
Barbara Russo
SwSE - Software and Systems Engineering Research Group

1

Dependability properties

2

• Dependability goals and properties are
concerns of Quality Process (QP)

• QP is a means to fulfill required, desired,
specific functional and non-functional
properties that are called Quality Goals

Quality process

3

• A QP is needed
• Even when specifications do no state specific

quality properties of a system there is always a
degree of quality in place to satisfy
• E.g., modern development requires a certain

coverage with unit testing

Quality process

4

• Improving software product during and after
development

• Assessing software product quality before
delivery

• Improving quality process within and across
projects

Quality goals

5

• Product goals are goals of software quality
engineering

• Process goals are means to achieve product
goals

• To achieve goals we need to
• Make them explicit
• E.g., discover them during a feasibility study

Quality goals

6

• Product
• Internal qualities
• External qualities

• Usefulness qualities
• Dependability qualities

Quality goals

7

• We have seen:
• Correctness
• Reliability
• Robustness
• Safety

• Specification Self-Consistency

Dependability qualities

8

• System behaviour can be only successful or
failing
• Example: a program cannot be 30% correct
• A program is correct if all its possible

behaviours are successes
• A (hardware/software) system is correct if all

its sub-parts (e.g., sub-systems, components,
external libraries, devices) behave correctly

Correctness

9

•What is a successful behavior of
a system?

• A system is correct if it is consistent with all
its specifications
• Specifications can be very badly defined!
• Correctness is seldom practical
• Failures might not yet be known: zero-days

vulnerabilities

Correctness

10

• Statistical approximation to correctness:
probability that a system deviates form the
expected behaviour
• Likelihood against given
specifications

• Unlike correctness it is defined against an
operational profile of a software system

Reliability

11

• The probability that a given number of users
(workload intensity) would access a system/
functionality/service/operation concurrently

• It is a quantitative characterization of how a
system will be used
• It shows how to increase productivity and

reliability and speed development by allocating
development resources to function on the basis
of use

Operational profile

12

Operational profile - system level

13

• Example: to guide verification:
• if the verification is terminated and system is

deployed or the software is released because of
schedule constraints, the most-used operations
will have received the most testing and the
reliability level will be the maximum that is
practically achievable for the given test time

Operational profile

14

Operations

Frequency Of Use

Operational profile - operation level

15

• Availability: the portion of time in which the
software operates with no down time

• Time Between Failures: the time elapsing
between two consecutive failures

• Cumulative number of failures: the total
number of failures occurred at time

Major Measures of Reliability

16

• A system maintains operations under
exceptional circumstances

•It fails “softly” outside its
normal operating parameters

• It is “fault tolerant”
• Despite faults, it operates

Robustness

17

• Unusual circumstance: unforeseen (not in the
specifications) load of users accessing a web
site

• Robust software:
• A workaround: Maintain the same throughput

speed while stopping last arrived users until the
load is decreased

• It does not decrease performance for registered
users

Example

18

• Action to be taken to increase robustness:
Augment software specifications with
appropriate responses to given unusual
circumstances (enrich the operational profile
with unlikely situations)

Example

19

• Robustness in case of hazardous behaviour
(hazard)

• A hazard is any agent that can cause harm
or damage to humans, property, or the
environment

• Safety is very focused on functionalities that
can determine hazards, not concerned with
other issues on functionalities

Safety

20

• Often needed in critical systems, but not only:
• Word crashes -> reliability or robustness
• Word crashes and corrupts existing files -> safety

Safety

21

•Safety is meaningless without a
specification of hazards

• It is important to identify and classify hazards
for the given software

Hazard

22

• Do it in the embedded environment (often
hazards are related to specific environmental
circumstances)

• Separate the analysis of hazards from any other
verification activity

Hazard - how to detect them

23

• Discuss the dependability properties of a traffic
light system and classify its hazards

Exercise

24

• Reliability: built
according to central
scheduling and
practice

• Robustness, safety:
degraded function
when possible; never
signal conflicting
greens
• Blinking red / blinking

yellow is better than no
lights;

• No lights is better than
conflicting greens

Source: Mauro Pezze’ and Michal Young

25

Relations

Source: Mauro Pezze’ and Michal Young

26

• Find examples of
• correct but not safe,
• reliable but not correct,
• robust but not safe,
• safe but not correct

Exercise

27

Which type of issue is this?

28

• Analyse an issue report and classify it in terms
of the dependability properties.

• Example: SpringFramework Jira
• testBindInstantFromJavaUtilDate fails on

systems in the Pacific/Auckland time zone
[SPR-16534]

• https://jira.spring.io/browse/SPR-16534?
jql=project%20%3D%20SPR%20AND%20created%3E%3
D-1w%20ORDER%20BY%20created%20DESC

Exercise

29

• Reflects a system’s ability to protect itself from
attacks

• Security is increasingly important when
systems are networked to each other

• Security is an essential pre-requisite for
reliability and safety

Security

30

• If a system is networked and insecure then
statements about its reliability and safety are
unreliable:
– Intrusion (attack) can change the system’s

operating environment or data and invalidate the
assumptions (specifications) upon which the
reliability and safety are made

Effects of security

31

R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, “Cyber-physical systems and
their security issues,”Computers in Industry, vol. 100, pp. 212–223, sep 2018

32

• Denial of Service
– system forced into state where providing service is

impossible or significantly degraded
• Corruption of Programs or Data

– modifications made by unauthorised user
• Disclosure of Confidential Information

– information managed by system is exposed to people who
are not authorised users

Examples of insecurity damages

33

34

• Vulnerability Avoidance
– System designed so vulnerabilities can not occur (e.g. no network

connection)

• Attack Detection and Elimination
– System designed so attacks on vulnerabilities do not occur (e.g. use of

anti-virus software)

• Exposure Limitation
– System designed so damage from attacks is minimal (e.g. a backup

policy that allows restoration of damaged files)

Security Assurance

35

• Mirai - virus
• Predict Mirai attacks by exploring system’s

performance over time in microservice-based
systems
• SUT Sockshop - TicketTrain

Thesis topic

36

• Mining Common Weakness Enumeration(CWE
https://cwe.mitre.org) / Common
Vulnerabilities and Exposures (CVE https://
www.cvedetails.com) / exploits DB (https://
www.exploit-db.com) repositories to
recommend developers with vulnerable code

• Issuetrackers reports non-secure code
• Developers admit non secure code: SATD

Thesis topic
examples of non-secure code

effects of non-secure code

attacks to non-secure code

bugs related to non-secure code

code comments related to non-secure code

37

• Watch the following lecture from MIT open
course on Verification and Validation and report
back any unknown fact on “system”
verification and validation

• https://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-842-fundamentals-of-systems-
engineering-fall-2015/class-videos/session-9-
verification-and-validation/

Time to watch!

Barbara Russo
SwSE - Software and Systems Engineering Research Group

38

Verification techniques

39

• Program review
• Program analysis
• Testing

Verification techniques - types

40

Verifications techniques
Delivered Package

User
Acceptance

Unit
Specifications

Sub-s\stem
Specifications

S\stem
 Specifications

Unit

Subs\stem

S\stem

Unit Test

S\stem Test /
Regression Test

Integration Test /
API Test

RevieZ

Anal\sis /
RevieZ

Anal\sis /
RevieZ

Actual needs and
contraints

User revieZ of behavior
Validation

Verification

41

• Analysis of the system/software program and
its artefacts

• Analysis techniques that do not need to
execute code or run the system are the most
used as they can be used at any stage of
development
• Example: manual code inspection

Analysis

42

• Estimating correctness
• Identify software micro-architectures in software

architectures that
• 1. frequently change over versions & are prone to

defects:
• Artefacts: classes and their calls

• 2. or frequently change over versions & change together
(e.g., to fix a bug)
• Artefact: bug report, code commit

Example 1

43

• Are these micro-structures intentional (design
patterns) or residual of bad code?

Example

44

• Representing the commit process as a graph, where nodes
are commits and edges occur when two commits change
the same files

• Mining commits’ graphs (subgraph isomorphisms) to
investigate the presence of large architectural changes and
their likelihood of occurrence in bug fixing.

• Artefact: code commit, changed files

Example 2

45

• To predict the anomalies of systems
• Mining systems logs to model and predict

system mis-behavior (anomalies).
• Artefacts: log events

Example 3

46

• The goal is to examine a software/system
artefact and to approve it
• Systematic inspection of software/system to find

and resolve defects
• Typically, performed manually
• Documents like requirements, system designs,

codes, test plans and test cases

Review

47

• Analysis and review are typically static
• Testing is a dynamic process

• It requires to execute the software or run the
system

• It can be done only when the artefacts to be
tested are “executable”

Testing

48

[1] int foo (int a, int b, int c, int d, float e) {
[2] if (a == 0) {
[3] return 0;
[4] }
[5] int x = 0;
[6] if ((a==b) II ((c == d) && bug(a))) {
[7] x=1;
[8] }
[9] e = 1/x;
[10] return e;
[11] }

bug(a) = TRUE if !a==0 else 0

Exercise

49

• Statement coverage
• If 100% of statement are
covered by tests then the method
is correct

Exercise
Verification	technique

50

• Identify input values that execute all statements
• How many t-uples of input values? What is the

output for each of them?
• I/O and pass and fail criterion define a test case

Exercise - Statement coverage

51

• T Output value (input values)

• TFileNotFoundException(0, “Hello”, 0.3)
• T3(0, “Home”, 3)
• T(3,4)(1, “Home”, “Layout”)

Test case - notation

52

• Property: correctness
• First check manually if the method is correct
• Then use statement coverage

• Do the selected inputs catch the failure?
• Discuss accuracy of statement coverage with

the t-uples of input values you chose: FP? FN?

Exercise - program analysis

