
Multi-agent Systems Development as a

Software Engineering Enterprise

Marco Bozzano1, Giorgio Delzanno2, Maurizio Martelli1, Viviana Mascardi1,
and Floriano Zini1

1 D.I.S.I. - Università di Genova
via Dodecaneso 35, 16146 Genova, Italy

{bozzano,martelli,mascardi,zini}@disi.unige.it
2 Max-Planck Institut für Informatik

Im Stadtwald, Gebaude 46.1, D-66123 Saarbrücken
delzanno@mpi-sb.mpg.de

Abstract. Multi-Agent Systems provide an ideal level of abstraction
for modelling complex applications where distributed and heterogeneous
entities need to cooperate to achieve a common goal, or to concur for the
control of shared resources. This paper proposes a declarative framework
for developing multi-agent systems. A formal approach based on Logic
Programming is proposed for the specification, implementation and test-
ing of software prototypes. Specification of the PRS agent architecture is
given as an example of application of our framework.

1 Introduction

Declarative languages, such as functional and logical languages, have mainly been
used in the academic world. The use of imperative paradigms for the development
of industrial software is usually motivated by reasons of efficiency. However,
besides being reusable, declarative knowledge is more modular and flexible than
imperative knowledge. It has better semantics, makes detecting and correcting
contradictory knowledge easier, and provides abstraction of the (real) world in a
natural way. Moreover, in this setting the use of meta-programming techniques
provides a support for the integration of different kinds of knowledge. These
features make the declarative paradigm a solution that is suitable for developing
and verifying prototypes of complex applications, where a set of autonomous,
intelligent and distributed entities cooperate and coordinate the exchange and
integration of knowledge.

Agent-oriented technology [21, 16] faces the problem of modelling such kinds
of applications. It is suitable for modelling entities which communicate (social
ability), monitor the environment and react to events which occur in it (reactiv-
ity), are able to take the initiative whenever the situation requires so (proactivity)
without human beings or other agents intervening (autonomy). Societies of such
entities are called Multi-Agent Systems (MAS). They take into account the dis-
tribution of the involved agents and the integration of heterogeneous software
and data. These two issues are fundamental for the success of present software

G. Gupta (Ed.): PADL’99, LNCS 1551, pp. 46–60, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Multi-agent Systems Development as a Software Engineering Enterprise 47

systems and this is one of the reasons for the consensus that MAS have obtained
in academia and industry. The combination of declarative and agent-oriented
approaches has been studied over the last few years and it is very promising
from both a theoretical and a practical point of view (see [9, 8, 10, 12]).

Unfortunately, at this time there is no evidence of a well-established engi-
neering approach for building MAS-based applications. However, due to their
inherent complexity, experimentation in this direction seems very important.
This paper presents some features of CaseLP [11], an experimental, logic pro-
gramming based, prototyping environment for MAS. In particular, we present
a methodology that combines traditional software engineering approaches with
considerations from the agent-oriented field. The approach exploits logic-based
declarative languages for the specification, implementation and testing of the
prototype. In our methodology the more formal and abstract specification of
the MAS is given using the linear logic programming language Ehhf [2], which
provides constructs for concurrency and state-updating. Afterwards ACLPL, an
extension of the logic programming language ECLiPSe with agent-oriented con-
structs, is used to build a software prototype closer to a final implementation
of the MAS. The declarative nature of Ehhf guides the translation into ACLPL,
which, in turn, has a number of programming features making the resulting
prototype more efficient and easier to integrate with other technologies.

In our framework we consider the possibility of building prototypes encom-
passing agents with different architectures. The designer will either choose a
predefined architecture in a library that is part of the CaseLP environment or
will develop a new one. In the former case, only the relevant data for a given
agent will actually be provided by the user. As an example, in this paper we
present the application of some steps of our methodology to the specification of
the well known Planning and Reasoning System (PRS) agent architecture [6].

The paper is structured as follows: the next section presents our develop-
ment framework, focusing on the prototype developing methodology. Section 3
describes the PRS architecture and how Ehhf and ACLPL can be used to model
this architecture following (part of) the methodology described in Section 2.
Section 4 compares CaseLP with other frameworks for the specification and de-
velopment of MAS, and concludes the paper with some considerations on future
research work.

2 A Framework for MAS Development

The development of agent-based software can be seen as a traditional software
engineering enterprise [20]. First, a specification in some suitable specification
formalism is given, then it is refined into an executable piece of software. To
assure correctness of the refinement process, the final concrete system has to
be verified with respect to the initial specification. Formal methods play an
important role in the development phase of agent-based systems at a high level,
and when developing complex cooperating systems.

48 Marco Bozzano et al.

Since there is no generally accepted taxonomy for classifying agent-based
applications, it is not yet clear which approaches are appropriate for specifying
the different classes of agent-based systems and which methods can be exploited
to transform these specifications into a final software product [3, 5]. In the last
few years many approaches based on logical languages (e.g., temporal logic [15])
have been proposed as specification formalisms for agent-based technology. Logic
programming languages can contribute to such research in that they provide
easy-to-define, executable specifications. We propose a framework for the real-
ization of MAS prototypes in which both the specification and implementation
are carried out using declarative logical languages.

2.1 Prototype Realization

CaseLP (Complex Application Specification Environment Based on Logic Pro-
gramming) [11] is a MAS-based framework for prototyping applications involving
heterogeneous and distributed entities. More precisely, the framework includes
a methodology that guides the application developer to an easy and rapid def-
inition of the prototype through the iteration of a sequence of simple steps.
CaseLP provides a set of tools that are used to achieve the aim of each step in
the methodology. In particular, tools for specification of the MAS, tools for de-
scribing the behaviour of agents that make up the system by means of a simple
rule-based logical language, tools for the integration of legacy systems and data,
and simulation tools for animating the MAS execution are provided.

A CaseLP agent can be either a logical agent, which shows capabilities of
complex reasoning, or an interface agent, which provides an interface between
external modules and the agents in the system. The final prototype can be built
by combining existing software tools and new components. This approach fur-
thers integration and reuse, two issues that are highly relevant for the success
of new technologies. All agents share some main components that are: an up-
datable set of facts defining the state of the agent, a fixed set of rules defining
the behaviour of the agent, a mail-box for incoming messages and events, an
interpreter for accessing external software (only for interface agents).

The language for high-level MAS specification is Ehhf which has interesting
capabilities for modelling concurrent and resource sensitive systems (see Sec-
tion 3.1 below). The language for defining agent implementation is ACLPL, a
Prolog-like language enriched with primitives for safe updates of the agent state
(assert state(Fact) and retract state(Fact)) and for communication among
agents in the MAS (send(Message, Receiver), asynch receive(Message) and
sync receive(Message, Sender)). Message follows the syntax of KQML [13],
that we have chosen as the agent communication language. The update primi-
tives operate in such a way that if the agent fails some activities a safe state is au-
tomatically restored. The primitive async receive(Message) inspects the agent’s
mail-box and retrieves the first message contained in the mail-box, if any. This
kind of reception is not blocking. On the other hand, sync receive(Message,
Sender) is the blocking reception primitive. The agent waits until a message
coming from the agent Sender enters the mailbox.

Multi-agent Systems Development as a Software Engineering Enterprise 49

CaseLP provides appropriate primitives for loading agents into the system
and for associating an appropriate interpreter to interface agents. This creates a
MAS that is ready for simulation which is performed by means of a round-robin
scheduler interleaving the activation of all the agents. The simulation produces
both on-line and off-line information about the agents’ state changes and about
the messages that have been exchanged. The CaseLP Visualizer provides a GUI
for loading, initializing and tracing the agents’ execution in a graphical, user-
friendly manner.

Prototyping Methodology. The realization of a MAS-based software proto-
type can be performed according to the following steps:

1. Static architectural description of the prototype. The developer de-
cides the static structure of the MAS. This step is further broken down to:
(a) determining the classes of agents the application needs; (b) determining
a set of requested services and a set of provided services for each class; (c)
determining the set of necessary instances for each class; (d) defining the
interconnections between the instances of agents, matching appropriately
requested and provided services.
This phase defines the components, what they are able to do, what they re-
quire and which communication channels are needed to manage the services.

2. Description of component interactions. This step specifies how a service
is provided/requested by means of a particular conversation (set of KQML
messages with a specific order) between each pair of connected agents. Each
conversation can be performed using different communication models, such
as synchronous or asynchronous message passing.

3. Architectural choice for each agent. Each logical agent can be struc-
tured according to a particular agent architecture (e.g., only reactive or
proactive agents may be needed). This step allows the developer to decide
the most appropriate internal architecture for each agent in the system. For
example, he/she decides a predefined architecture (such as the PRS that will
be used as our guiding example in this paper) or must choose to build a spec-
ification of his/her own. Obviously, in the former case the steps involved in
writing the specification will be much easier since dealing with the modelling
of the internal mechanisms of the agents is not needed.

4. High-level specification of the system. In this step Linear Logic Pro-
gramming comes into play and Ehhf is used to build an executable specifi-
cation of the system. Due to its peculiar properties, Ehhf allows easy mod-
ellization of concurrency among agents, as well as updates of agents states.
We can identify three different levels of modellization:
(a) specification of interactions among agents (external concurrency), ab-

stracting from their architecture and taking into account the interaction
model specified in step 2;

(b) specification of the (new) architectures chosen in step 3, i.e. modelliza-
tion of the interactions between the internal components of the agents
(internal concurrency);

50 Marco Bozzano et al.

(c) specification of the agents’ behaviour, i.e. how they operate to provide
their services.

It is important to point out that the whole process listed in steps 1 through
4 may be repeated more than once, either because the testing phase (step
5) reveals some flaws in the initial choices, or because the developer decides
to refine the specification. For example, in the first stage only specification
4a listed above could be given while 4b and 4c could be defined afterwards.

5. Testing of the system. This phase concerns testing the system in order
to verify how closely the prototype corresponds to the desired requirements.
Using a logical language like Ehhf for this phase has numerous advantages
and using the Ehhf interpreter makes it possible to evaluate a goal step by
step, following the evolution of a particular system in detail. It is possible to
verify whether a particular computation may be carried out, or what is more
important, that every computation starting from a given configuration leads
to a final state which satisfies a given property. It might also be possible
to employ standard techniques to prove properties of programs in the logic
programming context. This is part of authors’ future work.

6. Implementation of the prototype. At this point of the development
process we have an abstract (hopefully correct) specification of the final ap-
plication. This step transforms the Ehhf specification into a prototype much
closer to the final implementation (i.e., interfaces towards external software
and data, message passing communication, etc.). Furthermore, performance
and standardization reasons suggest using more efficient and widespread log-
ical languages than Ehhf for an actual implementation of MAS prototypes.
In this step specifications 4a, 4b and 4c have to be translated into exe-
cutable ACLPL code. 4a corresponds to various implementations of message
exchange. 4b is translated into suitable data structures (obtaining different
architecture parts) and into a meta-program that implements the control
flow of the architecture. Finally, the architecture-dependent rules defining
4c are translated into ACLPL rules. The framework also allows the user to
join all the agents that form the prototype into a unique executable speci-
fication, so that the system can be further tested. Obviously, in most cases
only 4c has to be translated, if existing solutions are chosen for 4a and 4b.

7. Execution of the obtained prototype. The last step tests the implemen-
tation choices, checking whether the system behaves as expected. Any error
or misbehaviour discovered in this step may imply a revision of the choices
made in the previous steps.

Practical Application of CaseLP. CaseLP has been adopted in order to de-
velop applications in different areas. Two applications were related to transporta-
tion and logistic problems. In particular one was developed in collaboration with
FS (the Italian railway company) to solve train scheduling problems on the La
Spezia – Milano route, and another one was developed with Elsag Bailey, an in-
ternational company which provides service automation, to plan transportation
of goods. Another application concerned the retrieval of medical information

Multi-agent Systems Development as a Software Engineering Enterprise 51

contained in distributed databases. In this case CaseLP was successfully adopted
for a reverse engineering process. Finally, the combination of agent-oriented and
constraint logic programming techniques has been faced with CaseLP to solve
the transaction management problem on a distributed database.

3 The PRS Architecture

The specification and implementation of the architecture of an agent are certainly
among the most difficult phases of our development methodology. We will furnish
CaseLP with a library of agent architectures from which the application developer
will pick the desired model. In this section steps 4b and 6 of our methodology
are applied to implement the PRS architecture.

The Procedural Reasoning System (PRS) [6] has obtained broad consensus
among researchers in the multi-agent systems field. The model of practical rea-
soning that underpins PRS is BDI (Beliefs, Desires and Intentions) [18] which
is operationalized in PRS agents by the notion of plans. Each agent has a plan
library, which is a set of plans and represents the agent’s procedural knowl-
edge. Each plan consists of: a trigger, or invocation condition, which specifies
the circumstances under which the plan should be considered; a context, or
precondition, specifying the circumstances under which the execution of the
plan may commence1; a maintenance condition, which characterizes the circum-
stances that must remain true while the plan is executing, and a body defining
a potentially complex course of actions which may consist of both goals and
primitive actions. The agent’s interpreter can be outlined by the following cycle
[4]: (1) observe the world and the agent’s internal state, and update the event
queue consequently; (2) generate possible new desires (tasks) by finding plans
whose trigger event matches an event in the event queue; (3) select one from this
set of matching plans for execution; (4) push the selected plan onto an existing
or new intention stack, according to whether or not the event is a (sub)goal; (5)
select an intention stack, take the topmost plan and execute the next step of
this current plan: if the step is an action, perform it, otherwise, if it is a subgoal,
post it on the event queue.

On the basis of work in [4], a specification of dMARS (an implementation of
PRS) using the Z specification language [19], we will show how this architecture
can be modelled using Ehhf and CaseLP. First we briefly introduce some basic
features of linear logic programming [2, 14].

3.1 Executable Specifications in Ehhf
The linear logic language Ehhf [2] is an executable language for modelling con-
current and resource sensitive systems based on the general purpose logical spec-
ification language Forum [14]. Ehhf is a multiset-based logic combining features of
extensions of logic programming languages like λProlog, e.g. goals with implica-
tion and universal quantification, with the notion of formulas as resources at the
1 Note that a triggered plan can start its execution only if its context is satisfied

52 Marco Bozzano et al.

basis of linear logic. Below we will informally describe the operational semantics
of Ehhf -programs. Specifically, Ehhf -programs are a collection of multi-conclusion
clauses of the form:

A1
...

............
.................................. . . .

...
............
.................................. An ◦− Goal,

where the Ai’s are atomic formulas, and the linear disjunction A1
...

............
.................................. . . .

...
............
.................................. An

corresponds to the head of the clause. Furthermore, A ◦− B (i.e., B −◦ A) is a
linear implication. The main peculiarity of such clauses is that they consume the
resources (formulas) they need in order to be applied in a resolution step.

Formally, given a multiset of atomic formulas (the state of the computation)
Ω0, a resolution step Ω0 → Ω1 can be performed by applying an instance A1

..
............
.................................

. . .
...

............
.................................. An◦−G of a clause in the program P , whenever the multiset Θ consisting of

the atoms A1, . . . , An is contained in Ω0. Ω1 is then obtained by removing Θ from
Ω0 and by adding G to the resulting multiset. In the interpreter, instantiation
is replaced by unification. At this point, since G may be a complex formula, the
search rules (i.e., the logical rules of the connectives occurring in G) must be
exhaustively applied in order to proceed. Such a derivation, which corresponds to
a branch of the proof tree of the multiset Ω, can be used to model the evolution
of a PRS agent. Ω represents the current global state, e.g., beliefs, intentions and
the event queue, whereas P describes the possible plans that can be triggered at
any point during a computation. Ehhf provides a way to “guard” the application
of a given clause. In the following extended type of clauses

G1 & . . .& Gm ⇒ (A1
..

............
................................. . . .

..
............
................................. An ◦− Goal),

the goal-formulas Gi’s must be solved (i.e., executed in P) in order for the clause
to be triggered. New components can be added to the current state by using goal-
formulas of the form G1

...
............
.................................. G2. In fact, the goal G1

...
............
.................................. G2, ∆ simply reduces to

G1, G2, ∆. Conditions over the current state can be tested by using goal-formulas
of the form G1&G2. In fact, the goal G1&G2, ∆ reduces to G1, ∆ and G2, ∆.
Thus, one of the two copies of the state can be consumed to verify a contextual
condition. Universal quantification in a goal-formula ∀x.G can be used to create
a new identifier t which must be local to the derivation tree of the subgoal G[t/x].
Finally, the constant > succeeds in any context and the constant ⊥ is simply
removed from the current goal. Such a description can be used to observe the
evolution of an agent or, by using backward analysis, to detect violations of the
requirements of the specifications.

3.2 LLP Specification of a PRS Agent

In this section we explain in detail how to specify the salient aspects of the PRS
architecture using Ehhf .

Beliefs, Goals, Actions and Plans. Beliefs can be modelled by ground facts
of the form belief(Fact). The set of beliefs is maintained in the current state
Ω. Goals are terms of the form achieve(Fact) and query(Fact). An achieve goal
commits the agent to a sequence of actions, whose execution must make the
goal true. A query goal implies a test on the agent’s beliefs to know whether the

Multi-agent Systems Development as a Software Engineering Enterprise 53

goal is true or not. Internal actions, represented by the terms assert(Fact) and
retract(Fact), update the agent beliefs. External actions (e.g. sending messages)
are denoted by generic terms. Plans basically consist of sequences of actions and
(sub)goals. They are represented as facts in the following form

plan(Trigger, Context, Body, Maintenance, SuccActs),
where Trigger is a trigger linked to a particular event, Context is a condition
that has to be true to start the plan, Body is a sequence of actions and (sub)goals
B1 :: . . . :: Bn, Maintenance is a condition that has to be true while the plan is
executed, SuccActs is a sequence of actions to be executed if the plan succeeds.
Thus, the plan library of the agent is described as a collection of facts. On the
contrary to [4] we do not take into consideration failure actions whose aim is
generally to rollback to a safe state in case the plan fails. This can be obtained
without effort in an LP setting by exploiting backtracking.

Triggers and events. Triggers are raised by events and their aim is to acti-
vate plans. We can distinguish between external triggers, that force an agent to
adopt a new intention, and internal triggers, that cause an agent to add a new
plan to an already existing intention. External triggers are: addbelief(Fact) and
delbelief(Fact), linked respectively to events denoting acquisition and removal of
a belief, and goal(G) denoting acquisition of a new goal. Instead, there is only
one internal trigger, i.e., subgoal(G), denoting a (sub)goal call in the executing
plan. Events are terms of the form event(Trig, Id), where Trig can assume one of
the forms above, and Id is a (possibly undefined) identifier of the plan instance
causing the event.

Event queues. An event queue is associated with each PRS agent. It contains
external and internal events and is represented by a term of the form

event queue([E1 | . . . | En]),
where E1 . . . En are events. Events linked to external triggers are always inserted
at the end of the event queue, whereas events linked to internal triggers are
inserted at the top. Since events are taken from the top of the event queue, this
policy gives priority to events generated by an attempt to achieve a (sub)goal.

Plan instances. Plan instances represent plans to execute. A new plan instance
is created and inserted into an intention stack as soon as its trigger has been
activated and its context is satisfiable. A plan instance contains an instantiated
copy of the original plan from which it derives together with and the information
about whether the plan is active or suspended. Differently from [4], we use shared
variables and unification to inherit knowledge from the original plan. A unique
identifier is associated to each plan instance. Thus, plan instances have the form

plan inst(Id, Body, Maintenance, Active, SuccActs).

Intention stacks. An intention stack contains the currently active plan and
a set of suspended plans. An internal trigger subgoal(G) can generate a new

54 Marco Bozzano et al.

plan instance that is pushed onto the same intention stack as the plan contain-
ing the (sub)goal whose execution has activated the trigger. An external trigger
produces a new plan instance that is stored in a new intention stack. In our
representation an intention stack is a term of the form

int stack([P1 | . . . | Pn]),
where P1 . . . Pn are plan instances. The internal behaviour of a PRS agent can be
described by means of the Ehhf rules listed below. For the sake of this example
we do not explicitly give rules for perception, i.e., rules for simulating interac-
tions with the external world. As in [4], the idea is to start the simulation of the
agent from an initial queue of events and from an initial intention stack. During
execution, perception rules can be used to build appropriate events according
to information produced by some perception devices (for example environment
sensors or inter-agent communication devices) and to (non deterministically)
post them into the agent event queue. Other than the rules listed below, we
consider a program P containing the plan library and the information to distin-
guish external and internal triggers and actions, of the form external(Trigger),
external(Action), etc.

Plan triggering. Plan triggering rules handle creation of new plan instances
and intention stacks, according to the raised trigger. If an external trigger has to
be handled, a new intention stack is created and a new plan instance is pushed
onto it. This can be formalized by the following rule:

plan(T, C, B, M, SA) & external(T) ⇒ (event queue([event(T,)|L]) ◦−
verify(C) & (∀Id. int stack([plan inst(Id,B, M, act, SA)])

..
............
................................. event queue(L))).

The conditions plan(. . .) and external(. . .) must be fulfilled by P (i.e. must be
unified with facts in P), whereas the goal-formula verify(. . .) & (∀Id. . . .) allows
us to test the contextual condition over a copy of the current state (for sake of
brevity verify is not specified here). New identifiers for the plan instances are
created by using universal quantification. Finally, note that the modification of
the event queue is defined by consuming the current one (the head of the clause)
and creating a new copy (in the body).

A similar clause formalizes what to do if the trigger is internal. The main
difference is that the intention stack, whose top plan has the same identifier
as the first event in the event queue, is consumed. After verifying the context,
the intention stack is rewritten adding a new instance of the plan whose trigger
matches the trigger of the topmost event in the event queue.

Plan execution. A plan is executed when the event queue of the agent is
empty. An intention stack such that its top plan instance is active is non deter-
ministically chosen and the first action of the plan instance is executed (if the
maintenance condition is verified). We have developed rules for each possible
plan component: external and internal actions, query goals and achieve goals.
For sake of brevity we only report the most significant among them.

Multi-agent Systems Development as a Software Engineering Enterprise 55

In case an external action has to be executed, the following rule is applied:

external(A) ⇒ (event queue([])
..

............
................................. int stack([plan inst(Id, A :: B, M, act, SA)|L])

◦− verify(M) & (event queue([])
...

............
.................................. execute(A)

...
............
..................................

int stack([plan inst(Id, B, M, act, SA)|L]))).

The call to execute(A) activates the agent output devices, for example effectors
on the environment, or the inter-agent communication for sending a message to
another agent.

In case of internal actions the following rules are applied; if the top com-
ponent of a plan is an assert action, the corresponding belief is added to the
database (if it is not present):

event queue([])
..

...........
.................................. int stack([plan inst(Id, assert(F) :: B, M, act, SA)|L]) ◦−

verify(M) & not believed(F) & (belief(F)
...

............
..................................

event queue([event(addbelief(F), Id)])
...

............
..................................

int stack([plan inst(Id,B, M, active, SA)|L])).

Similarly, if the top component of a plan is a retract action, then the corre-
sponding belief (if present) is removed by consuming it.

If the plan component is an achieve goal, and the corresponding belief is in
the database, then the agent can proceed:

event queue([])
...

............
.................................. belief(F)

...
............
..................................

int stack([plan inst(Id, achieve(F) :: B, M, act, SA)|L]) ◦− verify(M) &

(event queue([])
..

............
................................. belief(F)

..
............
................................. int stack([plan inst(Id,B, M, act, SA)|L])).

If the previous rule cannot be applied, the current plan is suspended and a new
event containing a subgoal trigger and a reference to the current plan is created:

event queue([])
...

............
.................................. int stack([plan inst(Id, achieve(F) :: B, M, act, SA)|L]) ◦−

verify(M) & not believed(F) & (event queue([event(subgoal(F), Id))])
..

............
.................................

int stack([plan inst(Id,B, M, susp, S)|L]).

If the plan component is a query goal and F is a belief of the agent, then the
query succeeds by using a rule similar to the first achieve rule (the plan instance
at the top of the intention stack is a query(F) instead of an achieve(F)).

Plan termination and resuming. If a plan has been completed successfully,
the SuccActs (sequence of internal actions) has to be executed. Furthermore,
awakening a previously suspended plan may be necessary. The following rules
capture execution of SuccActs :

event queue([])
...

............
.................................. int stack([plan inst(Id, [], , act, assert(F) :: SA)|L]) ◦−

not believed(F) & (event queue([])
..

............
................................. belief(F)

..
............
.................................

int stack([plan inst(Id, [], , act, SA)|L])).

event queue([])
...

............
.................................. belief(F)

...
............
.................................. int stack([plan inst(Id, [], , act, retract(F) :: SA)|L])

◦− event queue([])
..

............
................................. int stack([plan inst(Id, [], , act, SA)|L]).

56 Marco Bozzano et al.

When the execution of SuccActs has been completed, the plan instance can be
popped away from the intention stack, and the (suspended) lower plan instance
has to be awakened:

event queue([])
..

...........
.................................. int stack([plan inst(, [], , , []), plan inst(Id, B, M, susp, SA)|L])

◦− event queue([])
...

............
.................................. int stack([plan inst(Id, B, M, act, SA)|L]).

When an intention stack becomes empty, it is removed using the rule
int stack([]) ◦− ⊥.

As mentioned before, such a specification can be directly executed in a logic
programming language by setting an initial set of events and of intentions. The
next step in the CaseLP methodology is to refine the specification in order to get
closer to a real implementation.

3.3 LP Prototyping of a PRS Agent

The refinement of the Ehhf specification into a more concrete prototype aims
mainly at the realization of a software product based on a more established tech-
nology and in which modules written in different languages can be integrated.
Moreover, we consider the possibility of building prototypes encompassing agents
with different architectures and we aim at providing the CaseLP environment
with a library of meta-interpreters, each of which reproduces a particular kind
of management of the agent behaviour. After being abstractly specified with
Ehhf , these meta-interpreters will (automatically) be translated into the more
concrete ACLPL language. As a first step towards this library, we present an in-
terpreter for the PRS architecture which is directly derived from the previously
defined Ehhf specification.

An interpreter for the PRS architecture. Mapping the Ehhf specification
of PRS into a CaseLP agent does not require a great effort. In fact, the Ehhf data
structure previously defined finds a direct mapping into ACLPL terms. Further-
more, representation of beliefs and intentions is stored in the agent state, the
event queue corresponds to the agent mail-box, and plans are memorized in the
agent behaviour as facts.

We can note that the Ehhf clauses, used for specifying the PRS interpreter,
assume the general form

G1 & . . . & Gm ⇒ (A1
...

............
.................................. . . .

...
............
.................................. An ◦− Gm+1 & . . . & Gm+k & An+1

...
............
.................................. . . .

...
............
.................................. An+h),

where all the formulas G1, . . . , Gm+k, A1, . . . , An+h are atomic. In order to trans-
late a multi-conclusion guarded clause C of such a form, we can introduce an
auxiliary predicate pC , defined as

pC :- retract state(A1), . . . , retract state(An), G1, . . . , Gm+k,
assert state(An+1), . . . , assert state(An+h).

where retract state and assert state are the state update predicates previously
described. The execution of retract state(A1), . . . , retract state(An) consumes
the atomic formulas A1, . . . , An, the proof of G1, . . . , Gm+k tests both the
clause guard and the condition over the current state, and finally the execution of

Multi-agent Systems Development as a Software Engineering Enterprise 57

assert state(An+1), . . . , assert state(An+h) adds new information to the state
itself.

Applying this transformation to every Ehhf clause, we can obtain a cor-
responding set of CaseLP clauses. Such a set can be partitioned by grouping
together clauses regarding the four main activities performed by a PRS agent
that are perception, plan triggering, plan execution and action execution. The
top-level behaviour of a simple version PRS interpreter can be given by the rule
that starts the four main activities, with a priority that reflects their order in
the body of the clause.
prs interpreter :- perception; plan triggering; plan execution; action execution.

Obviously, more sophisticated strategies can be implemented, so that the exe-
cution of the four activities may take additional information into account.

Each activity can be defined by the clauses belonging to the corresponding
activity group, for example

plan triggering :- pC1 ; . . . ; pCs .

where pC1 , . . . , pCs are the clauses of the plan triggering group.
We do not present the complete code for the PRS interpreter, but we only give

(part of the) rules for handling internal triggers and external actions. The rule
for handling an internal trigger (belonging to the definition of plan triggering,
together with rules for external triggers) is

plan triggering :- retract state(mail box([event(T, Id1)|L]),
retract state(int stack([plan instance(Id1, B1, M1, act, SA1)|L1])),
plan(T, C, B, M, SA), internal(T), verify(C), get new id(Id),
assert state(mail box([L]),
assert state(int stack([plan instance(Id,B, M, act, SA),

plan instance(Id1, B1, M1, act, SA1)|L1])).

In this clause the call of a pCi has been substituted by its definition and the
goal get new id(Id) creates a new identifier.

To execute a plan step involving an external action the interpreter uses the
rule

plan execution :-
retract state(int stack([plan instance(Id, [A|Body], Maint, active, SA)|L])),
retract state(mail box([])), external(A), verify(Maint),
assert state(int stack([plan instance(Id,Body,Maint, active, SA)|L])),
assert state(mail box([])), assert state(execute(A)).

The rule for executing an external action is

action execution :- retract state(execute(send(Message,Receiver))),
send(Message,Receiver).

where the verification of goal send(Message, Receiver) has the side effect of
performing the message send. Note that in CaseLP the only allowed external
actions concern sending messages, so this specialized rule can be used.

The PRS interpreter is started whenever the agent is awakened by the system
scheduler. This is achieved by calling the hook predicate activate defined as

activate :- prs interpreter.

58 Marco Bozzano et al.

After the PRS agent has executed one of the four main activities, control returns
to the system scheduler so that another agent can be activated.

The above translation of the Ehhf specification into the concrete logical lan-
guage ACLPL could be further refined into a more efficient one by exploiting
advanced features of the ECLiPSe system.

4 Comparison and Future Work

In our paper we have described CaseLP as a tool which adopts software engi-
neering techniques to develop multi-agent system prototypes. Logic is used both
as the prototype specification and implementation language. How does CaseLP
compare with other general purpose tools for MAS development and testing?

MIX [7] has been conceived as a distributed framework for the cooperation
of multiple heterogeneous agents. Its basic components are the agents and the
network through which they interact. A yellow page agent offers facilities for
receiving information on the dynamic changes of the network environment.

The Open Agent Architecture (OAA) [12] provides software services through
the cooperative efforts of distributed collections of autonomous agents. There are
different categories of agents recognized in the framework. The facilitator is a
server agent responsible for coordinating agent communications and cooperative
problem-solving. Application agents are “specialists” that provide a collection
of services (eventually based on legacy applications). Meta-agents help the fa-
cilitator agent during its multi-agent coordination phase, and the user interface
agent provides an interface to the user.

ZEUS [17] is an advanced development tool-kit for constructing collaborative
agent applications. It defines a multi-agent system design methodology, sup-
ports the methodology with an environment for capturing user specification of
agents and automatically generates the executable source code for the user-
defined agents. A ZEUS agent is composed of a definition layer, an organization
layer and a coordination layer. ZEUS also provides predefined yellow and white
pages agents.

ZEUS appears to be the most similar to CaseLP. The proposed methodology
is given as a set of questions, whose answers the MAS developer uses to define
the agent in terms of its role, the services it provides and the relationships with
other agents. Even though it is less formalized, it has the same aim as the CaseLP
methodology. A feature which characterizes all the presented approaches except
for CaseLP is the presence of a predefined agent which helps discover which agent
provides which services (yellow and white pages in ZEUS, yellow pages in MIX
and facilitator in OAA). It would not be difficult to provide CaseLP with such
an agent but, at the moment, it is up to the user to implement it, if necessary.
Integration of legacy software is dealt with in MIX, OAA and ZEUS by adopting
a wrapping approach that “agentifies” existing software. On the contrary CaseLP
adopts an interpretation approach.

As an example of specification of MAS architecture, we have presented a
possible realization of the PRS one. We think the approach we followed for

Multi-agent Systems Development as a Software Engineering Enterprise 59

the PRS specification may have some advantages over other ones present in
the literature. In [4] a specification for PRS is given using Z, a specification
language based on set theory, first-order logic, and the notions of state space
and transformations between states. We think that Linear Logic may be a more
natural candidate for the specification of systems where the notion of state,
transformations and resources are involved. The main advantage of Ehhf with
respect to Z is its being directly executable. It also supports specification at
different levels of abstraction like Z, but its higher-order extensions (Z is first-
order) greatly facilitate meta-programming.

Another formal specification for PRS is presented in [15]. It is based on a
particular temporal logic language, Concurrent MetateM, which supports the
specification of concurrent and distributed entities. Goals, beliefs and plans are
represented by means of formulas in temporal logic, whose execution is com-
mitted to a run-time execution algorithm. Verification of the specifications is
rather direct even though at the moment a small, fast interpreter for Concurrent
MetateM is not available. On the contrary, the language we propose is based
on a linear extension of classical logic languages such as Prolog. Its execution
mechanism is goal directed and is based on clause resolution and unification as
is usual in Logic Programming. Ehhf , like Concurrent MetateM, easily supports
broadcast message-passing and can simulate meta-level activity by means of its
higher-order features.

An experimental interpreter for Ehhf has been developed by the authors
(see ftp://ftp.disi.unige.it/pub/person/BozzanoM/Terzo). The develop-
ment of a more efficient interpreter for the language is part of our future work.
Furthermore, we also plan to investigate the possibility of extending standard
Logic Programming techniques for software verification and validation to the Lin-
ear Logic context. Among these, it would be worth considering symbolic model
checking, and possibly techniques based on partial evaluation and abstract in-
terpretation. As far as CaseLP is concerned, we plan to extend the system to
allowing for a real distribution of the agents on a network, so that prototypes
will be closer to final implementation. Finally, as described in [1], we intend to
integrate different research experiences based on Logic Programming, includ-
ing CaseLP, into a common joint project which will lead to the development of
the general open framework ARPEGGIO (Agent based Rapid Prototyping Envi-
ronment Good for Global Information Organization), for the specification, rapid
prototyping and engineering of agent-based software. The ARPEGGIO framework
will also include work on integration of multiple data sources and reasoning sys-
tems being carried out by the Department of Computer Science at the University
of Maryland (USA), as well as work being done on animation of specifications
at the Department of Computer Science at the University of Melbourne (Aus-
tralia).

60 Marco Bozzano et al.

References

[1] P. Dart, E. Kazmierckaz, M. Martelli, V. Mascardi, L. Sterling, V.S. Subrah-
manian, and F. Zini. Combining Logical Agents with Rapid Prototyping for
Engineering Distributed Applications. Submitted to FASE’99.

[2] G. Delzanno. Logic & Object–Oriented Programming in Linear Logic. PhD thesis,
Università di Pisa, Dipartimento di Informatica, 1997.

[3] M. d’Inverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and
M. Wooldridge. Formalisms for Multi-Agent Systems. The Knowledge Engineering
Review, 12(3), 1997.

[4] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal Specification of
dMARS. In Intelligent Agents IV. Springer-Verlag, 1997. LNAI 1365.

[5] M. Fisher, J. Mueller, M. Schroeder, G. Staniford, and G. Wagner. Methodological
Foundations for Agent-Based Systems. The Knowledge Engineering Review, 12(3),
1997.

[6] M. Georgeff and A. Lansky. Reactive Reasoning and Planning. In Proc. of
the Sixth National Conference on Artificial Intelligence (AAAI-87), Seattle, WA,
1987.

[7] C. A. Iglesias, J. C. Gonzáles, and J. R. Velasco. MIX: A General Purpose Mul-
tiagent Architecture. In Intelligent Agents II. Springer-Verlag, 1995. LNAI 1037.

[8] R. Kowalsky and F. Sadri. Towards a Unified Agent Architecture that Combines
Rationality with Reactivity. In Proc. of International Workshop on Logic in
Databases, San Miniato, Italy, 1996. Springer-Verlag.

[9] Y. Lesperance, H. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl. Foun-
dations of a Logical Approach to Agent Programming. In Intelligent Agents II.
Springer-Verlag, 1995. LNAI 1037.

[10] S. W. Locke, L. Sterling, L. Sonenberg, and H. Kim. ARIS: A Shell for Information
Agents that Exploit Web Site Structure. In Proc. of PAAM’98, London, UK, 1998.

[11] M. Martelli, V. Mascardi, and F. Zini. Towards Multi-Agent Software Prototyp-
ing. In Proc. of PAAM’98, London, UK, 1998.

[12] D. L. Martin, A. J. Cheyer, and D. B. Moran. Building Distributed Software
Systems with the Open Agent Architecture. In Proc. of PAAM’98, London, UK,
1998.

[13] J. Mayfield, Y. Labrou, and T. Finin. Evaluation of KQML as an Agent Commu-
nication Language. In Intelligent Agents II. Springer-Verlag, 1995. LNAI 1037.

[14] D. Miller. Forum: A Multiple-Conclusion Specification Logic. Theoretical Com-
puter Science, 165(1), 1996.

[15] M. Mulder, J. Treur, and M. Fisher. Agent Modelling in METATEM and DESIRE.
In Intelligent Agents IV. Springer-Verlag, 1997. LNAI 1365.

[16] D. T. Ndumu and H. S. Nwana. Research and development challenges for agent-
based systems. IEE Proc. of Software Engineering, 144(1), 1997.

[17] H. S. Nwana, D. T. Ndumu, and L. C. Lee. ZEUS: An Advanced Tool-Kit for
Engineering Distributed Multi-Agent Systems. In Proc. of PAAM’98, London,
UK, 1998.

[18] A. S. Rao and M. Georgeff. BDI Agents: from Theory to Practice. In Proc. of
ICMAS’95, San Francisco, CA, 1995.

[19] M. Spivey. The Z Notation (second edition). Prentice Hall International, 1992.
[20] M. Wooldridge. Agent-based Software Engineering. IEE Proc. of Software Engi-

neering, 144(1), 1997.
[21] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. The

Knowledge Engineering Review, 10(2), 1995.

	Introduction
	A Framework for MAS Development
	Prototype Realization

	The textsf {PRS} Architecture
	Executable Specifications in ${cal E}_{hhf}$
	LLP Specification of a textsf {PRS} Agent
	LP Prototyping of a textsf {PRS} Agent

	Comparison and Future Work

