
1

Integration testing

2

• When to use it: when individual units are
combined and tested as a group

• Goal: to expose faults in the interaction
between integrated units
• It verifies interface specifications and model

breakdown
• It verifies the software architecture

Integration testing

3

• Scaffolding is extensively required
• Test drivers and test stubs are used to assist in

integration testing

• Faults are related to interactions and compatibility

Integration testing

4

• Inconsistent interpretation of parameters or
values
• Example: Mixed units (meters/yards) in Martian

Lander
• Violations of value domains, capacity, or size

limits
• Example: Buffer overflow

Integration Faults

5

• Side effects on parameters or resources
• Example: Conflict on (unspecified) temporary

file
• Omitted or misunderstood functionality

• Example: Inconsistent interpretation of web hits
• Non-functional properties

• Example: Unanticipated performance issues

Integration Faults

6

• Dynamic mismatches
• Example: Incompatible polymorphic method

calls

Integration Faults

7

• Big Bang: test almost all units in one shot
• Top Down: top-level units are tested first and lower

level units are tested step by step after that. Test
Stubs are needed to simulate lower level units

• Bottom Up: bottom level units are tested first and
upper-level units step by step after that. Test Drivers
are needed to simulate higher level units

• Sandwich/Hybrid: combination of Top Down and
Bottom Up approaches

Integration testing - approaches

8

• Use

@RunWith(Suite.class)
@SuiteClasses({MyFirstClassUnitTest.cl
ass,MySecondClassUnitTest.class})

• to select the units you want to test

JUnit 5

9

Scaffolding

10

• Test case design includes input and expected
output behaviour

• It may be simply a matter to fill a template
(Acceptance test), but …

Why Scaffolding?

11

• Testing can be complex: a test specification is
connected to several test cases:
• e.g., a sorted sequence, length greater than 2,

with items in ascending order with no duplicates
• We need a structure to support test execution

Why Scaffolding?

12

• To test in small: independent drivers just test
some functionalities of a large user interface

• To drive coding (e.g., TDD)
• To perform integration testing

Why Scaffolding?

13

• Test driver
• Test stub
• Test harness
• Oracle

Barbara Russo

Elements

14

• To drive program under test through test cases
• Test driver is a software module used to invoke

a module under test and,
• It often provides test inputs, control and

monitor execution, and report test results
• Drivers can become automated test cases

Test driver

15

movePlayer(Player1, 2);

• Call to movePlayer with Player1 and two-
spaces movement

• A unit test would execute this driver and test
through myPlayer.getPosition() to make sure
the player is now on the expected cell on the
board

Barbara Russo

Example - driver

16

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import it.unibz.Player;
class PlayerTest {
static Player thePlayer;

 @BeforeAll
 public static void setUp() {
 thePlayer = new Player("Babsi");
 }
 public Player movePlayer(Player thePlayer, int increment) {
 this.thePlayer = thePlayer;
 thePlayer.position += increment;
 return thePlayer;
 }
 @Test
 void testPosition() {
 movePlayer(thePlayer, 2);
 assertEquals(1,thePlayer.getPosition(thePlayer));
 }
}

Example Driver	to	test	the	position;	I	
am	not	testing	the	existence	
of	a	current	Player!	For	this	I	
need	another	test

This	test	fails!

17

• A stub is a program statement substituting for
the body of a software module that is or will
be defined elsewhere or

• A dummy component or object used to
simulate the behaviour of a real component
until that component has been developed

Test stub

18

• Developing stubs allows programmers to call a
method in the code being developed, even if the
method does not yet have the desired behaviour

• Stubs can be “filled in” to form the actual
method

Barbara Russo

Test stub

19

• If the movePlayer() has not been written yet

public Player movePlayer(Player thePlayer, int
increment) {
 return thePlayer;
 }
• Or if it has been written
public Player movePlayer(Player thePlayer, int increment)
{
 this.thePlayer = thePlayer;
 thePlayer.position += increment;
 return thePlayer;
 }

Barbara Russo

Example - stubs

20

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import it.unibz.Player;
class PlayerTest {
static Player thePlayer;

 @BeforeAll
 public static void setUp() {
 thePlayer = new Player("Babsi");
 }
 public Player movePlayer(Player thePlayer, int increment) {
 return thePlayer;
 }
 @Test
 void testPosition() {
 movePlayer(thePlayer, 2);
 assertEquals(1,thePlayer.getPosition(thePlayer));
 }
}

Example
Stub

21

• Environment in which to execute the tests
• Substitutes for other parts of the deployed

environment
• Ex: Software simulation of a hardware device,

Unit frameworks

Test harness

22

• A test oracle is a piece of software that
provides a pass/fail service to the program
execution (e.g., assert)

• In principle, an oracle classifies every
execution and detects every failure, but it can
even give false alarms
• False alarms increase cost of maintenance and

reduce resources to dedicate to real failures
• Thus, there is no perfect oracle

Oracle

23

• As the exception expectation is placed around
the whole test method, this might not actually
test what is intended to be tested

@Test(expected = FooException.class)
public void testWithExceptions() {
 foo.prepareToDoStuff();
 foo.doStuff();
}

Examples - false positive

24

• It lacks the ability of asserting both the message
and the cause of the exception that has been
thrown.

• As good exception messages are valuable,
assertions on messages should be taken into
account

• JUnit 5
Throwable thrown = assertThrows(FooException.class,
() -> foo.doStuff());

Expected exceptions

25

Auction
-startAuction()
-endAuction()
+getItem()
-computeMax()
+displayMax()

Exercise

User
+placeBid()
+setMickName()
-setCardNo()
+registerToAuction()
+viewCurrentAuctions()

what are the services we need to test for integration?

26

Bottom Up or Top Down?

Item ItemPicture

Auction User

AuctionManager AuctionHistory

27

• Just an example to give you the flavor of it
• It is a development practice
• Tests are created before regular code
• Use of compiler and execution environment

(e.g., JVM) to drive the development
• Use stubs and incrementally implement them
• Use drivers in assertions to test the

development

Test Driven Development

28

• Practice for writing unit tests and production
code concurrently and at a very fine level of
granularity

• Programmers
• first write a small portion of a unit test, and
• then they write just enough production code to

make that unit test compile and execute

29

• This cycle lasts somewhere between 30 seconds
and five minutes. Rarely does it grow to ten
minutes.

• In each cycle, the tests come first.
• Once a unit test is done, the developer goes on

to the next test until they run out of tests for the
task they are currently working on

30

• TextFormatter: A text formatter that take
arbitrary strings and horizontally center them in
a page

•

Example

31

• Few issues:
• What are the methods:

• setLineWidth()
• centerLine()

• What is a Line?
• Can I use String?

32

• First understand the entities to test

33

34

• Extend the previous example by allowing any
line length

• Extend the example above by allowing terms
that are concatenation of word

Exercise

35

• Line Test Coverage: If you follow the rules of
TDD, then virtually 100% of the lines of code
in your production program will be covered by
unit tests

• This does not cover 100% of the paths through
the code, but it does make sure that virtually
every line is executed and tested

What are the benefits of TDD?

36

• Test Repeatability. The tests can be run any
time you like

• Documentation. The tests describe your
understanding of how the code should behave.

• They also describe the API. Therefore, the tests
are a form of documentation.

What are the benefits of TDD?

37

• API Design. When you write tests first, you put
yourself in the position of a user of your
program’s API. This can only help you design
that API better

• Reduced Debugging. When you move in the
tiny little steps recommended by TDD, it is
hardly ever necessary to use the debugger.
Debugging time is reduced enormously

What are the benefits of TDD?

38

Regression Testing

39

• When to use it:
• Adding new/changing module impacts a

system:
• New data flow paths established
• New I/O may occur
• New control logic invoked

Regression testing

40

• It is re-execution of a subset of tests that have
already been run after changes are made

• Ensures changes have not propagated
unintended side effects

Regression testing

41

• Procedural: Run the same tests again
• Risk-oriented: Expose errors caused by

change. Test after changes
• Refactoring support: Help the programmer

discover implications of her code changes.
Change detectors

Major types

42

• Manual, scripted regression testing
• Automated GUI regression testing
• Smoke testing (manual or automated)

Procedural - types of testing

43

• Retest with a relatively small test suite to
decide when a new build is stable to proceed
with further testing

• It aims at ensuring that the most important
functions work

• Also known as Build Verification Testing

Example - Smoke testing

44

• When to use it:
• Some components are broken in obvious ways

that suggest a corrupt build or
• Some critical fixes that are the primary intent of

the new build didn't work

Example - not stable build

45

• Bug regression:
• Retest a specific bug that has been supposed to

be fixed: show that a bug fix didn’t fix the bug
• Old fix regression testing:
• Retest several old bugs that were fixed, to see

if they are back: show that old fixes were
broken or had a side effect

Risk-oriented - types of testing

46

• General functional regression:
• Retest the product broadly:

• To show that a change caused a working area to
break

Risk-oriented - types of testing

47

• Exercise every function in interesting ways, so
that when the code has been refactored, the
developer can quickly see:
• What would break if developer made a change

to a given variable, data item or function or
• What the developer did break by making the

change

Refactoring support - types of
testing

connectors

48

• Test-driven development using white-box
testing tools like:
• JUnit, httpUnit, and fitnesse

• The developer creates tests and runs them every
time the code is compiled (continuous testing)

Refactoring support - types of
testing

49

• Conversion or port testing:
• Retest the program when it has been ported to

a new platform to determine whether the port
was successful

Other types of testing

50

• Configuration testing:
• Retest when the program is run with a new

device or on a new version of the operating
system or in conjunction with a new application

Other types of testing

51

• Localization testing:
• Retest when the program has a new different

language and/or following a different set of
cultural rules

Other types of testing

52

WinAmp v2.79

Example - Risk-oriented

WinAmp v5.03

53

• The player makes use of meta-data to store information about an MP3
file within the audio file itself like artist, title, track number

• Old bug:
• Input: string with more than 30,000 characters
• Output: (Warning window with) crash

• New Bug found with regression tests
• Input: String with more than 30,000 characters
• Output: The file plays, but one cannot hit any other buttons and

pressing play multiple times, more and more duplicate menu options
are added into a menu

After replaying the old tests

54

WinAmp v2.79

Example - Risk-oriented

WinAmp v5.03

55

• Buffer overflows occur when too much
memory is used and not enough memory was
allocated.

• Return calls for functions can be lost or
overwritten, allowing malicious users to exploit
them to access and modify other parts of a
system

Buffer overflow

56

Buffer stack overflow
In Java this can happen with C++
libraries.
For instance, the parameters and
local variables within JNI methods
include several C++ object pointers

Attackers inject code that over flows
buffer and corrupts the return address.

Instead returning to the appropriate
call procedure the modified address
points to malicious code located
somewhere in the process memory

57

[1] int foo (int a, int b, int c, int d, float e) {
[2] if (a == 0) {
[3] return 0;
[4] }
[5] int x = 0;
[6] if ((a==b) II ((c == d) && bug(a))) {
[7] x=1;
[8] }
[9] e = 1/x;
[10] return e;
[11] }

bug(a) = TRUE if !a==0 else FALSE

How would you change the code and
re-test?

58

• Original test suite T(0,0,0,0,0) and T(1,1,0,0,0)

• Does the old suite capture the bug?

How would you change the code
and re-test?

59

• Test suite contains:
• Representative sample of tests that exercises all

GUI features
• Focus on GUI features that have been changed
• Focus on GUI features likely affected by

change

GUI Regression testing

60

• Capture/Playback tools:
• 1. Capture test cases and results (manual)
• 2. Playback and
• 3. Compare

• A capture/replay tool is test execution tool in which the
entries are recording during manual testing with the goal
of generating automated test scripts that can be replayed
afterwards

• Especially used for GUI testing

Capture/Playback

61

• Create a test case
• Run it and inspect the output
• If the program fails, report a bug and try again later
• If the program passes the test, save the resulting outputs
• In future tests, run the program and compare the output to

the saved results
• Report an exception whenever the current output and the

saved output don’t match

Regression testing strategy

