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Aggregates/1

@ Observations

o DW queries are simple, follow the same “schema”
o Aggregate measure per dim_attr_1, dim_attr_ 2, ...

@ Idea
e Compute and store query results in advance (preaggregation)

@ Example: Store “total sales per month and product”

o Yields large performance improvements (factor 100,1000, ... ).
o No need to store everything: re-use is possible.

@ e.g., quarterly total can be computed from monthly total.

@ Prerequisites for pre-aggregation
o Tree-structured dimensions.
o Many-to-one relationships from fact to dimensions.
o Facts mapped to bottom level in all dimensions.
o Otherwise, re-use is not possible.
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Pre-Aggregation Example

@ Imagine 1 bio. sales rows, 1000 products, 100 locations
@ Create a materialized view

o CREATE VIEW TotalSales (pid, locid, total) AS
SELECT s.pid, s.locid, SUM(s.sales)
FROM Sales s
GROUP BY s.pid, s.locid
e The materialized view has 100’000 rows.
@ Query rewritten to use the view
o SELECT p.category, SUM(s.sales)
FROM Products p, Sales s
WHERE p.pid=s.pid
GROUP BY p.category
Rewritten to
SELECT p.category, SUM(t.total)
FROM Products p, TotalSales t
WHERE  p.pid=t.pid
GROUP BY p.category
@ Query becomes 10'000 times faster!
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Pre-Aggregation Choices

Full pre-aggregation: all combinations of levels

o Fast query response
o Takes a lot of space/update time (200-500 times raw data)

No pre-aggregation:

e Slow query response (for terabytes)
@ Practical pre-aggregation: chosen combinations

o A good compromise between response time and space use

Most (R)OLAP tools today support practical pre- aggregation
IBM DB2 UDB

Oracle 9iR2

MS Analysis Services

Hyperion Essbase (DB2 OLAP Services)
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Using Aggregates

@ Given a query, the best pre-aggregate must be found.
e Should be done by the system, not by the user.
@ The four design goals for aggregate usage:

o Aggregates are stored separately from detail data.

e “Shrunk” dimensions (i.e., subset of a dimension's attributes that apply to
the aggregation) are mapped to aggregate facts.

o Connection between aggregates and detail data known by the system.

o All queries (SQL) refer to detail data only.

@ Aggregates are used via aggregate navigator

o For a query, the best aggregate is found by the system, and the query is
rewritten to use it.

e Traditionally done in middleware, e.g., ODBC.

e Can now (most often) be performed directly by the DBMS.

e SUM, MIN, MAX, COUNT, AVG can all be handled.
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Choosing Aggregates

@ Using practical pre-aggregation, it must be decided what aggregates to
store.

@ This is a non-trivial (NP-complete) optimization problem

@ Many influencing factors

Space use

Update speed

Response time demands

Actual queries

Prioritization of queries

Index and/or aggregates

@ Only choose an aggregate if it is considerably smaller than available, usable
aggregates (factor 3-5-10).
o Often supported (semi-)automatically by tools/DBMSs
e Oracle, DB2, MS SQL Server
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MS Analysis Aggregate Choice

Storage Design Wizard

Set aggregation options

Set an aggregation option, and then click Start. -
Performance vs. Size

—F

A ions are ies of data that make querying a L~
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Aggregation options

%
(¢ Estimated storage reaches 64 |MB ¥ -
" Peiformance gain reaches 20
¢ Until| glick Stop
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Continue Stop Reset | I 24 Aggregations designed (728 MB , 99% )
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@ Can also log and use knowledge of actual queries.
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Implementing Data Cubes Efficiently

@ The data cube stores multidimensional GROUP BY relations of tables in
data warehouses.
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@ Classic SIGMOD 1996 paper

e Harinarayan, Rajaraman, and Ullman: Implementing Data Cubes Efficiently.
@ Simple but effective approach.

@ Almost all DBMSes (ROLAP + MOLAP) now use similar, but more
advanced, techniques for determining best aggregates to materialize.
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A Data Cube Example/1

Example: Sales fact table with dimensions part (p), supplier (s), customer (c)
@ 8 possible groupings of attributes (or views) with 3 dimensions.

@ Each grouping gives the total sales as per that grouping.

@ Groupings @ 8 views organized into a

e part, supplier, customer (6M rows) lattice
part, customer (6M)
part, supplier (0.8M)
supplier, customer (6M)
part (0.2M)

supplier (0.01M)
customer (0.1M)

none (1)
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A Data Cube Example/2

@ Picking the right views to materialize improves the query performance.

@ Query: What are the sales of a part?
o If view pc is available, will need to
process about 6M rows.
o If view p is available, will need to
process about 0.2M rows.

@ Questions
e How many views to materialize to get good performance?
e Given that we have space S, what views to materialize to minimize average
query costs?
@ View pc and sc are not needed!
e This reduces effective rows needed from 19M to 7M — a reduction of 60%.
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Lattice Framework

@ Lattice: A pair (L, <), where L is a set of queries and < is a dependence
relation.

o Q1 < Q2 if query Q1 can be answered using only the results of query Q2.
o In other words, Q1 is dependent on Q2.

@ The < operator imposes a partial ordering
on the queries.

@ Partial ordering imposes strict requirements
as to what is a lattice.

@ However, in practice, we only need to
assume there is a top view in which every
view is dependent upon.

@ Essentially, the lattice models dependencies
among queries/views and can be
represented by a lattice graph.
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Hierarchies and the Lattice Framework

@ Hierarchies are important as they underlay two commonly used query
operations, drill-down and roll-up.

A common hierarchy ... and its dependency relations

o Year < Month < Day
o Week < Day

e but Month £ Week and
Week < Month

@ BUT: hierarchies introduce query dependencies that must be accounted for
when determining which queries to materialize; and this can be complex.
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Lattice Framework

Composite Lattices

@ Dependencies caused by different dimensions and attribute hierarchies can
be combined into a direct product lattice.

@ Assume views can be created by independently grouping any or no member
of the hierarchy for each of the n dimensions.

16/42
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Applicability of Lattice Framework

@ The lattice framework is advantageous for several reasons

o It provides a clean framework to reason with dimensional hierarchies, since
hierarchies are themselves lattices.

o Able to model common queries better as users don't jump between
unconnected elements in the lattice, instead, they move along edges of the
lattice.

o A simple descending-order topological sort on the < operator gives the
required order of materialization.

o A framework to calculate the cost of answering a query based on other
queries.
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Cost Model/1

@ Important assumptions
e Time to answer a query is equal to the space occupied by the query (view)
from which the query is answered.
o All queries are identical to some queries in the given lattice.
o The clustering of the materialized query and indexes have not been
considered.

o Example:
o To answer query @, we choose an ancestor of Q, say Q,, that has been
materialized.
o We thus need to process the table of Q..
o The cost of answering @ is a function of the size of the table Q..
o Thus, the cost of answering Q is the number of rows present in the table for
that query @, used to answer Q.
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Cost Model/2

@ An experimental validation of the cost model found almost a linear
relationship between size and running time.

@ Query: Total sales for a supplier, using different views.

Source Size S Time T Ratiom
From cell itself | 1 2.07 -

From view s 10,000 2.38 .000031
From view ps | 0.8M 20.77 .000023
From view psc | 6M 226.23 .000037

@ This relationship can be expressed by T = m* S + ¢, where c is the fixed
cost and m is the ratio of the query time to the size of the view (i.e.,
m= (T —¢)/S).

@ Assumption: The number of rows present in each view is known (not
simple, but many ways of estimating the size are available, e.g., sampling,
use statistically representative subset).
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Greedy Algorithm/1

@ Given a data cube lattice with space costs associated with each view, the
Greedy algorithm selects a set of k views to materialize.

Algorithm: The Greedy algorithm

S = {top view};

for i=1to k do
Select view v not in S such that the benefit B(v, S) is maximized;
S=SuU{v}

return S;

@ The algorithm optimizes the space-time trade-off.

o The top view should always be included because it cannot be generated
from other views.

e Suppose we may only select k number of views in addition to the top view.

o After selecting set S of views, the benefit B(v, S) of view v relative to S, is
based on how v can improve the costs of evaluating views, including itself.

o The total benefit of v is the sum over all views w of the benefit of using v
to evaluate w, providing that benefit is positive.

ADMT 2017/18 — Unit 13 J. Gamper 21/42



Greedy Algorithm/2

@ The benefit B(v,S) of view v relative to S is defined as follows:
o For each view w < v, define the quantity B, as follows:
@ Let u be the view of least cost in S such that w < u.
o B, _ {C(u)— C(v) if C(v) < C(u)
0 otherwise

e Then, the benefit is B(v,S) = > B..

w<v
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Greedy Algorithm: Example/1

@ Consider the following lattice with the
indicated space costs, which are used for
calculating the benefit.

@ Top view a must be chosen.

@ We want to choose 3 other views.

@ At each round, we pick the view that will
result in the most benefits after accounting
for results of previous rounds.

1
Lattice with space costs

@ In round 1, view b can answer 5 queries (d, Benefits of possible choices at each

e, g h and itself) at a cost of 50 each. round
@ This represents a cost reduction of 250 as View] Choice 1
AP b 50 x 5 = 250
compared to if view b, 4, e, g, h were to be c x5 =135
answered by using view a at a cost of 100 P 80 x 2 = 160
each. e |70x3 =210
@ Thus, view b gives the biggest benefit of 250. f 60 x 2 = 120
g |99 x1 =099
h 90 x 1 =90
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Greedy Algorithm

Greedy Algorithm: Example/2

@ In round 2, the cost of view a of 100
applies only to certain views.

@ b, d, e, g and h would have a cost of 50.

@ Thus, the benefit of view £ wrt view h is
the difference between 50 and 40.

@ After 3 rounds, the total costs of
evaluating all views can be reduced to 420
from the initial 800.

Benefits of possible choices at each round

ADMT 2017/18 — Unit 13

1
Lattice with space costs

Choice 1 Choice 2 Choice 3
b|50 x 5 = 250
c|25 x5 =125 |25 x 2 =50 25x1 =25
d{80x2 =160 |30 x 2 = 60 30x2 =60
e|70 x 3 =210 |20x3 =160 2x 20 + 10 =50
f |60 x2 =120 |60 + 10 =70
g9 x1=99 (49x1=49 |49x1 =149
h|90x1 =90 (40x1 =40 30x1 =30

J. Gamper

24/42



Greedy Algorithm vs. Optimal Choice

There will be situations where the algorithm does poorly.

@ Round 1: Picks ¢ whose benefit
is 4141.

@ Round 2: Can pick b or d with
benefits of 2100 each.

o Greedy results in benefit of
4141 + 2100 = 6241.

@ But, the optimal choice is to pick |!
b and d.

@ b and d would improve by 100 for
itself and all 80 nodes below A Lattice where the greedy does poorly
resulting in total benefits of 8200.

@ Ratio of greedy/optimal = 6241/8200 = 76%

@ But: the benefit of the greedy algorithm is at least 63% of the benefit of
the optimal algorithm (shown by the authors).
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Greedy Algorithm — Space vs. Time

@ Experiment with composite lattice shows that it is important to materialize
some views but not all.

@ Performance increases at first, but after 5 views, increase of performance
gets small even as more space is used.

Greedy order of view selection for TPC-D based

example. Time/ e Total Time
Selection | Benefit | TotTime | TotSpace s —®&— Total Space

1 |cp infinite 72M rows |6nM rows| |80

2 |ns 24M rows | 48M 6M

3 |nt 12M 36M 6M

4 |c 5.9M 30.1M 6.1M

5 5.8M 24.3M 6.3M

6 |cs 1M 23.3M 11.3M

7 [np 1M 23.3M 16.3M

8 |ct 0.01M 23.3M 23.3M

9 |t small 23.3M 23.3M

10|n small 23.3M 23.3M

11|s small 23.3M 23.3M

12| none small 23.3M 23.3M
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Optimal Cases and Anomalies

@ Two situations where the algorithm is optimal.
o If the benfit of the first view is much larger than the other benefits, the
greedy is close to optimal.
o If all the benefits are equal then greedy is optimal.

@ But there are also two situations where the algorithm is not realistic.
o Views in a lattice are unlikely to have the same probability of being
requested in a query; hence, probabilities should be associated to each view.
o Instead of asking for some fixed number of views to materialize, should
instead allocate a fixed amount of space to views.
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Hypercube Lattices — Observations

@ The size of views grows exponentially, until it reaches the size of the raw
data at rank [log, m] (i.e., the “cliff”).

+«—— Llgm
Size of views T
I m
n

Number of group-by
attributes

@ Assumptions and basis of reasoning

e Each domain size is r.
Top element has m cells appearing in raw data.
If group on i attributes, cube has r' cells.
If r' > m, then each cell will have atmost one data point. Space cost is m.
If ' < m, then almost all r' cells will have at least one data point. Space
cost is r' as several data points can be collapsed into one aggregate.

@ This explains why grouping of 2 attributes (p,c), (s,c) have the same size
as (p,s,c) at 6M rows.
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Space- and Time-optimal Solutions

@ Inevitably, questions will be raised about space and time optimality of
hypercubes.
@ What is the average time for a query when the space is optimal?
o Space is minimized when only the top view is materialized.
o Every query would take time m.
o Total time cost for all 2" queries is m2".
@ Is there sense to minimize time by materializing all views?
o No gain past the cliff.

@ No point to do so.
o Nature of time-optimal solution is to get as close to the cliff as possible.

ADMT 2017/18 — Unit 13 J. Gamper 29/42



Outline

@ View Maintenance

ADMT 2017/18 — Unit 13 J. Gamper 30/42



View Maintenance

o Views (pre-aggregates) are used to speed up querying.
@ How and when should we refresh materialized views?
@ Total re-computation
o Most often too expensive
@ Incremental view maintenance
o Apply only changes since last refresh to view.
e r; = inserted rows into relation r
o ry = deleted rows from relation r
@ Additional info must be stored to make views self-maintainable

o Number of derivations ¢ (count) along with each row in view v
e Thus, tuples in view have the form (a1, ..., ak,c)
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Projection View Maintenance

@ Projection views with DISTINCT
o View v =ma,  a.(r)
@ Insertion of tuples r;

foreach tuple (a1, ..., ax) € ma,,...a(ri) do
Let ¢; be # occurrences of the tuple;

if (a1,...,ak, ¢) € v then
| c=c+q

else
| Insert (r,¢) into V

@ Deletion of tuples ryq

foreach (ay,...,ak) € ma,,... A, (rq) do
Let cs be # of occurrences of the tuple;
if (a1,...,ak, ¢) € v then
L c=c—c¢c4
if ¢ =0 then
| Delete (a1,...,ax, c) fromv
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Projection View Maintenance Example

Relation r, view v Insert tuple (b,4) Delete tuples {(c,3),(a,2)}
r r r

A B A B A B

a 1 a 1 a 1

a 2 a 2 b 2

b 2 b 2 b 4

c 3 c 3

b 4

v =ma(r) v =ma(r) v = ma(r)

A C A C A C

a 2 a 2 a 1

b 1 b 2 b 2

c 1 c 1
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Join View Maintenance

@ Join views
o Viewv=rNXs
@ Insertion of r;
o Compute r; X s and add to v, update counts.
@ Deletion of ry
o Compute rqy X s and subtract from v, update counts.
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COUNT/SUM/AVG Aggregation View Maintenance

e COUNT
e Maintain tuples of the form (gi,...,&m,¢)
@ gi,...,8m are the grouping attribute values

@ c is a counter

e Update count ¢ based on inserts (r;) and deletes (rq)

o Insert row (gi,...,&m, 1) for new groups
o Delete row (g1,...,8m,c) fromvifc =0
e SUM
e Maintain tuples of the form (g1,. .., gm, sum,c)
e Update count (c) and sum (sum) based on inserts (r;) and deletes (rgy)
o Insert row (gi,...,&m, val,1) for new grouping attribute values
(val is the value of attribute over which SUM is applied)
o Delete row (g1, .., 8m, sum,c) from v if c = 0.
e AVG

o Computed as pair SUM/COUNT
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MIN/MAX Aggregation View Maintenance

e MIN (MAX works similar)
e Maintain tuples x = (g1, ..., 8gm, min, c)
e Update min and c based on inserts (r;) and deletes (rg) and whether
val {=,<,>} min
o Insert tuple (g1, ..., &m, val)

if val < min then

| x=(g,.-.,8m,val,1)
else if val = min then

| x=1(g1,...,8m, min,c+1)

o Delete tuple (g1, .., gm, val)

if val = min then
x=(gi,-.-,8m, min,c —1);
if ¢ =0 then
| Scan table for new values for min and ¢ (expensive!)
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View Maintenance

Aggregation View Maintenance Example/1

@ Determine a view for MIN using SQL

o Input: relation r with schema (A, B)
e Output: relation with schema (A, MIN(B), count of MIN(B))

Solution 1

SELECT t.*, ( SELECT COUNT(*) Cnt
FROM r
WHERE A = t.A AND B = t.MinB )
FROM ( SELECT A, min(B) MinB
FROM T
GROUP BY A ) t;

r t result
A B A MinB A MinB Cnt
1 2 1 2 1 2 2
1 2 2 3 2 3 1
1 3
2 3
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View Maintenance

Aggregation View Maintenance Example/2

Solution 2

SELECT A, B, COUNT(*)

FROM r

GROUP BY A, B

HAVING (A, B) IN ( SELECT A, MIN(B)
FROM r
GROUP BY A );

r result
A B A MIN(B) A MIN(B) Cnt
1 2 1 2 1 2 2
1 2 2 3 2 3 1
1 3
2 3
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Aggregation View Maintenance Example/3

Solution 3

SELECT A, B, COUNT (%)
FROM r AS t

WHERE B = ( SELECT MIN(B)

FROM r
WHERE A = t.A )
GROUP BY A, B;

r a=1 a=2 result
MIN(B) MIN(B) A MIN(B) Cnt
2 3 1 2 2
2 3 1

N == =D
wWwN N m
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Aggregation View Maintenance Example/4

Solution 4 using GMD-join

x = MD( r/b,
r,

( (MIN(B)/Min),
( (r.A =Db.4h),

result = T, min,cnt(Tb=min(X))

(COUNT (*) /Cnt) ),

(r.A = Db.A AND r.B =b.B) ) )

r result
a b a b min cnt a min(b) cnt
1 2 1 2 2 2 1 2 2
1 2 1 2 2 2 2 3 1
1 3 1 3 2 1
2 3 2 3 3 1
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Practical View Maintenance

@ When to synchronize views?
o Immediate - in same transaction as base changes.
e Lazy - when view is used for the first time after base updates.
e Periodic — e.g., once a day, often together with base load.
o Forced - after a certain number of changes.
@ Updating aggregates
o Computation outside DBMS in flat files (no longer very relevant!).
Built by loader.
Computation in DBMS using SQL.
Can be expensive: DBMS must be tuned for this.
@ Supported by tool/DBMS
e Oracle, SQL Server, DB2
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Summary

@ Pre-aggregation is a key technique to boost performance.

@ Data warehouses automatically determine views to materialize and when to
use them.

@ Problems in deciding which set of views to materialize to improve query
performance.

Lattice framework: views are organized in a lattice.

Notion of linear cost in query processing.

Greedy algorithm that picks the right views.

Some observations about hypercubes and time-space trade-off.

Views have to be maintained.

Incremental view maintenance is state-of-the-art
o Needs to store a count to trace the number of supporting tuples.
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