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Pre-Aggregates

Aggregates/1

Observations

DW queries are simple, follow the same “schema”
Aggregate measure per dim attr 1, dim attr 2, . . .

Idea

Compute and store query results in advance (preaggregation)

Example: Store “total sales per month and product”

Yields large performance improvements (factor 100,1000, . . . ).
No need to store everything: re-use is possible.

e.g., quarterly total can be computed from monthly total.

Prerequisites for pre-aggregation

Tree-structured dimensions.
Many-to-one relationships from fact to dimensions.
Facts mapped to bottom level in all dimensions.
Otherwise, re-use is not possible.
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Pre-Aggregates

Pre-Aggregation Example

Imagine 1 bio. sales rows, 1000 products, 100 locations

Create a materialized view

CREATE VIEW TotalSales (pid, locid, total) AS

SELECT s.pid, s.locid, SUM(s.sales)

FROM Sales s

GROUP BY s.pid, s.locid

The materialized view has 100’000 rows.

Query rewritten to use the view

SELECT p.category, SUM(s.sales)

FROM Products p, Sales s

WHERE p.pid=s.pid

GROUP BY p.category

Rewritten to

SELECT p.category, SUM(t.total)

FROM Products p, TotalSales t

WHERE p.pid=t.pid

GROUP BY p.category

Query becomes 10’000 times faster!
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Pre-Aggregates

Pre-Aggregation Choices

Full pre-aggregation: all combinations of levels

Fast query response
Takes a lot of space/update time (200-500 times raw data)

No pre-aggregation:

Slow query response (for terabytes)

Practical pre-aggregation: chosen combinations

A good compromise between response time and space use

Most (R)OLAP tools today support practical pre- aggregation

IBM DB2 UDB
Oracle 9iR2
MS Analysis Services
Hyperion Essbase (DB2 OLAP Services)
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Pre-Aggregates

Using Aggregates

Given a query, the best pre-aggregate must be found.

Should be done by the system, not by the user.

The four design goals for aggregate usage:

Aggregates are stored separately from detail data.
“Shrunk” dimensions (i.e., subset of a dimension’s attributes that apply to
the aggregation) are mapped to aggregate facts.
Connection between aggregates and detail data known by the system.
All queries (SQL) refer to detail data only.

Aggregates are used via aggregate navigator

For a query, the best aggregate is found by the system, and the query is
rewritten to use it.
Traditionally done in middleware, e.g., ODBC.
Can now (most often) be performed directly by the DBMS.

SUM, MIN, MAX, COUNT, AVG can all be handled.
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Pre-Aggregates

Choosing Aggregates

Using practical pre-aggregation, it must be decided what aggregates to
store.

This is a non-trivial (NP-complete) optimization problem

Many influencing factors

Space use
Update speed
Response time demands
Actual queries
Prioritization of queries
Index and/or aggregates

Only choose an aggregate if it is considerably smaller than available, usable
aggregates (factor 3-5-10).

Often supported (semi-)automatically by tools/DBMSs

Oracle, DB2, MS SQL Server
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Pre-Aggregates

MS Analysis Aggregate Choice

Can also log and use knowledge of actual queries.
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Lattice Framework

Implementing Data Cubes Efficiently

The data cube stores multidimensional GROUP BY relations of tables in
data warehouses.

Classic SIGMOD 1996 paper

Harinarayan, Rajaraman, and Ullman: Implementing Data Cubes Efficiently.

Simple but effective approach.

Almost all DBMSes (ROLAP + MOLAP) now use similar, but more
advanced, techniques for determining best aggregates to materialize.
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Lattice Framework

A Data Cube Example/1

Example: Sales fact table with dimensions part (p), supplier (s), customer (c)

8 possible groupings of attributes (or views) with 3 dimensions.

Each grouping gives the total sales as per that grouping.

Groupings

part, supplier, customer (6M rows)
part, customer (6M)
part, supplier (0.8M)
supplier, customer (6M)
part (0.2M)
supplier (0.01M)
customer (0.1M)
none (1)

8 views organized into a
lattice

psc 6M

pc 6M ps 0.8M sc 6M

p 0.2M s 0.01M c 0.1M

c 1
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Lattice Framework

A Data Cube Example/2

Picking the right views to materialize improves the query performance.

Query: What are the sales of a part?

If view pc is available, will need to
process about 6M rows.
If view p is available, will need to
process about 0.2M rows.

psc 6M

pc 6M ps 0.8M sc 6M

p 0.2M s 0.01M c 0.1M

c 1

Questions

How many views to materialize to get good performance?
Given that we have space S , what views to materialize to minimize average
query costs?

View pc and sc are not needed!

This reduces effective rows needed from 19M to 7M – a reduction of 60%.
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Lattice Framework

Lattice Framework

Lattice: A pair (L,≤), where L is a set of queries and ≤ is a dependence
relation.

Q1 ≤ Q2 if query Q1 can be answered using only the results of query Q2.
In other words, Q1 is dependent on Q2.

The ≤ operator imposes a partial ordering
on the queries.

Partial ordering imposes strict requirements
as to what is a lattice.

However, in practice, we only need to
assume there is a top view in which every
view is dependent upon.

Essentially, the lattice models dependencies
among queries/views and can be
represented by a lattice graph.

psc 6M

pc 6M ps 0.8M sc 6M

p 0.2M s 0.01M c 0.1M

c 1

≤ ≤ ≤
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Lattice Framework

Hierarchies and the Lattice Framework

Hierarchies are important as they underlay two commonly used query
operations, drill-down and roll-up.

A common hierarchy

Day

Week Month

Year

none

. . . and its dependency relations

Year ≤ Month ≤ Day

Week ≤ Day

but Month 6≤Week and
Week 6≤ Month

BUT: hierarchies introduce query dependencies that must be accounted for
when determining which queries to materialize; and this can be complex.
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Lattice Framework

Composite Lattices

Dependencies caused by different dimensions and attribute hierarchies can
be combined into a direct product lattice.

Assume views can be created by independently grouping any or no member
of the hierarchy for each of the n dimensions.
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Lattice Framework

Applicability of Lattice Framework

The lattice framework is advantageous for several reasons

It provides a clean framework to reason with dimensional hierarchies, since
hierarchies are themselves lattices.
Able to model common queries better as users don’t jump between
unconnected elements in the lattice, instead, they move along edges of the
lattice.
A simple descending-order topological sort on the ≤ operator gives the
required order of materialization.
A framework to calculate the cost of answering a query based on other
queries.
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Lattice Framework

Cost Model/1

Important assumptions

Time to answer a query is equal to the space occupied by the query (view)
from which the query is answered.
All queries are identical to some queries in the given lattice.
The clustering of the materialized query and indexes have not been
considered.

Example:

To answer query Q, we choose an ancestor of Q, say Qa, that has been
materialized.
We thus need to process the table of Qa.
The cost of answering Q is a function of the size of the table Qa.
Thus, the cost of answering Q is the number of rows present in the table for
that query Qa used to answer Q.
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Lattice Framework

Cost Model/2

An experimental validation of the cost model found almost a linear
relationship between size and running time.

Query: Total sales for a supplier, using different views.

Source Size S Time T Ratio m
From cell itself 1 2.07 -
From view s 10,000 2.38 .000031
From view ps 0.8M 20.77 .000023
From view psc 6M 226.23 .000037

This relationship can be expressed by T = m ∗ S + c , where c is the fixed
cost and m is the ratio of the query time to the size of the view (i.e.,
m = (T − c)/S).

Assumption: The number of rows present in each view is known (not
simple, but many ways of estimating the size are available, e.g., sampling,
use statistically representative subset).
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Greedy Algorithm

Greedy Algorithm/1

Given a data cube lattice with space costs associated with each view, the
Greedy algorithm selects a set of k views to materialize.

Algorithm: The Greedy algorithm

S = {top view};
for i = 1 to k do

Select view v not in S such that the benefit B(v ,S) is maximized;
S = S ∪ {v};

return S ;

The algorithm optimizes the space-time trade-off.

The top view should always be included because it cannot be generated
from other views.
Suppose we may only select k number of views in addition to the top view.
After selecting set S of views, the benefit B(v ,S) of view v relative to S , is
based on how v can improve the costs of evaluating views, including itself.
The total benefit of v is the sum over all views w of the benefit of using v
to evaluate w , providing that benefit is positive.
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Greedy Algorithm

Greedy Algorithm/2

The benefit B(v ,S) of view v relative to S is defined as follows:
For each view w ≤ v , define the quantity Bw as follows:

Let u be the view of least cost in S such that w ≤ u.

Bw =

{
C(u) − C(v) if C(v) ≤ C(u)

0 otherwise

Then, the benefit is B(v ,S) =
∑

w≤v Bw .
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Greedy Algorithm

Greedy Algorithm: Example/1

Consider the following lattice with the
indicated space costs, which are used for
calculating the benefit.

Top view a must be chosen.

We want to choose 3 other views.

At each round, we pick the view that will
result in the most benefits after accounting
for results of previous rounds.

In round 1, view b can answer 5 queries (d,
e, g, h and itself) at a cost of 50 each.

This represents a cost reduction of 250 as
compared to if view b, d, e, g, h were to be
answered by using view a at a cost of 100
each.

Thus, view b gives the biggest benefit of 250.

Benefits of possible choices at each
round

View Choice 1
b 50 x 5 = 250
c 25 x 5 = 125
d 80 x 2 = 160
e 70 x 3 = 210
f 60 x 2 = 120
g 99 x 1 = 99
h 90 x 1 = 90
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Greedy Algorithm

Greedy Algorithm: Example/2

In round 2, the cost of view a of 100
applies only to certain views.

b, d, e, g and h would have a cost of 50.

Thus, the benefit of view f wrt view h is
the difference between 50 and 40.

After 3 rounds, the total costs of
evaluating all views can be reduced to 420
from the initial 800.

Benefits of possible choices at each round
Choice 1 Choice 2 Choice 3

b 50 x 5 = 250
c 25 x 5 = 125 25 x 2 = 50 25 x 1 = 25

d 80 x 2 = 160 30 x 2 = 60 30 x 2 = 60
e 70 x 3 =210 20 x 3 = 60 2 x 20 + 10 =50

f 60 x 2 =120 60 + 10 = 70
g 99 x 1 = 99 49 x 1 = 49 49 x 1 = 49

h 90 x 1 = 90 40 x 1 = 40 30 x 1 = 30
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Greedy Algorithm

Greedy Algorithm vs. Optimal Choice

There will be situations where the algorithm does poorly.

Round 1: Picks c whose benefit
is 4141.

Round 2: Can pick b or d with
benefits of 2100 each.

Greedy results in benefit of
4141 + 2100 = 6241.

But, the optimal choice is to pick
b and d.

b and d would improve by 100 for
itself and all 80 nodes below
resulting in total benefits of 8200.

Ratio of greedy/optimal = 6241/8200 = 76%

But: the benefit of the greedy algorithm is at least 63% of the benefit of
the optimal algorithm (shown by the authors).
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Greedy Algorithm

Greedy Algorithm – Space vs. Time

Experiment with composite lattice shows that it is important to materialize
some views but not all.

Performance increases at first, but after 5 views, increase of performance
gets small even as more space is used.

Greedy order of view selection for TPC-D based
example.

Selection Benefit TotTime TotSpace
1 cp infinite 72M rows 6nM rows
2 ns 24M rows 48M 6M
3 nt 12M 36M 6M
4 c 5.9M 30.1M 6.1M
5 p 5.8M 24.3M 6.3M
6 cs 1M 23.3M 11.3M
7 np 1M 23.3M 16.3M
8 ct 0.01M 23.3M 23.3M
9 t small 23.3M 23.3M
10 n small 23.3M 23.3M
11 s small 23.3M 23.3M
12 none small 23.3M 23.3M
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Greedy Algorithm

Optimal Cases and Anomalies

Two situations where the algorithm is optimal.

If the benfit of the first view is much larger than the other benefits, the
greedy is close to optimal.
If all the benefits are equal then greedy is optimal.

But there are also two situations where the algorithm is not realistic.

Views in a lattice are unlikely to have the same probability of being
requested in a query; hence, probabilities should be associated to each view.
Instead of asking for some fixed number of views to materialize, should
instead allocate a fixed amount of space to views.
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Greedy Algorithm

Hypercube Lattices – Observations

The size of views grows exponentially, until it reaches the size of the raw
data at rank dlogr me (i.e., the “cliff”).

Assumptions and basis of reasoning
Each domain size is r .
Top element has m cells appearing in raw data.
If group on i attributes, cube has r i cells.
If r i ≥ m, then each cell will have atmost one data point. Space cost is m.
If r i < m, then almost all r i cells will have at least one data point. Space
cost is r i as several data points can be collapsed into one aggregate.

This explains why grouping of 2 attributes (p,c), (s,c) have the same size
as (p,s,c) at 6M rows.
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Greedy Algorithm

Space- and Time-optimal Solutions

Inevitably, questions will be raised about space and time optimality of
hypercubes.

What is the average time for a query when the space is optimal?

Space is minimized when only the top view is materialized.
Every query would take time m.
Total time cost for all 2n queries is m2n.

Is there sense to minimize time by materializing all views?

No gain past the cliff.
No point to do so.
Nature of time-optimal solution is to get as close to the cliff as possible.
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View Maintenance

View Maintenance

Views (pre-aggregates) are used to speed up querying.

How and when should we refresh materialized views?

Total re-computation

Most often too expensive

Incremental view maintenance

Apply only changes since last refresh to view.
ri = inserted rows into relation r
rd = deleted rows from relation r

Additional info must be stored to make views self-maintainable

Number of derivations c (count) along with each row in view v
Thus, tuples in view have the form (a1, . . . , ak , c)
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View Maintenance

Projection View Maintenance

Projection views with DISTINCT

View v = πA1,...,Ak
(r)

Insertion of tuples ri

foreach tuple (a1, . . . , ak) ∈ πA1,...,Ak (ri ) do
Let ci be # occurrences of the tuple;
if (a1, . . . , ak , c) ∈ v then

c = c + ci
else

Insert (r , ci ) into V

Deletion of tuples rd

foreach (a1, . . . , ak) ∈ πA1,...,Ak (rd) do
Let cd be # of occurrences of the tuple;
if (a1, . . . , ak , c) ∈ v then

c = c − cd

if c = 0 then
Delete (a1, . . . , ak , c) from v
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View Maintenance

Projection View Maintenance Example

Relation r, view v

r
A B
a 1
a 2
b 2
c 3

v = πA(r)
A C
a 2
b 1
c 1

Insert tuple (b, 4)

r
A B
a 1
a 2
b 2
c 3
b 4

v = πA(r)
A C
a 2
b 2
c 1

Delete tuples {(c , 3), (a, 2)}

r
A B
a 1
b 2
b 4

v = πA(r)
A C
a 1
b 2
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View Maintenance

Join View Maintenance

Join views

View v = r 1 s

Insertion of ri
Compute ri 1 s and add to v, update counts.

Deletion of rd
Compute rd 1 s and subtract from v, update counts.
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View Maintenance

COUNT/SUM/AVG Aggregation View Maintenance

COUNT
Maintain tuples of the form (g1, . . . , gm, c)

g1, . . . , gm are the grouping attribute values
c is a counter

Update count c based on inserts (ri ) and deletes (rd)
Insert row (g1, . . . , gm, 1) for new groups
Delete row (g1, . . . , gm, c) from v if c = 0

SUM

Maintain tuples of the form (g1, . . . , gm, sum, c)
Update count (c) and sum (sum) based on inserts (ri ) and deletes (rd)
Insert row (g1, . . . , gm, val , 1) for new grouping attribute values
(val is the value of attribute over which SUM is applied)
Delete row (g1, . . . , gm, sum, c) from v if c = 0.

AVG

Computed as pair SUM/COUNT
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View Maintenance

MIN/MAX Aggregation View Maintenance

MIN (MAX works similar)

Maintain tuples x = (g1, . . . , gm,min, c)

Update min and c based on inserts (ri ) and deletes (rd) and whether
val {=, <,>} min

Insert tuple (g1, . . . , gm, val)

if val < min then
x = (g1, . . . , gm, val , 1)

else if val = min then
x = (g1, . . . , gm,min, c + 1)

Delete tuple (g1, . . . , gm, val)

if val = min then
x = (g1, . . . , gm,min, c − 1);
if c = 0 then

Scan table for new values for min and c (expensive!)
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View Maintenance

Aggregation View Maintenance Example/1

Determine a view for MIN using SQL
Input: relation r with schema (A,B)
Output: relation with schema (A,MIN(B), count of MIN(B))

Solution 1

SELECT t.*, ( SELECT COUNT(*) Cnt

FROM r

WHERE A = t.A AND B = t.MinB )

FROM ( SELECT A, min(B) MinB

FROM r

GROUP BY A ) t;

r
A B
1 2
1 2
1 3
2 3

t

A MinB
1 2
2 3

result

A MinB Cnt
1 2 2
2 3 1
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View Maintenance

Aggregation View Maintenance Example/2

Solution 2

SELECT A, B, COUNT(*)

FROM r

GROUP BY A, B

HAVING (A, B) IN ( SELECT A, MIN(B)

FROM r

GROUP BY A );

r
A B
1 2
1 2
1 3
2 3

A MIN(B)
1 2
2 3

result

A MIN(B) Cnt
1 2 2
2 3 1
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View Maintenance

Aggregation View Maintenance Example/3

Solution 3

SELECT A, B, COUNT(*)

FROM r AS t

WHERE B = ( SELECT MIN(B)

FROM r

WHERE A = t.A )

GROUP BY A, B;

r
A B
1 2
1 2
1 3
2 3

a=1

MIN(B)
2

a=2

MIN(B)
3

result

A MIN(B) Cnt
1 2 2
2 3 1
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View Maintenance

Aggregation View Maintenance Example/4

Solution 4 using GMD-join

x = MD( r/b,

r,

( (MIN(B)/Min), (COUNT(*)/Cnt) ),

( (r.A = b.A), (r.A = b.A AND r.B = b.B) ) )

result = πa,min,cnt(σb=min(x))

r

a b
1 2
1 2
1 3
2 3

x

a b min cnt
1 2 2 2
1 2 2 2
1 3 2 1
2 3 3 1

result

a min(b) cnt
1 2 2
2 3 1
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View Maintenance

Practical View Maintenance

When to synchronize views?

Immediate - in same transaction as base changes.
Lazy - when view is used for the first time after base updates.
Periodic – e.g., once a day, often together with base load.
Forced - after a certain number of changes.

Updating aggregates

Computation outside DBMS in flat files (no longer very relevant!).
Built by loader.
Computation in DBMS using SQL.
Can be expensive: DBMS must be tuned for this.

Supported by tool/DBMS

Oracle, SQL Server, DB2
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View Maintenance

Summary

Pre-aggregation is a key technique to boost performance.

Data warehouses automatically determine views to materialize and when to
use them.

Problems in deciding which set of views to materialize to improve query
performance.

Lattice framework: views are organized in a lattice.

Notion of linear cost in query processing.

Greedy algorithm that picks the right views.

Some observations about hypercubes and time-space trade-off.

Views have to be maintained.

Incremental view maintenance is state-of-the-art

Needs to store a count to trace the number of supporting tuples.
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