
Barbara Russo
SwSE - Software and Systems Engineering Research Group

1

Strategies of white-box testing to
drive test case design

2

• Code coverage
• Test Driven Development
• Control Flow Diagrams

• Path coverage

Strategies

Barbara Russo
SwSE - Software and Systems Engineering research group

3

Code coverage

4

How thoroughly a test suite exercises a
program

Coverage

5

1		int	foo	(int	a,	int	b,	int	c,	int	d,	float	e)	{	
2						if	(a	==	0)	{	
3										return	0;	
4						}	
5						int	x	=	0;	
6						if	((a==b)	||	((c	==	d)	&&	bug(a)))	{	
7											x=1;	
8						}	
9						e	=	1/x;	
10				return	e;	
11	}

Example

bug(): if a=1 it returns true

and false if a!=1.

6

• Coverage is a measure of the completeness of
the set of test cases
• Method coverage
• Statement coverage
• Branch coverage
• Condition coverage

Coverage

7

• Measure: percentage of methods that have been
executed at least once by test cases

• Test cases should exercise 100% of the methods

• It is irresponsible to deliver non-tested methods
• Testers need to ensure 100% method coverage

Method coverage

8

There is only one method

int	foo	(int	a,	int	b,	int	c,	int	d,	float	e)		

for a=0 foo returns 0 no matter the
values of the other parameters

calling foo with input (0,0,0,0,0) we
attain 100% method coverage in our
example

TC1

9

• Measure: percentage of statements that have
been executed by test cases
• Achieve 100% statement coverage: cover

statements with test cases

Statement coverage

10

Check coverage of TC1 first:
executed statements on lines 1-4
only out of 11 lines of code

Statement coverage: ~36%
(4/11) with TC1

Statement coverage

Reach the execution of line 5 -> a!=0

We need another test case!

Barbara	Russo 11

• TC2(1, 1, 1, 1,1), expected return value = 1.
• executes statements on lines 5-11

• 100% statement coverage obtained!

TC2

Barbara	Russo 12

• Measure: percentage of the decision points
evaluated as both true and false in test cases
• Achieve 100% branch coverage: cover all

branches as both true and false with test cases

Branch Coverage

13

Two decision points:
one at line 2 and the other at line 6

if	(a	==	0)	{}	

if	((a==b)	OR	((c	==	d)	AND	bug(a)))	{}

Branch Coverage

Barbara	Russo 14

• For decision/branch coverage, we evaluate an
entire Boolean expression of the condition as
one true-or-false predicate

Branch Coverage

Barbara	Russo 15

Line	#	 Predicate True False

3 (a	==	0)	 TC1(0,	0,	0,	0,	0)	return	0 TC2(1,	1,	1,	1,	1)	return	1

7 ((a==b)	OR		
((c	==	d)	AND	bug(a)))

TC2(1,	1,	1,	1,	1)	return	1

Branch Coverage

16

• With TC1 and TC2 we have executed three of
the four necessary conditions
• 75% branch coverage so far

TC3

We need another test case!

17

• TC3(1, 2, 1, 2, 1) return ??
• Division by 0 that can cause future failures!

• That was due to a local variable that we could
not control by using strategies based on the
analysis of the input space of foo()!

• It depends on how we implemented the method

TC3

18

Branch coverage
Line	#	 Predicate True False

3 (a	==	0)	 TC1(0,	0,	0,	0,	0)	return	0 TC2(1,	1,	1,	1,	1)	return	1

7 ((a==b)	OR		
((c	==	d)	AND	bug(a)))

TC2(1,	1,	1,	1,	1)	return	1 TC3(1,2,1,2,1)	Division	by	
zero

!((a==b)	OR	((c	==	d)	AND	bug(a)))	=	(a!=b)	AND	((c	!=	d)	OR	!bug(a)))

TC3	defined	for	both	(a!=b)	AND	(c	!=	d)

Barbara	Russo 19

• Measure: percentage of Boolean sub-
expressions of the program that have been
evaluated as both true or false outcome in test
cases

• Condition coverage measures the outcome of
each of these sub-expressions independently of
each other

Condition Coverage

20

Condition Coverage We	need	another	TC!

Predicate True False
(a	==	0)	 TC1(0,	0,	0,	0,	0)	return	0 TC2(1,	1,	1,	1,	1)	return	1

(a	==	b) TC2(1,	1,	1,	1,	1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

(c	==	d) TC3(1,2,1,2,1)	Division	by	zero

bug(a)	

To reach the execution of (c==d)
must be a!=b and a!=0

21

TC4
Predicate True False
(a	==	0)	 TC1(0,	0,	0,	0,	0)	return	0 TC2(1,	1,	1,	1,	1)	return	1

(a	==	b) TC2(1,	1,	1,	1,	1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

(c	==	d) TC4(1,2,1,1,1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

bug(a)	

for a==1 bug(a) = TRUE and return 1, otherwise
division by zero. It does not matter for cond.
cov whether to enter the if-block!

22

TC4
Predicate True False
(a	==	0)	 TC1(0,	0,	0,	0,	0)	return	0 TC2(1,	1,	1,	1,	1)	return	1

(a	==	b) TC2(1,	1,	1,	1,	1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

(c	==	d) TC4(1,2,1,1,1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

bug(a)	 TC4(1,2,1,1,1)	return	1

We need another TC!

23

TC5
Predicate True False
(a	==	0)	 TC1(0,0,0,0,0)	return	0 TC2(1,1,1,1,1)	return	1

(a	==	b) TC2(1,1,1,1,1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

(c	==	d) TC4(1,2,1,1,1)	return	1 TC3(1,2,1,2,1)	Division	by	zero

bug(a)	 TC4(1,2,1,1,1)	return	1 TC5(3,2,1,1,1)	Division	by	zero

a!=b but a!=1 ->

change only a

Again, c == d or c!=d
changes only the return value

24

• Condition coverage does not imply branch
coverage!

• Predicate: A && B - e.g.: a=b && c=d

• Condition coverage does not subsumes
branch coverage!

Note

Condition Branch Example
TF, FT F,F T(1,1,0,1) and

T(1,0,1,1)
TT, FF T,F T(1,1,1,1) and

T(1,0,1,0)

but I can build a test suite for condition coverage that
contains a test suite for branch coverage

25

Traceability matrix

Predicate True False
(a == 0) TC1(0,0,0,0,0) return 0 TC2(1,1,1,1,1) return 1

(a == b) TC2(1,1,1,1,1) return 1 TC3(1,2,1,2,1) Division by zero

(c == d) TC4(1,2,1,1,1) return 1 TC3(1,2,1,2,1) Division by zero

bug(a) TC4(1,2,1,1,1) return 1 TC5(3,2,1,1,1) Division by zero

26

• It is an Eclipse plug-in
• With Maven: In the node build and sub-node

plugins of the POM file include

JaCoCo

<plugin>
<groupId>org.jacoco</groupId>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.2</version>
<executions>

<execution>
<goals>

<goal>prepare-agent</goal>
</goals>

 </execution>
<!-- attached to Maven test phase -->
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>

</executions>
</plugin>

27

public class Hailstone {
 public static void main(String[] args) {
 int n = 3;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}

Exercise

28

• Run this class with JaCoCo code coverage
highlighting turned on, by choosing Run →
Coverage As → Java Application.

• By changing the initial value of n, you can
observe how JaCoCo highlights different lines
of code differently.

29

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}

Executed

Not Executed

Partially
Executed Branch

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}

Executed

Not Executed

Partially
Executed Branch

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}

Executed

Not Executed

Partially
Executed Branch

n
3

10

5

16

8

4

2

1

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}

Executed

Executed

Not Executed

Partially
Executed Branch

n
3

10

5

16

8

4

2

1

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}

Executed

When n=16 initially, what
color is the line n = 3 * n + 1
after execution?

Executed

Not Executed

Partially
Executed Branch

n
3

10

5

16

8

4

2

1

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}Not Executed

Executed

When n=16 initially, what
color is the line n = 3 * n + 1
after execution?

Executed

Not Executed

Partially
Executed Branch

n
3

10

5

16

8

4

2

1

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}Not Executed

Executed

What initial value of n
would make the line while (n
!= 1) yellow after execution?

When n=16 initially, what
color is the line n = 3 * n + 1
after execution?

Executed

Not Executed

Partially
Executed Branch

n
3

10

5

16

8

4

2

1

29

When n=3 initially, what
color is the line n = n/2 after
execution?

Exercise
public class Hailstone {
 public static void main(String[] args) {
 int n = ?;
 while (n != 1) {
 if (n % 2 == 0) {
 n = n / 2;
 } else {
 n = 3 * n + 1;
 }
 }
 }
}Not Executed

Executed

Partially
Executed Branch n=1

What initial value of n
would make the line while (n
!= 1) yellow after execution?

When n=16 initially, what
color is the line n = 3 * n + 1
after execution?

Executed

Not Executed

Partially
Executed Branch

n
3

10

5

16

8

4

2

1

30

• Testing is a dynamic activity
• It can be done only when the artefacts to be

tested are “executable”

Testing

31

• Move forward testing to the earliest possible is
one of the practices of agile methods:
• Test First in XP

• Testing has been also used to develop new
code:
• Test Driven Development

Testing as a development technique

32

• Practice for writing unit tests and production
code concurrently and at a very fine level of
granularity

• Programmers
• first write a small portion of a unit test, and
• then they write just enough production code

to make that unit test compile and execute

Test Driven Development (TDD)

33

• This cycle lasts somewhere between 30
seconds and five minutes. Rarely does it grow
to ten minutes.

• Once a unit test is done, the developer goes on
to the next test until they run out of tests for the
task they are currently working on

Test Driven Development (TDD)

3/27/14

34

• Use compilation and execution to drive
development

Test Driven Development (TDD)

35
Barbara Russo

• Specification:
TextFormatter: it takes arbitrary strings and
horizontally centers them in a line

• Methods:
a. setLineWidth()
b. center()

• Parameters
a. size b. string

Example - TDD in Java

3/27/14

36

• Start by creating a test method and instantiate
within it an object of the class you want to test

Example - TDD in Java

36

• Start by creating a test method and instantiate
within it an object of the class you want to test

Example - TDD in Java

Barbara Russo
37

• Select one method to develop
• Choose input representative values to test it

Example - TDD in Java

width=10
line=“word”

center

38

• Develop the method in a simple way to avoid it
fails; thinking of the parameters’ values you
have chosen; first attempt

padding term padding

39

• Re-thinking of the logic

•

Example - TDD in Java

padding term padding

40

• Changed parameter value into “hello”

Example - TDD in Java

41

• How many test cases?
• Let’s reason using category partition testing!

Exercise

42

How many tests w. brute force?

width term.length

odd odd

even even

42

• One-parameter problem!

• padding = (width-word.length)/2

How many tests w. brute force?

width term.length

odd odd

even even

42

• One-parameter problem!

• padding = (width-word.length)/2

How many tests w. brute force?

width term.length

odd odd

even even

width-word.length

odd

even

42

• One-parameter problem!

• padding = (width-word.length)/2
• remainder = padding % 2

How many tests w. brute force?

width term.length

odd odd

even even

width-word.length

odd

even

remainder

1

0

42

• One-parameter problem!

• padding = (width-word.length)/2
• remainder = padding % 2

How many tests w. brute force?

width term.length

odd odd

even even

width-word.length

odd

even

remainder

1

0

padding term padding remainder

42

• One-parameter problem!

• padding = (width-word.length)/2
• remainder = padding % 2

How many tests w. brute force?

width term.length

odd odd

even even

width-word.length

odd

even

remainder

1

0

padding term padding remainder

42

• One-parameter problem!

• padding = (width-word.length)/2
• remainder = padding % 2

How many tests w. brute force?

width term.length

odd odd

even even

width-word.length

odd

even

remainder

1

0

padding term padding remainder

42

• One-parameter problem!

• padding = (width-word.length)/2
• remainder = padding % 2

How many tests w. brute force?

width term.length

odd odd

even even

width-word.length

odd

even

remainder

1

0

padding term padding remainder

Only two test cases

43

• width-string.length
• odd = 2k+1, even =2k with k>0
• k != r

• odd - odd = 2(k-r) : even
• even - even = 2(k-r) : even
• even - odd or odd - even = 2(k-r) +/- 1 : odd

• In addition
• padding=0 or
• string.length=width=0
• padding<0

Test cases

43

• width-string.length
• odd = 2k+1, even =2k with k>0
• k != r

• odd - odd = 2(k-r) : even
• even - even = 2(k-r) : even
• even - odd or odd - even = 2(k-r) +/- 1 : odd

• In addition
• padding=0 or
• string.length=width=0
• padding<0

Test cases

Only two test cases

other default test cases

44

• line = 10
• string = “word” and “hello”
• string= “circumstances”
• string = “challenges”
• width = 0
• word.length=0

Combinatorial partition testing
width word.length

even	[Property:	evenL]	 even	[Property:	evenS]	if([evenL])	
odd	[Property:	oddL] odd	[Property:	oddS]	if([evenL])	
0[single] >word.length	if([evenL])	[error]

=word.length	if([evenL])	
<word.length	if([evenL])	
0	[single]

width=0	is	used	with	0	
for	word.length;	cannot	
be	used	anywhere	else

45

Solution

Barbara Russo
SwSE - Software and Systems Engineering Research Group

46

Models of program execution

47

A model of program execution is a
representation of a software execution simpler

but that preserves some key attributes of it

• This representation will help to define a
strategy for testing

A model of program execution

48

• Representation of the program execution with a
sequence of states and transitions

• The state space is a set of possible states and
transitions

• For almost all programs, the state space is
potentially infinite

State Space

49

• The states are represented in the space by an
abstraction function

• The abstraction function might suppress some
states to create the finite model

Abstraction function

50

• Coarsening: execution sequences are collapsed
into shorter sequences

• Non determinism: states are merged

Effects of abstraction

51

Effects of abstraction
For example, assume the third state is neglected

Shorter Sequences

Merge States

Barbara Russo
SwSE - Software and Systems Engineering Research Group

52

Example: Control Flow Graphs

53

• It is a directed graph
• Node (state)= portion of code
• Directed Edge = flow of execution between two

portions

Control Flow Graphs

54

• The control flow structure is modeled with direct
graphs

• A direct graph is a set of arcs and nodes with one
defined direction
• A set of statements without branch corresponds to a node,

a flow of control from a statement to another to an arch
• There is a start node and an end node
• Each other node resides on a path between these two
• Each node has an in-degree and an out degree
• The start/end node has zero in - degree/out - degree

Control flow structure

55

• A program is transformed in a direct graph
called control flow graph that depicts the
execution control of a program and the
instruction to be executed

• It is a static representation of the program
• It makes visible the control structure
• Out-degree = 1 defines procedural	nodes	all

the other nodes are called predicate	nodes

Control flow structure

56

• CFG keeps information of instructions to be
executed and ignores values of variables or
data structures

• Example of non deterministic abstraction
1 boolean z = FALSE;

2 if(z && y<=2){

3 if(z){

4 y++;

5 }else{y--;}

6 }

• CFG also models the non- feasible path!

Control Flow Graphs

It does not depend on
the value of z or the
data structures in the
branches

3

1-2

4 5

6

57

• We can use this information to design test cases
• Let’s see how to do it …

• First let’s introduce the McCabe complexity
measure which will help us to limit the number
of test cases

CFG to design test cases

58

• Map codes to flow graphs
• Map flow graphs to numbers

McCabe Cyclomatic Complexity

59

• CC= # of connected regions
• CC=# branches+1
• CC=# elements in a base
• CC=# decision point +1
• CC=#arcs-#nodes+2 (Euler characteristic)

CC definition

60

• Sequence

• If … then … else

• While

Examples

If

while

61

Example

 [1] int mcCabe(int a, int b) {
 [2] if (a >b) {
 [3] a++;
 [4] b--;
 [5] } else {
 [6] a=a + b;
 [7] }
 [8] if (a < 0) a=-a;
 [9] return a;
[10] }

62

Exercise

63

• A complete path is a path starting from the starting
node and ending to the end node

• One complete path is linearly independent from the
others if it does not exist a combination of the other
complete paths to which is equal

• How to combine paths ...

CC as independent paths

64

Describe the base of the following graph

a b

c d
e f

g h

Rule	to	combine	paths:	
The	arcs	go	from	top	to	
bottom	
-a	:	is	the	arc	in	the	opposite	
direction	
-aceg:	is	the	opposite	
complete	path	of	aceg	
ab:		is	first	a	and	then	b	

65

Describe the base of the following graph

a b

c d
e f

g h

Rule	to	combine	paths:	
The	arcs	go	from	top	to	
bottom	
-a	:	is	the	arc	in	the	opposite	
direction	
-aceg:	is	the	opposite	
complete	path	of	aceg	
ab:		is	first	a	and	then	b	

Complete	paths:	
aceg	
bdfh	
bdeg	
acfh	

66

Describe the base of the following graph

a b

c d
e f

g h

a b

c d
e f

g h

The path acfh=aceg-bdeg+bdfh

66

Describe the base of the following graph

a b

c d
e f

g h

a b

c d
e f

g h

66

Describe the base of the following graph

a b

c d
e f

g h

a b

c d
e f

g h

The path acfh=aceg-bdeg+bdfh

67

• Minimum number of independent complete
paths

Base

68

Draw the flow graph and Compute the
CC

A5
A6

69

Result

Barbara Russo
SwSE - Software and Systems Engineering Research Group

70

Use CFG in testing

71

• Path coverage is every possible path through
the program taken by some test case

• McCabe complexity is used to determine how
many complete execution paths (i.e. test cases
designed from them) a tester need to consider

• As with code coverage this is a measure that
approximates completeness

Path coverage

72

• Reformulate statement coverage: Design test
cases so that every node lies on at least one
complete path

• Path coverage: Design test cases such that
every possible arc is executed at least once

Statement and Path coverage

73

• Draw the CFG
• Count the possible independent complete paths
• Create a table with all the possible arcs as column

headers
• Create a test case per execution of an arc in an

independent path

Template for path coverage

74

public class PowerFunction {
public static void main(String[] args) {

int x = Integer.parseInt(args[0]);
int y = Integer.parseInt(args[1]);
int w = Math.abs(y);
int z = 1;

while(w!=0){
z=z*x;
w=w-1;

}
if(y<0){z=1/z;}
System.out.println("result is "+z);}

}

The power function
Program computing Z=X^Y

1

2

3 4

5

6

read(X,Y)
W=abs(Y)
Z=1

Z=Z*X
W=W-1

W≠0 W=0

Y<0
Y≥0 Z=1/Z

print(Z)

75

• All arcs are executed in at least one path
• Infeasible path
• 1 ->2 -> 4 -> 5-> 6
• As many ways to iterate as values of abs(Y) including 0
• 1 -> 2 -> (3 -> 2)* -> 4 -> 6
• 1 -> 2 -> (3 -> 2)+ -> 4 -> 5 -> 6

• w=0,1,-1 what for the infeasible path?

Path coverage

1

2

3 4

5

6

read(X,Y)
W=abs(Y)
Z=1

Z=Z*X
W=W-1

W≠0 W=0

Y<0
Y≥0 Z=1/Z

print(Z)

76

• Path coverage (CC=3, 4 complete paths)
• Infeasible path
• 1 ->2 -> 4 -> 5-> 6
• As many ways to iterate as values of abs(Y) including 0
• 1 -> 2 -> (3 -> 2)* -> 4 -> 6
• 1 -> 2 -> (3 -> 2)+ -> 4 -> 5 -> 6

• Branch coverage
• Three test cases:

• Y<0 : 1 -> 2 -> (3 ->2)+ -> 4 -> 5 -> 6
• Y≥0 : 1 -> 2 -> (3 -> 2)* -> 4 -> 6

• Statement coverage
• One test case is enough:

• Y<0 : 1 -> 2 -> (3 ->2)+ ->4 -> 5 -> 6

Issues

1

2

3 4

5

6

read(X,Y)
W=abs(Y)
Z=1

Z=Z*X
W=W-1

W≠0 W=0

Y<0
Y≥0 Z=1/Z

print(Z)

77

• 100% path coverage subsumes both 100%
statement coverage and branch coverage

Subsumption

78

• Some paths are infeasible
• Some edges are hidden
•

CFG and issues with coverage

79

• Infeasible path: a program path that cannot be executed
for any input

A input(score)
B if score<45
C then print (‘fail’)
D else print (‘pass’)
E if score >70
F then print (‘with distinction’)
G end

Some complete paths may be infeasible

 A

D C
 B

 E

 F

 G

79

• Infeasible path: a program path that cannot be executed
for any input

A input(score)
B if score<45
C then print (‘fail’)
D else print (‘pass’)
E if score >70
F then print (‘with distinction’)
G end

Some complete paths may be infeasible

 A

D C
 B

 E

 F

 G

Which	path	is	not	feasible

79

• Infeasible path: a program path that cannot be executed
for any input

A input(score)
B if score<45
C then print (‘fail’)
D else print (‘pass’)
E if score >70
F then print (‘with distinction’)
G end

• The path A-B-C-E-F-G is infeasible and
• It will be never executed
• We create a test case for the non-feasible path: wasting

time

Some complete paths may be infeasible

 A

D C
 B

 E

 F

 G

Which	path	is	not	feasible

80

if x < 0 then
 x := -x;
end if
z := x;

The else condition is implicit

else
 null;

• A test case exercising only x<0 reaches the 100% statement
coverage, but it does not prevent a bug to occur if x > = 0

• With CGF we can create a test case also x > = 0. Good!

Some paths are implicit

