1])
(“because”, [1])
(“green”, [1])
(“is”, [1, 1])
(“not”, [1, 1])

Reduce (M–Z)
(“orange”, [1, 1,1])
(“the”, [1, 1, 1])
(“unlike”, [1])

Output
(“an”, 2)
(“apple”, 3)
(“because”, 1)
(“green, 1)
(“is”, 2)
(“not”, 2)

Output
(“orange”, 3)
(“the”, 3)
(“unlike”, 1)

Shar
d

1

Shard 2

Shard
3

A-N

M
-Z

ADMT 2017/18 — Unit 16 J. Gamper 24/53



Extensions and Optimizations

Outline

1 Introduction

2 MR Programming Model

3 Extensions and Optimizations

4 MapReduce Implementations and Alternatives

ADMT 2017/18 — Unit 16 J. Gamper 25/53



Extensions and Optimizations

MR Extensions and Optimizations

To improve efficiency and usability, the basic MR architecture (scheduler,
map module and reduce module) is usually extended by additional modules
that can be customized by the user.
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Extensions and Optimizations

Extensions and Optimizations in Map Process

Input module
Responsible for recognizing the input data with different input formats and
splitting the input data into key/value pairs.
Supports different storage systems, e.g., text files, binary files, databases

Combine module
combine: (k ′, list(v ′)) → list(k ′, v ′′)
Mini-reducer that runs in the mapper to reduce the number of key/value
paris shuffled to the reducer (reduce network traffic)

Partition module
Divides up the intermediate key space for parallel reduce operations,

specifies which key/value pairs are shuffled to which reducers

Default partition function: f (k ′) = hash(k ′) mod #reducers
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Extensions and Optimizations

Extensions and Optimizations in Reduce Process

Output module

Similar to input module, but for the output

Group module

Specifies how to merge data received from different mappers into one sorted
run in the reduce phase
Example: if the map output key is a composition (sourceIP, destURL), the
group function can only compare a subset (sourceIP)
Thus, the reduce function is applied to the key/value pairs with the same
sourceIP.
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Extensions and Optimizations

Word Count Example: Combiner Function

combine(String key, Iterator values);

// key: a word; values: a list of counts

int partial word count = 0;

foreach v in values do
partial word count += ParseInt(v);

Emit(key, AsString(partial word count));
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Extensions and Optimizations

Relative Word Frequency Example: Naive Solution

Input: Large number of text documents

Task: Compute relative word frequency across all documents

Relative frequency is calculated with respect to the total word count

A naive solution with basic MapReduce model requires two MR cycles

MR1: count number of all words in these documents
MR2: count number of each word and divide it by the total count from MR1

Can we do it better?
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Extensions and Optimizations

Features of Google’s MR Implementation

Google’s MapReduce implementation offers two nice features

Ordering guarantee of reduce keys

Reducer processes the (key, list(value))-pairs in the order of the keys

Auxiliary functionality: EmitToAllReducers(k, v)

Sends k/v -pair to all reducers
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Extensions and Optimizations

Rel. Word Frequency Example: Advanced Solution

The features in the previous slide allow better solution to compute the
relative word frequency

Only one MR cycle is needed
Every map task sends its total word count with key ““ to all reducers (in
addition to the word count “1” for each single word)
The sum of values with key ”” gives the total number of words
Key ”” will be the first key processed by the reducer

Thus, total number of words is known before processing individual words
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Extensions and Optimizations

Rel. Word Frequency Example: Mapper/Combiner

map(String key, String value);

// key: document name; value: document contents

int word count = 0;

foreach word w in value do
EmitIntermediate(w, "1");

word count++;

EmitIntermediateToAllReducers("", AsString(word count));

combine(String key, Iterator values);

// key: a word; values: a list of counts

int partial word count = 0;

foreach v in values do
partial word count += ParseInt(v);

Emit(key, AsString(partial word count));
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Extensions and Optimizations

Rel. Word Frequency Example: Reducer

reduce(String key, Iterator values);

// key: a word; values: a list of counts

if key == ”” then
total word count = 0;

foreach v in values do
total word count += ParseInt(v);

else
// key != ""

int word count = 0;

foreach v in values do
word count += ParseInt(v);

Emit(key, AsString(word count / total word count));
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Extensions and Optimizations

Other Examples

Distributed grep (search for words)

Task: Search for words in lots of documents
Map: emit a line if it matches a given pattern
Reduce: just copy the intermediate data to the output

Count URL access frequency

Task: Find the frequency of each URL in web logs
Map: process logs of web page access; output <URL, 1>
Reduce: add all values for the same URL

Inverted index

Task: Find what documents contain a specific word
Map: parse document, emit <word, document-ID> pairs
Reduce: for each word, sort the corresponding document IDs
Emit a <word, list(document-ID)>-pair
The set of all output pairs is an inverted index
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MapReduce Implementations and Alternatives

Comparing MapReduce and RDBMS

Traditional RDBMS MapReduce
Data size Gigabytes Petabytes
Access Interactive and batch Batch
Updates Read and write many times Write once, read many times
Structure Static schema Dynamic schema
Integrity High Low
Scaling Nonlinear Linear
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MapReduce Implementations and Alternatives

Comparing MPI, MapReduce, and RDBMS/1
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MapReduce Implementations and Alternatives

Comparing MPI, MapReduce, and RDBMS/2

MPI MapReduce DBMS/SQL
What they are A general parrellel program-

ming paradigm
A programming paradigm
and its associated execution
system

A system to store, manipu-
late and serve data

Programming
Model

Messages passing between
nodes

Restricted to Map/Reduce
operations

Declarative on data
query/retrieving; stored
procedures

Data organization No assumption “files” can be sharded Organized data structures
Data to be ma-
nipulated

Any k, v -pairs: string Tables with rich types

Execution model Nodes are independent Map/Shuffle/Reduce,
Checkpointing/Backup,
Physical data locality

Transaction,
Query/operation opti-
mization, Materialized
view

Usability Steep learning curve; diffi-
cult to debug

Simple concept; Could be
hard to optimize

Declarative interface; Could
be hard to debug in runtime

Key selling point Flexible to accommodate
various applications

Plow through large amount
of data with commodity
hardware

Interactive querying the
data; Maintain a consistent
view across clients
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MapReduce Implementations and Alternatives

Different MapReduce Implementations

Google MapReduce
Original proprietary implementation
Based on proprietary infrastructures

GFS(SOSP’03), MapReduce(OSDI’04) , Sawzall(SPJ’05), Chubby
(OSDI’06), Bigtable(OSDI’06)
and some open source libraries

Support C++, Java, Python, Sawzall, etc.

Apache Hadoop MapReduce
Most common (open-source!) implementation
Built on specs defined by Google
Plus the whole equivalent package, and more

HDFS, Map-Reduce, Pig, Zookeeper, HBase, Hive

Used by Yahoo!, Facebook, Amazon and Google-IBM NSF cluster

Amazon Elastic MapReduce
Uses Hadoop MapReduce running on Amazon EC2

Dryad
Proprietary, based on Microsoft SQL servers
Dryad(EuroSys’07), DryadLINQ(OSDI’08)
Michael’s Dryad TechTalk@Google (Nov.’07)
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MapReduce Implementations and Alternatives

Comparison of MapReduce Implementations

Name Language File System Index Master Server Multiple
Job
Support

Hadoop Java HDFS No Name Node and
Job Tracker

Yes

Cascading Java HDFS No Name Node and
Job Tracker

Yes

Sailfish Java HDFS + I-file No Name Node and
Job Tracker

Yes

Disco Python and Erlang Distributed Index Disco Server No No
Skynet Ruby MySQL or Unix

File System
No Any node in the

cluster
No

FileMap Shell and Perl
Scripts

Unix File System No Any node in the
cluster

No

Themis Java HDFS No Name Node and
Job Tracker

Yes

Other implementations
Oracle provides a MapReduce implementation by using its parallel pipelined
table functions and parallel operations
New DBMSs provide built-in MR support, e.g., Greenplum
(http://www.greenplum.com), Aster (http://www.asterdata.com/),
MongoDB (http://www.mongodb.org)
Some stream systems, such as IBM’s SPADE, are also enhanced with MR
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MapReduce Implementations and Alternatives

MapReduce @ Google/1

Google’s hammer for 80% of data crunching

Large-scale web search indexing
Clustering problems for Google News
Produce reports for popular queries, e.g. Google Trend
Processing of satellite imagery data
Language model processing for statistical machine translation
Large-scale machine learning problems
Just a plain tool to reliably spawn large number of tasks

e.g. parallel data backup and restore
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MapReduce Implementations and Alternatives

MapReduce @ Google/2

MapReduce was used to process web data collected by Google’s crawlers.
Extract the links and metadata needed to search the pages
Determine the site’s PageRank
Move results to search servers
The process took around eight hours.

Web has become more dynamic
An 8+ hour delay is a lot for some sites

Goal: refresh certain pages within seconds

Search framework updated in 2009-2010: Caffeine
Index updated by making direct changes to data stored in BigTable

MapReduce is still used for many Google services
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MapReduce Implementations and Alternatives

What is Hadoop?/1

A software framework that supports data-intensive distributed applications.

It enables applications to work with thousands of nodes and petabytes of
data.

Hadoop was inspired by Google’s MapReduce and Google File System
(GFS).

Hadoop is a top-level Apache project being built and used by a global
community of contributors, using the Java programming language.

Yahoo! has been the largest contributor to the project, and uses Hadoop
extensively across its businesses.
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MapReduce Implementations and Alternatives

What is Hadoop?/2
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MapReduce Implementations and Alternatives

Who uses Hadoop?

Yahoo!
More than 100,000 CPUs in >36,000 computers.

Facebook
Used in reporting/analytics and machine learning and also as storage engine
for logs.
A 1100-machine cluster with 8800 cores and about 12 PB raw storage.
A 300-machine cluster with 2400 cores and about 3 PB raw storage.
Each (commodity) node has 8 cores and 12 TB of storage.
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MapReduce Implementations and Alternatives

Hadoop API/1

Input

Set of files that are spread out over the Hadoop Distributed File System
(HDFS)

Map phase/tasks
Record reader

Translates an input shard/split into key-value pairs (records).

Map

Applies the map function.

Combiner

An optional localized reducer to aggregate values of a single mapper.
Is an optimization and can be called 0, 1, or several times.
No guarantee how often it is called!

Partitioner

Takes the intermediate key-value pairs from the mapper and splits them up
into shards (one shard per reducer).
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MapReduce Implementations and Alternatives

Hadoop API/2

Reduce phase/tasks
Shuffle and sort

Reads the output files written by all of the partitioners and downloads them
to the local machine.
The individual data are sorted by the intermediate key into one large data list
→ group equivalent keys together.
This step is not customizable, i.e., completely done by the system.
Only customization is to specify a Comparator class for sorting the data.

Reduce

Apply the reduce function.

Output format

Translates the final key-value pairs from the reduce function into a
customized output format.
The output is written to HDFS.
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MapReduce Implementations and Alternatives

WordCount Example in Hadoop – Mapper

Mapper class with abstract map function.

Four parameters: type of input key, input value, output key, output value.

Hadoop provides its own set of data types that are optimized for network
serialization, e.g., Text (= String) or IntWritable (= int).

map has 3 parameters: key, value, context where to write the output.
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MapReduce Implementations and Alternatives

WordCount Example in Hadoop – Reducer

Reducer class with abstract reduce function.

Four parameters: type of input key, input value, output key, output value.

reduce has 3 parameters: key, value, context where to write the output.

Input types of reduce must match the output types of map.
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MapReduce Implementations and Alternatives

WordCount Example in Hadoop – Main
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MapReduce Implementations and Alternatives

Limitations of MapReduce

Batch-oriented

Not suited for near-real-time processes

Cannot start a new phase until the previous has completed

Reduce cannot start until all Map workers have completed

Suffers from “stragglers” – workers that take too long (or fail)
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Summary

MapReduce is a framework for distributed and parallel data processing

Simple programming model with a map and reduce function

Handles automatically parallelization, data distribution, load balancing and
fault tolerance

Allows to process huge amounts of data by commodity hardware.

Different MapReduce implementations are available
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