
Advanced Data Management Technologies
Unit 15 — Introduction to NoSQL

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

ADMT 2017/18 — Unit 15 J. Gamper 1/44



Outline

1 Motivation

2 NoSQL

3 Categories of NoSQL Datastores
Key-Value Stores
Column Stores
Document Stores
Graph Databases

ADMT 2017/18 — Unit 15 J. Gamper 2/44



Motivation

Outline

1 Motivation

2 NoSQL

3 Categories of NoSQL Datastores
Key-Value Stores
Column Stores
Document Stores
Graph Databases

ADMT 2017/18 — Unit 15 J. Gamper 3/44



Motivation

New Trends

ADMT 2017/18 — Unit 15 J. Gamper 4/44



Motivation

Big Data – The Digital Age/1

IDC/EMC annual report “The Diverse and Exploding Digital Universe”:
The worlds information is doubling every two years. In 2011 the world will
create a staggering 1.8 zettabytes. By 2020 the world will generate 50
times the amount of information . . . while IT staff to manage it will grow
less than 1.5 times.
New ”information taming” technologies such as deduplication, compression,
and analysis tools are driving down the cost of creating, capturing,
managing, and storing information to one-sixth the cost in 2011 in
comparison to 2005.

1 zettabyte = 1021 bytes = 1 bio. terabytes

ADMT 2017/18 — Unit 15 J. Gamper 5/44



Motivation

Big Data – The Digital Age/2

The New York Stock Exchange
generates about 1 terabyte of new
trade data per day.

Facebook hosts approximately 10
billion photos, taking up one
petabyte of storage.

Ancestry.com, the genealogy site,
stores around 2.5 petabytes of
data.

The Large Hadron Collider near
Geneva will produce about 15
petabytes of data per year.

But even an email might produce a
lot of data.

ADMT 2017/18 — Unit 15 J. Gamper 6/44



Motivation

3 V’s of Big Data

More V’s are coming up:

Veracity: accuracy and quality of data is difficult to control
Value: it is important to turn big data it into value
. . .

ADMT 2017/18 — Unit 15 J. Gamper 7/44



Motivation

RDBMSs

The predominant choice in storing data up until now.
First formulated in 1969 by Codd

We are using RDBMS everywhere!

BUT, are RDBMSs good in managing todays data?

ADMT 2017/18 — Unit 15 J. Gamper 8/44



Motivation

The Death of RDBMS?

ADMT 2017/18 — Unit 15 J. Gamper 9/44



Motivation

What is Wrong with RDBMSs?

Nothing is wrong. They are great . . .

SQL provides a rich, declarative language

Database enforce referential integrity

ACID properties are guaranteed

Well understood by developers and administrators

Support by many different languages

ADMT 2017/18 — Unit 15 J. Gamper 10/44



Motivation

ACID Properites

Atomicity – all or nothing

Consistency – any transaction will take the DB from one consistent state
to another with no broken contraints (referential integrity)

Isolation – other operations cannot access data that has been modified
during a transaction that has not yet completed

Durability – ability to recover the committed transaction updates against
any kind of systems failure

ADMT 2017/18 — Unit 15 J. Gamper 11/44



Motivation

But there are some Problems with RDBMSs

Problem: Complex objects

Object/relational impedance mismatch
Complicated to map rich domain model
Performance issues: many rows in many tables, many joins, . . .

Problem: Schema evolution

Adding attributes to an object ⇒ have to add columns to a table
Expensive for large tables
Holding locks on the tables for long time

Problem: Semi-structered data

Relational schema does not easily handle semi-structured data
Common solutions

Name/Value table: poor performance
Serializable as Blob: fewer joins but no query capabilities

Problem: Relational is hard to scale

ACID does not scale well
Easy to scale reads, but hard to scale writes

ADMT 2017/18 — Unit 15 J. Gamper 12/44



Motivation

One Size does not Fit All!

There is nothing wrong with RDBMSs, but one size does not fit all!

Alternative tools are available, just use the right tool.

The rise of NoSQL databases marks the end of the era of relational
database dominance.

But NoSQL databases will not become the new dominators.

Relational will still be popular, and used in the majority of situations.

They, however, will no longer be the automatic choice.

ADMT 2017/18 — Unit 15 J. Gamper 13/44



NoSQL

Outline

1 Motivation

2 NoSQL

3 Categories of NoSQL Datastores
Key-Value Stores
Column Stores
Document Stores
Graph Databases

ADMT 2017/18 — Unit 15 J. Gamper 14/44



NoSQL

What is NoSQL?

“SQL”or “Not Only SQL” or “No to
SQL”?

There is no standard definition!

The term NoSQL was coined by Carlo
Strozzi in 1998

In 2009 used by Eric Evans to refer to
DBs which are non-relational, distributed
and not conform to ACID.

In 2009 first NoSQL conference

Refers generally to data models that are
non-relational, schema-free,
non-(quite)-ACID, horizontally scalable,
distributed, easy replication support,
simple API

ADMT 2017/18 — Unit 15 J. Gamper 15/44



NoSQL

Changing Requirements in the Web Age

ACID properties are always desirable

But, web applications have different needs from applications that RDBMS
were designed for

Low and predictable response time (latency)
Scalability & elasticity (at low cost!)
High availability
Flexible schemas and semi-structured data
Geographic distribution (multiple data centers)

Web applications can (usually) do without

Transactions, strong consistency, integrity
Complex queries

ADMT 2017/18 — Unit 15 J. Gamper 16/44



NoSQL

CAP Theorem/1

Desired properties of web applications:
Consistency – the system is in a consistent state after an operation

All clients see the same data
Strong consistency (ACID) vs. eventual consistency (BASE)

Availability – the system is “always on”, no downtime

Node failure tolerance – all clients can find some available replica
Software/hardware upgrade tolerance

Partition tolerance – the system continues to function even when split into
disconnected subsets, e.g., due to network errors or addition/removal of
nodes

Not only for reads, but writes as well!

CAP Theorem (E. Brewer, N. Lynch)

In a “shared-data system”, at most 2 out of the 3 properties can be
achieved at any given moment in time.

ADMT 2017/18 — Unit 15 J. Gamper 17/44



NoSQL

CAP Theorem/2

CA

Single site clusters (easier to ensure all nodes are always in contact)
e.g., 2PC
When a partition occurs, the system blocks

CP

Some data may be inaccessible (availability sacrificed), but the rest is still
consistent/accurate
e.g., sharded database

AP
System is still available under partitioning, but some of the data returned
my be inaccurate

i.e., availability and partition tolerance are more important than strict
consistency

e.g., DNS, caches, Master/Slave replication
Need some conflict resolution strategy

ADMT 2017/18 — Unit 15 J. Gamper 18/44



NoSQL

BASE Properties

Requirements regarding reliability, availability, consistency and durability
are changing.

For a growing number of applications, availability and partition tolerance
are more important than strict consistency.

These properties are difficult to achieve with ACID properties

The BASE properties forfeit the ACID properties of consistency and
isolation in favor of “availability, graceful degradation, and performance”

BASE properties

Basically Available – an application works basically all the time;
Soft-state – does not have to be consistent all the time;
Eventual consistency – but will be in some known state eventually.

i.e., an application works basically all the time (basically available), does
not have to be consistent all the time (soft-state) but will be in some
known state eventually (eventual consistency

ADMT 2017/18 — Unit 15 J. Gamper 19/44



NoSQL

BASE vs. ACID

Should be considered as a spectrum between the two extremes rather than
two altenatives excluding each other

ACID BASE
Strong consistency Weak consistency – stale data OK
Isolation Availability first
Focus on “commit” Best effort
Nested transactions Approximate answers OK
Availability? Aggressive (optimistic)
Conservative (pessimistic) Simpler!
Difficult evolution (e.g., schema) Faster

Easier evolution

ADMT 2017/18 — Unit 15 J. Gamper 20/44



NoSQL

NoSQL Pros and Cons

Advantages

Massive scalability (horizontal scalability), i.e., machines can be
added/removed
High availability
Lower cost (than competitive solutions at that scale)
(Usually) Predictable elasticity
Schema flexibility, sparse & semi-structured data
Quicker and cheaper to set up

Disadvantages

Limited query capabilities (so far)
Eventual consistency is not intuitive to program

Makes client applications more complicated

No standardization

Portability might be an issue

Insufficient access control

ADMT 2017/18 — Unit 15 J. Gamper 21/44



Categories of NoSQL Datastores

Outline

1 Motivation

2 NoSQL

3 Categories of NoSQL Datastores
Key-Value Stores
Column Stores
Document Stores
Graph Databases

ADMT 2017/18 — Unit 15 J. Gamper 22/44



Categories of NoSQL Datastores

Categories of NoSQL Datastores

Key-Value stores

Simple K/V lookups (DHT)

Column stores

Each key is associated with many attributes (columns)
NoSQL column stores are actually hybrid row/column stores

Different from “pure” relational column stores!

Document stores

Store semi-structured documents (JSON)
Map/Reduce based materialisation, sorting, aggregation, etc.

Graph databases

Not exactly NoSQL . . .
Cannot satisfy the requirements for high availability and scalability/elasticity
very well.

ADMT 2017/18 — Unit 15 J. Gamper 23/44



Categories of NoSQL Datastores

Focus of Different NoSQL Data Models

ADMT 2017/18 — Unit 15 J. Gamper 24/44



Categories of NoSQL Datastores

Comparison of SQL and NoSQL Data Models

Data Model Performance Scalability Flexibility Complexity Functionality
Key-value Stores high high high none variable (none)
Column Store high high moderate low minimal
Document Store high variable (high) high low variable (low)
Graph Database variable variable high high graph theory
Relational Database variable variable low moderate relational algebra

ADMT 2017/18 — Unit 15 J. Gamper 25/44



Categories of NoSQL Datastores Key-Value Stores

Key-Value Stores

Simple data model: global collection of key-value pairs.

Favor high scalability to handle massive data over consistency

Rich ad-hoc querying and analytics features are mostly omitted (especially
joins and aggregate operations are set aside).

Simple API with put and get

Key-value stores have existed for a long time, e.g., Berkeley DB.

Recent developments have been inspired by Distributed Hashtables and
Amazon’s Dynamo

DeCandia et al., Dynamo: Amazon’s Highly Available Key-value Store,
SOSP 07

Another important free and open-source key-value store is Voldemort.

Multiple types

In memory: Memcache
On disk: Redis, SimpleDB
Eventually consistent: Dynamo, Voldemort

ADMT 2017/18 — Unit 15 J. Gamper 26/44



Categories of NoSQL Datastores Key-Value Stores

Dynamo

P2P key-value store at Amazon, ≈ 2007

Context and requirements at Amazon

Infrastructure: tens of thousands of servers and network components located
in many data centers around the world
Commodity hardware is used, where component failure is the “standard
mode of operation”
Amazon uses a highly decentralized, loosely coupled, service oriented
architecture consisting of hundreds of services
Low latency and high throughput
Simple query model: unique keys, blobs, no schema, no multi-access
Scale out (elasticity)

Simple API

get(key): returning a list of objects and a context
put(key, context, object): no return value

Key and object values are not interpreted but handled as “an opaque array
of bytes”

ADMT 2017/18 — Unit 15 J. Gamper 27/44



Categories of NoSQL Datastores Key-Value Stores

Voldemort/1

Key-value store initially developed for and still used at LinkedIn

Inspired by Amazon’s Dynamo

Features

Written in Java
Simple data model and only simple and efficient queries

no joins or complex queries
no constraints on foreign keys
etc.

Performance of queries can be predicted well
P2P
Scale-out / elastic
Consistent hashing of keyspace
Eventual consistency / high availability
Pluggable storage

BerkeleyDB, In Memory, MySQL

ADMT 2017/18 — Unit 15 J. Gamper 28/44



Categories of NoSQL Datastores Key-Value Stores

Voldemort/2

API consists of three functions:

get(key): returning a value object
put(key, value): writing an object/value
delete(key): deleting an object

Keys and values can be complex, compound objects as well consisting of
lists and maps

ADMT 2017/18 — Unit 15 J. Gamper 29/44



Categories of NoSQL Datastores Column Stores

Column Stores

Data model: each key is associated with multiple attributes (i.e., columns)

Hybrid row/column store

Inspired by Google BigTable

Examples: BigTable, HBase, Cassandra

ADMT 2017/18 — Unit 15 J. Gamper 30/44



Categories of NoSQL Datastores Column Stores

BigTable

BigTable at Google, ≈ 2006

A distributed storage system for managing structured data that is designed
to scale to a very large size: petabytes of data across thousands of
commodity servers

Observation

Key-value pairs are a useful building block, but should not be the only one

Design goal: data model should be

richer than simple key-value pairs, and support sparse semi-structured data,
but simple enough that it lends itself to a very efficient flat-file
representation

ADMT 2017/18 — Unit 15 J. Gamper 31/44



Categories of NoSQL Datastores Column Stores

BigTable Data Model/1

Sparse, distributed, persistent multidimensional sorted map

Values are stored as arrays of bytes (strings) which are not interpreted

Values are addressed by (row , column, timestamp) dimensions

Example: Multidimensional sorted map with information that a web crawler
might emit

Flexible number of rows representing domains
Flexible number of columns

first column contains the content of the web page
the others store link text from referring domains

Every value has a timestamp

ADMT 2017/18 — Unit 15 J. Gamper 32/44



Categories of NoSQL Datastores Column Stores

BigTable Data Model/2

Row
Keys are arbitrary strings
Data is sorted by row key

Tablet
Row range is dynamically partitioned into tablets (sequence of rows)
Range scans are very efficient
Row keys should be chosen to improve locality of data access

Column, Column Family
Column keys are arbitrary strings, unlimited number of columns
Column keys can be grouped into families
Data in a CF is stored and compressed together (Locality Groups)
Access control on the CF level

ADMT 2017/18 — Unit 15 J. Gamper 33/44



Categories of NoSQL Datastores Column Stores

BigTable Data Model/3

Timestamps

Each cell has multiple versions
Can be manually assigned

Versioning

Automated garbage collection
Retain last N versions or versions newer than TS

Architecture

Data stored on GFS
1 Master server
Thousands of Tablet servers

ADMT 2017/18 — Unit 15 J. Gamper 34/44



Categories of NoSQL Datastores Column Stores

BigTable Architecture

Data is stored in a 3-level hierarchy similar to B+-trees

Chubby file contains location of root tablet
Root tablet contains all tablet locations in Metadata table
Metadata table stores locations of actual tablets

ADMT 2017/18 — Unit 15 J. Gamper 35/44



Categories of NoSQL Datastores Document Stores

Document Stores

Similar to a key-value database, but with a major difference: value is a
document.

Inspired by Lotus Notes

Flexible schema

Any number of fields can be added

Document mainly stored in JSON or BSON formats

Example document:

{
day: [‘‘2010’’, ‘‘01’’, ‘‘23’’],

products: {
apple: { price: ‘‘10’’ quantity: ‘‘6’’ }
kiwi: { price: ‘‘20’’ quantity: ‘‘2’’ }

}
checkout: ‘‘100’’

}

ADMT 2017/18 — Unit 15 J. Gamper 36/44



Categories of NoSQL Datastores Document Stores

CouchDB/1

Schema-free, document store DB

Documents stored in JSON format (XML in old versions)

B-tree storage engine

MVCC model, no locking

No joins, no PK/FK (UUIDs are auto assigned)

Implemented in Erlang

1st version in C++, 2nd in Erlang and 500 times more scalable

Replication (incremental)

Documents

UUID
Old versions retained

Custom persistent views using MapReduce

RESTful HTTP interface

ADMT 2017/18 — Unit 15 J. Gamper 37/44



Categories of NoSQL Datastores Document Stores

CouchDB/2

Main abstraction and data structure is a document

Consist of named fields that have a key/name and a value

Field name must be unique in document

Value may be a string, number, boolean, date, ordered list, map

References to other documents (URIs, URLs) are possible but not checked
by the DB

Example document
‘‘Title’’: ‘‘CouchDB’’,

‘‘Last editor’’ : ‘‘172.5.123.91’’,

‘‘Last modified’’: ‘‘9/23/2010’’,

‘‘Categories’’: [‘‘Database’’, ‘‘NoSQL’’, ‘‘Document Database’’],

‘‘Body’’: ‘‘CouchDB is a ...’’,

‘‘Reviewed’’: false

ADMT 2017/18 — Unit 15 J. Gamper 38/44



Categories of NoSQL Datastores Document Stores

MongoDB

Document store DB written in C++

Full index support

Replication & high availability

Supports ad-hoc querying

Fast in-place updates

Officially supported drivers available for multiple languages

C, C++, Java, Javascript, Perla, PHP, Python, Ruby

Map/Reduce

GridFS

Commercial support

ADMT 2017/18 — Unit 15 J. Gamper 39/44



Categories of NoSQL Datastores Document Stores

MongoDB/2

A database resides on a MongoDB server

A MongoDB database consists of one or more collections of documents

Schema-free, i.e., documents in a collection may be heterogeneous

Main abstraction and data structure is a document

Comparable to an XML document or a JSON document

Documents are stored in BSON

Similar to JSON, but binary representation for efficiency reasons

Example document:
{
title : ‘‘MongoDB’’,

last editor : ‘‘172.5.123.91’’ ,

last modified : new Date (‘‘9/23/2010’’) ,

body : ‘‘MongoDB is a ...’’,

categories : [‘‘Database’’, ‘‘NoSQL’’, ‘‘Document Database’’],

reviewed : false

}

ADMT 2017/18 — Unit 15 J. Gamper 40/44



Categories of NoSQL Datastores Document Stores

MongoDB Example

Create a collection named mycoll with 10,000,000 bytes of preallocated
disk space and no automatically generated and indexed document-field

db.createCollection(‘‘mycoll’’, size: 10000000, autoIndexId:

false)

Add a document into mycoll

db.mycoll.insert(title: ‘‘MongoDB’’, last editor: ... )

Retrieve a document from mycoll

db.mycoll.find(categories: [‘‘NoSQL’’, ‘‘Document

Databases’’])

ADMT 2017/18 — Unit 15 J. Gamper 41/44



Categories of NoSQL Datastores Document Stores

MongoDB Deployment

ADMT 2017/18 — Unit 15 J. Gamper 42/44



Categories of NoSQL Datastores Graph Databases

Graph Databases

Data Model
Nodes
Relations
Properties

Inspired by Euler’s graph theory
Examples: Neo4j, InfiniteGraph

ADMT 2017/18 — Unit 15 J. Gamper 43/44



Summary

New trends emerged in the past decade: big data, complexity, connectivity,
diversity, etc.

New requirements: consistency, availability and partitioning tolerance.

NoSQL provides flexible solution for such requirements.

NoSQL taxonomy

Key-value stores
Column stores
Document stores
Graph databases

Use the right data model for the right problem.

ADMT 2017/18 — Unit 15 J. Gamper 44/44


	Motivation
	NoSQL
	Categories of NoSQL Datastores
	Key-Value Stores
	Column Stores
	Document Stores
	Graph Databases


