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Dependability properties
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• Dependability goals and properties are 
concerns of Quality Process (QP) 

• QP is a means to fulfill required, desired, 
specific functional and non-functional 
properties that are called Quality Goals

Quality process
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• A QP is needed 
• Even when specifications do no state specific 

quality properties of a system there is always a 
degree of quality in place to satisfy 
• E.g., modern development requires a certain 

coverage with unit testing

Quality process
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• Improving software product during and after 
development 

• Assessing software product quality before 
delivery 

• Improving quality process within and across 
projects

Quality goals
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• Product goals are goals of software quality 
engineering 

• Process goals are means to achieve product 
goals 

• To achieve goals we need to 
• Make them explicit 
• E.g., discover them during a feasibility study

Quality goals
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• Product 
• Internal qualities 
• External qualities 

• Usefulness qualities 
• Dependability qualities

Quality goals
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• We have seen: 
• Correctness 
• Reliability 
• Robustness 
• Safety 

• Specification Self-Consistency

Dependability qualities
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• System behaviour can be only successful or 
failing 
• Example: a program cannot be 30% correct 
• A program is correct if all its possible 

behaviours are successes 
• A (hardware/software) system is correct if all 

its sub-parts (e.g., sub-systems, components, 
external libraries, devices) behave correctly

Correctness
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•What is a successful behavior of 
a system? 

• A system is correct if it is consistent with all 
its specifications  
• Specifications can be very badly defined! 
• Correctness is seldom practical 
• Failures might not yet be known: zero-days 

vulnerabilities

Correctness
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• Statistical approximation to correctness: 
probability that a system deviates form the 
expected behaviour 
• Likelihood against given 
specifications  

• Unlike correctness it is defined against an 
operational profile of a software system

Reliability
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• The  probability  that  a given number of users 
(workload intensity) would access a system/
functionality/service/operation concurrently 

• It is a quantitative characterization of how a 
system will be used  
• It shows how to increase productivity and 

reliability and speed development by allocating 
development resources to function on the basis 
of use

Operational profile
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Operational profile - system level
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• Example: to guide verification:  
• if the verification is terminated and system is 

deployed or the software is released because of 
schedule constraints, the most-used operations 
will have received the most testing and the 
reliability level will be the maximum that is 
practically achievable for the given test time

Operational profile
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Operations

Frequency Of Use

Operational profile - operation level
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• Availability: the portion of time in which the 
software operates with no down time  

• Time Between Failures: the time elapsing 
between two consecutive failures 

• Cumulative number of failures: the total 
number of failures occurred at time 

Major Measures of Reliability
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• A system maintains operations under 
exceptional circumstances  

•It fails “softly” outside its 
normal operating parameters 

• It is “fault tolerant” 
• Despite faults, it operates

Robustness
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• Unusual circumstance: unforeseen (not in the 
specifications) load of users accessing a web 
site 

• Robust software:  
• A workaround: Maintain the same throughput 

speed while stopping last arrived users until the 
load is decreased 

• It does not decrease performance for registered 
users 

Example
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• Action to be taken to increase robustness: 
Augment software specifications with 
appropriate responses to given unusual 
circumstances (enrich the operational profile 
with unlikely situations)

Example
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• Robustness in case of hazardous behaviour 
(hazard) 

• A hazard is any agent that can cause harm 
or damage to humans, property, or the 
environment 

• Safety is very focused on functionalities that 
can determine hazards, not concerned with 
other issues on functionalities

Safety
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• Often needed in critical systems, but not only: 
• Word crashes -> reliability or robustness   
• Word crashes and corrupts existing files -> safety

Safety
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•Safety is meaningless without a 
specification of hazards 

• It is important to identify and classify hazards 
for the given software

Hazard
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• Do it in the embedded environment (often 
hazards are related to specific environmental 
circumstances) 

• Separate the analysis of hazards from any other 
verification activity

Hazard - how to detect them
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• Discuss the dependability properties of a traffic 
light system and classify its hazards

Exercise
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• Reliability: built 
according to central 
scheduling and 
practice 

• Robustness, safety: 
degraded function 
when possible; never 
signal conflicting 
greens 
• Blinking red / blinking 

yellow is better than no 
lights;  

• No lights is better than 
conflicting greens

Source: Mauro Pezze’ and Michal Young
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Relations

Source: Mauro Pezze’ and Michal Young
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• Find examples of  
• correct but not safe,  
• reliable but not correct,  
• robust but not safe,  
• safe but not correct

Exercise
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Which type of issue is this?
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• Analyse an issue report and classify it in terms 
of the dependability properties.  

• Example: SpringFramework Jira 
• testBindInstantFromJavaUtilDate fails on 

systems in the Pacific/Auckland time zone 
[SPR-16534] 

• https://jira.spring.io/browse/SPR-16534?
jql=project%20%3D%20SPR%20AND%20created%3E%3
D-1w%20ORDER%20BY%20created%20DESC    

Exercise
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• Reflects a system’s ability to protect itself from 
attacks 

• Security is increasingly important when 
systems are networked to each other 

• Security is an essential pre-requisite for 
reliability and safety

Security
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• If a system is networked and insecure then 
statements about its reliability and safety are 
unreliable: 
– Intrusion (attack) can change the system’s 

operating environment or data and invalidate the 
assumptions (specifications) upon which the 
reliability and safety are made

Effects of security
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R.  Alguliyev,  Y.  Imamverdiyev,  and  L.  Sukhostat,  “Cyber-physical systems and 
their security issues,”Computers in Industry, vol. 100, pp. 212–223, sep 2018
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• Denial of Service 
– system forced into state where providing service is 

impossible or significantly degraded 
• Corruption of Programs or Data 

– modifications made by unauthorised user 
• Disclosure of Confidential Information 

– information managed by system is exposed to people who 
are not authorised users

Examples of insecurity damages
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• Vulnerability Avoidance 
– System designed so vulnerabilities can not occur (e.g. no network 

connection) 

• Attack Detection and Elimination 
– System designed so attacks on vulnerabilities do not occur (e.g. use of 

anti-virus software) 

• Exposure Limitation 
– System designed so damage from attacks is minimal (e.g. a backup 

policy that allows restoration of damaged files) 

Security Assurance
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• Mirai - virus 
• Predict Mirai attacks by exploring system’s 

performance over time in microservice-based 
systems 
• SUT Sockshop - TicketTrain

Thesis topic 
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• Mining Common Weakness Enumeration(CWE 
https://cwe.mitre.org)  / Common 
Vulnerabilities and Exposures (CVE https://
www.cvedetails.com) / exploits DB (https://
www.exploit-db.com) repositories to 
recommend developers with vulnerable code 

• Issuetrackers reports non-secure code 
• Developers admit non secure code: SATD

Thesis topic
examples of non-secure code

effects of non-secure code

attacks to non-secure code

bugs related to non-secure code

code comments related to non-secure code
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• Watch the following lecture from MIT open 
course on Verification and Validation and report 
back any unknown fact on “system” 
verification and validation 

• https://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-842-fundamentals-of-systems-
engineering-fall-2015/class-videos/session-9-
verification-and-validation/   

Time to watch!
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Verification techniques
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• Program review 
• Program analysis 
• Testing

Verification techniques - types
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Verifications techniques
Delivered Package

User
Acceptance 

Unit 
Specifications

Sub-s\stem
Specifications

S\stem
 Specifications

Unit

Subs\stem

S\stem

Unit Test

S\stem Test /
Regression Test

Integration Test /
API Test

RevieZ

Anal\sis /
RevieZ

Anal\sis /
RevieZ

Actual needs and
contraints

User revieZ of behavior
Validation

Verification
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• Analysis of the system/software program and 
its artefacts 

• Analysis techniques that do not need to 
execute code or run the system are the most 
used as they can be used at any stage of 
development 
• Example: manual code inspection

Analysis
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• Estimating correctness  
• Identify software micro-architectures in software 

architectures that  
• 1. frequently change over versions & are prone to 

defects:  
• Artefacts: classes and their calls 

• 2. or frequently change over versions & change together 
(e.g., to fix a bug)   
• Artefact: bug report, code commit

Example 1 
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• Are these micro-structures intentional (design 
patterns)  or residual of bad code?

Example
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• Representing the commit process as a graph, where nodes 
are commits and edges occur when two commits change 
the same files 

• Mining commits’ graphs (subgraph isomorphisms) to 
investigate the presence of large architectural changes and 
their likelihood of occurrence in bug fixing.  

• Artefact: code commit, changed files

Example 2
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• To predict the anomalies of systems  
• Mining systems logs to model and predict  

system mis-behavior (anomalies).  
• Artefacts: log events

Example 3
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• The goal is to examine a software/system 
artefact and to approve it  
• Systematic inspection of software/system to find 

and resolve defects 
• Typically, performed manually  
• Documents like requirements, system designs, 

codes, test plans and test cases

Review
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• Analysis and review are typically static 
• Testing is a dynamic process  

• It requires to execute the software or run the 
system 

• It can be done only when the artefacts to be 
tested are “executable”

Testing
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[1] int foo (int a, int b, int c, int d, float e) {
[2]    if (a == 0) {
[3]         return 0;
[4]     }
[5]     int x = 0;
[6]     if ( (a==b) II ( (c == d) && bug(a) ) ) {
[7]         x=1;
[8]     }
[9]     e = 1/x;
[10]     return e;
[11] }

bug(a) = TRUE if !a==0 else 0

Exercise



49

• Statement coverage  
• If 100% of statement are 
covered by tests then the method 
is correct 

Exercise
Verification	technique
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• Identify input values that execute all statements 
• How many t-uples of input values? What is the 

output for each of them? 
• I/O and pass and fail criterion define a test case

Exercise - Statement coverage
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• T Output value (input values) 

• TFileNotFoundException(0, “Hello”, 0.3) 
• T3(0, “Home”, 3) 
• T(3,4)(1, “Home”, “Layout”)

Test case - notation
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• Property: correctness  
• First check manually if the method is correct 
• Then use statement coverage 

• Do the selected inputs catch the failure? 
• Discuss accuracy of statement coverage with 

the t-uples of input values you chose: FP? FN?

Exercise - program analysis


