Dependability properties

Barbara Russo
SwSE - Software and Systems Engineering Research Group

Universita Liedia de Bulsan

2,
IR

Quality process

* Dependability goals and properties are
concerns of Quality Process (QP)

* QP 1s a means to fulfill required, desired,
specific functional and non-functional
properties that are called Quality Goals

Quality process

* A QP i1s needed

* Even when specifications do no state specific
quality properties of a system there 1s always a
degree of quality 1n place to satisfy

* E.g., modern development requires a certain
coverage with unit testing

Libera Universita di Bolzano

Quality goals

* Improving software product during and after
development

» Assessing software product quality before
delivery

* Improving quality process within and across
projects

Quality goals

* Product goals are goals of software quality
engineering

* Process goals are means to achieve product
goals

* To achieve goals we need to
* Make them explicit
* E.g., discover them during a feasibility study

Quality goals

* Product
 Internal qualities
» External qualities

» Usefulness qualities
 Dependability qualities

Freie Universitdt Bozen
un|bz Libera Universita di Bolzano
Universita Liedia de Bulsan

2,
IR

Dependability qualities

 We have seen:
* Correctness
 Reliability
* Robustness
» Safety

* Specification Self-Consistency

Correctness

» System behaviour can be only successful or
failing

« Example: a program cannot be 30% correct

* A program 1s correct 1f all its possible
behaviours are successes

* A (hardware/software) system 1s correct 1f all
its sub-parts (e.g., sub-systems, components,
external libraries, devices) behave correctly

Correctness

e What is a successful behavior of

a system?
* A system 1s correct 1f it 1s consistent with all
its specifications
* Specifications can be very badly defined!
» Correctness 1s seldom practical

* Failures might not yet be known: zero-days
vulnerabilities

Freie Universitdt Bozen
u nlbz Libera Universita di Bolzano
Universita Liedia de Bulsan

Reliability

* Statistical approximation to correctness:

probability that a system deviates form the
expected behaviour
* Likelihood against given
specifications
» Unlike correctness it 1s defined against an
operational profile of a software system

10

Operational profile

o The probability that a given number of users
(workload intensity) would access a system/
functionality/service/operation concurrently

* It 1s a quantitative characterization of how a
system will be used
It shows how to increase productivity and
reliability and speed development by allocating

development resources to function on the basis
of use

Freie Universitdt Bozen
unibz Libera universita di Bolzano 11
Universita Liedia de Bulsan

Operational profile - system level

Configuration (a)
Memory CPU # Replicas
8 0.25 4
16 0.25 2
8 0.25 2
16 0.25 4
8 0.25 1
16 0.5 4
8 0.5 2
16 0.5 4
8 0.5 1
16 0.5 1
8 0.5 2
16 0.25 1
50 100 150 200 z;o 3(;0
Workload (number of users)
unib_z E-r::-: 3:""'355'2'“ :i I;otlzano

Operational profile

» Example: to guide verification:

o 1f the verification 1s terminated and system 1s
deployed or the software 1s released because of
schedule constraints, the most-used operations
will have received the most testing and the
reliability level will be the maximum that 1s
practically achievable for the given test time

Freie Universitdt Bozen
unibz Libera universita di Bolzano 13
Universita Liedia de Bulsan

2,
IR

Operational profile - operation level

;!
l | \o’o\0
Frequency 0f Use ! ' J

Opero&i,ohs

14

Major Measures of Reliability

* Availability: the portion of time 1n which the
software operates with no down time

* Time Between Failures: the time elapsing
between two consecutive failures

e Cumulative number of failures: the total
number of failures occurred at time

Robustness

* A system maintains operations under
exceptional circumstances

o It fails “softly” outside its
normal operating parameters

o It 1s “fault tolerant”
* Despite faults, 1t operates

Freie Universitdt Bozen
u nlbz Libera Universita di Bolzano
Universita Liedia de Bulsan

16

Example

* Unusual circumstance: unforeseen (not in the
specifications) load of users accessing a web
site

* Robust software:

* A workaround: Maintain the same throughput

speed while stopping last arrived users until the
load 1s decreased

It does not decrease performance for registered
users

Freie Universitdt Bozen
unibz Libera universita di Bolzano 17
Universita Liedia de Bulsan

Example

* Action to be taken to increase robustness:
Augment software specifications with
appropriate responses to given unusual

circumstances (enrich the operational profile
with unlikely situations)

Freie Universitdt Bozen
u nlbz Libera Universita di Bolzano
Universita Liedia de Bulsan

18

Safety

 Robustness in case of hazardous behaviour
(hazard)

* A hazard 1s any agent that can cause harm
or damage to humans, property, or the
environment

» Safety 1s very focused on functionalities that
can determine hazards, not concerned with
other 1ssues on functionalities

Libera Universita di Bolzano

19

Safety

e Often needed 1n critica

e Word crashes -> reliabi]

| systems, but not only:

1ty or robustness

* Word crashes and corru

Libera Universita di Bolzano

ots existing files -> safety

20

Hazard

@S&f@fj s meaningless without a
specification of hazards

* It 1s important to 1dentify and classify hazards
for the given software

Freie Universitdt Bozen
u nlbz Libera Universita di Bolzano
Universita Liedia de Bulsan

21

Hazard - how to detect them

e

* Do it in the embedded environment (often
hazards are related to specific environmental
circumstances)

» Separate the analysis of hazards from any other
verification activity

22

Exercise

* Discuss the dependability properties of a traffic
light system and classify 1ts hazards

* Reliability: built
according to central
scheduling and
practice

* Robustness, safety:
degraded function
when possible; never
signal conflicting
greens

* Blinking red / blinking
yellow 1s better than no
lights;

* No lights 1s better than
conflicting greens

-_— Freie Universitit Bozen

unibz - tiers nversis o stz Source: Mauro Pezze’ and Michal Young 24

— Unive e

Relations

reliable but robust but not
not correct: safe: catastrophic
failures failures can occur

occur rarely

correct but
not safe or safe but not
robust: the correc_:t:
specification annoying
is inadequate failures can
occur

Freie Universitit Bozen

unibz Libera Universita i Botzano Source: Mauro Pezze’ and Michal Young 25

Exercise

* Find examples of
e correct but not safe,
* reliable but not correct,
e robust but not safe,
» safe but not correct

Freie Universitdt Bozen
u n|bz Libera Universita di Bolzano
Universita Liedia de Bulsan

26

Which type of 1ssue 1s this?

Problem Statement:

For many downloads (especially large files) the publisher often releases MD5
checksums in order to assure that the download arrives as intended. The
problem is that this checksum often requires a manual check by the recipient of
the download. The recipient is often unwilling or unable to do this
verification and continues on assuming the download is good, without actually
checking.

Relates to Spec section:

http://dev.w3.org/html5/spec/links.html#links-created-by-a-and-area-elements
http://dev.w3.org/html5/spec/text-level-semantics.htmlfthe-a-element

Possible Solution:

A possible solution would be to include the checksum as a machine readable
attribute or tag that specifies the checksum and algorithm for the user agent
to verify the download after the download finishes, giving instant feedback to
the user.

Freie Universitit Bozen
unibz Libera universita di Bolzano 27
— Universita Liedia de Bulsan

Exercise

* Analyse an issue report and classify it in terms
of the dependability properties.

* Example: SpringFramework Jira

* testBindInstantFromJavaUtilDate fails on
systems 1n the Pacific/Auckland time zone
[SPR-16534]

* https://jira.spring.i0/browse/SPR-16534?
1ql=project%20%3D%20SPR%20AND%20created%3E%?3

D-1w%200RDER%20BY %20created%20DESC

Freie Universitdt Bozen
unibz Libera universita di Bolzano 28
Universita Liedia de Bulsan

Security

» Reflects a system’s ability to protect itself from
attacks

* Security 1s increasingly important when
systems are networked to each other

* Security 1s an essential pre-requisite for
reliability and safety

Freie Universitdt Bozen
uni bz Libera Universita di Bolzano 29
Universita Liedia de Bulsan

Effects of security

o If a system 1s networked and insecure then
statements about its reliability and safety are
unreliable:

— Intrusion (attack) can change the system'’s
operating environment or data and invalidate the
assumptions (specifications) upon which the
reliability and safety are made

Freie Universitdt Bozen
u nlbz Libera Universita di Bolzano 30
Universita Liedia de Bulsan

’- -\
Feedback Control
Disruption
— Feedback Yy,
/ " Integrity \
Finite |nterception of Attack

/ E{;g;?é Compromising \

Interference lllegal Worm

/ Actuation Signals Profgs:ing \
orbag Computing
05 Error in Use
Loss of Power
Supply Trojan

" /
Software

\ Tampering with
Hardware
/ Tampering with Remote Malfunction
Software :
Spyin Equipment
/ ying Failure \

/ Remote Corruption of \
Communication Spying Data Tampering with Sensing

Corruption of Hardware
I Data Loss of Power \
Packet Theft of Supply Unauthorised
Information| Environmental

\ Replaying
Threats

Actions
Eavesdropping PS Spoofing

Injecting

False Radar
Disturbance Signals

Packet : ybi
Interception of Attack
\ Spoofing compromising

i due to
Interf Equipment e
\ " ;ig?‘r:lr;ce Selective %ai?ure Radiation /
Forwarding Dazzli
Software azzling Cameras /
Malfunction Equipment with Light
\ Malfunction
\ 4
Cyber-Physical
System Failure
7/ \

K. Atgutivev, Y. Imamverdi:;«av, and L. Sukhostat, “vaer—phjsicat S\jSEEMS and
their security issues,’Computers in Inciu,s&rj, vol, 100, pp. 212-223, sep 201¥

-_— Freie Universitit Bozen
unibz Libera universita di Bolzano 31
— Universita Liedia de Bulsan

Examples of insecurity damages

 Denial of Service

— system forced into state where providing service 1s
impossible or significantly degraded

* Corruption of Programs or Data
— modifications made by unauthorised user

 Disclosure of Confidential Information

— information managed by system 1s exposed to people who
are not authorised users

Freie Universitdt Bozen
unibz Libera universita di Bolzano 32
Universita Liedia de Bulsan

unibz

Attack type

Description

Denial -of Service (DoS)~-

Man-in-the-Middle (MITM)

Eavesdropping
Spoofing
Reply-(Playback)-
Compromised Key

Node capture

False'Node
Node Outage
Path-Based DOS

Resistance

Integrity
Routing

Wormbhole
Jamming

Selective Forwarding

Sinkhole
Buffer Overflow

Malicious-Code

Blocking trafficin-orderto make network-andservice unavailable (e.g. flooding with false
requests)

Sending -a modified message to-a target-on-order to take, from the system creator point-of
view, undesired -function

Intercepting -any transmitted-data by the system~

Pretending to be a part-of the system in-orderto-get involved in system activities*
Re-transmitting received packet from the -destination node in-order to-gain system's trust-

The key that secures-.communication is the target-of the attack

Taking-over-a nodeto leak information-that-could include encryption keys and threatening
the security of the whole system usingit

Adding an-additional node to-the network to-attack data integrity by sending malicious-data
Stopping node services to-affect-availability and-integrity

Over-flooding a routing path to reduce the nodes-availability

Forcing compromised sensors-and-controllers to start to -operate ‘at-a-different resonant
frequency

Injecting false sensor measurements to disrupt the system external control inputs

Introducing routing-loops that cause transmitting-delay or -extended source paths

Announcing false paths-through which all packages are routed in order to-make information
holes

Introducing noise in-a wireless channel between a sensor nodes-and remote base station~

A compromised node selects certain-packages-and forwards them while-drops-and-discards
the others

Announcing the best routing path that-actually leads to-another nodes
Exploiting the opportunities-of -any vulnerability in-the software that leads to buffer-overflow

Launching malicious code, such as-a‘virus-or-a - worm, which can-cause network to-slow
down or create damage

Freie Universitit Bozen
Libera Universita di Bolzano
Universita Liedia de Bulsan

unibz

Security Assurance

* Vulnerability Avoidance

— System designed so vulnerabilities can not occur (e.g. no network
connection)

o Attack Detection and Elimination

— System designed so attacks on vulnerabilities do not occur (e.g. use of
anti-virus software)

* Exposure Limitation
— System designed so damage from attacks is minimal (e.g. a backup
policy that allows restoration of damaged files)

Freie Universitdt Bozen
Libera Universita di Bolzano
iversita Li d

Bol.
Un Liedia de Bulsan

34

Thesis topic

e Mirai1 - virus

* Predict Mirai attacks by exploring system’s
performance over time 1n microservice-based

systems
* SUT Sockshop - TicketTrain

Libera Universita di Bolzano

35

Thesis topic

o Mmlng G.xamptes of non-secure code)(CWE
https://cwe.mitre.org) / Common
G{fe«c&s of non-secure code)SU.I'CS (CVE https://
www.cvedetaﬂs.com) / b&&a\tk‘s to non-secure code)
www.exploit-db.com) repositories 10
recommend developers with vulnerable code

o @ugs related to non-secure code)3 code

° De\/Goda commenks relaked ko non-secure code)

Freie Universitiat Bozen
unibz Libera universita di Bolzano 36

Time to watch!

* Watch the following lecture from MIT open
course on Verification and Validation and report
back any unknown fact on *“system”
verification and validation

* https://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-842-fundamentals-of-systems-
engineering-fall-2015/class-videos/session-9-
verification-and-validation/

Freie Universitit Bozen

37

Universita Liedia de Bulsan

Freie Universitat Bo
unibz Liberauniversita di
niversita ia de

u

Verification techniques

Barbara Russo
SwSE - Software and Systems Engineering Research Group

Bolzano
Lied Bulsan

38

2,
IR

Verification techniques - types

* Program review
* Program analysis
* Testing

39

Verifications techniques

Freie Universitit Bozen

unibz Libera Universita di Bolzano
— Universita Liedia de Bulsan

User
Actual needs and Acceptance
contraints Delivered Package R
Review
System Test /
Svst Regression Test
ystem LI
Specifications — System ﬁ/>
Analysis /
Review
Integration Test /
API Test
</I Sub-system A Subsystem ——N
NJ Specifications y ﬁ/>
Analysis /
| Review
it Test .
</I Unit Unit Tes Unit
N Specifications
- Y,
User review of behavior
Validation
Verification

40

Analysis

* Analysis of the system/software program and
its artefacts

* Analysis techniques that do not need to
execute code or run the system are the most
used as they can be used at any stage of
development

» Example: manual code inspection

Freie Universitdt Bozen
unibz Libera universita di Bolzano 41
Universita Liedia de Bulsan

Example 1

» Estimating correctness

* Identify software micro-architectures in software
architectures that

1. frequently change over versions & are prone to
defects:

e Artefacts: classes and their calls

« 2. or frequently change over versions & change together
(e.g., to fix a bug)

» Artefact: bug report, code commit

Freie Universitdt Bozen
unibz Libera universita di Bolzano 42
Universita Liedia de Bulsan

Example

» Are these micro-structures intentional (design
patterns) or residual of bad code?

Factory method Oo—
mm c a..k c
Singleton O
(Objoct) Adapter-Commandar O—O
Compasite O0—0
Decorator Oo—0
Observor Oo—0
State-Strategy o O
Template-mathod O—
Proxy I
Visitor Oo—0

Libera Universita di Bolzano

43

Example 2

* Representing the commit process as a graph, where nodes
are commits and edges occur when two commits change
the same files

* Mining commits’ graphs (subgraph isomorphisms) to
investigate the presence of large architectural changes and
their likelithood of occurrence 1n bug fixing.

» Artefact: code commit, changed files

Freie Universitidt Bozen
ul‘“bz Libera Universita di Bolzano
Universita Liedia de Bulsan

Example 3

* To predict the anomalies of systems

 Mining systems logs to model and predict
system mis-behavior (anomalies).

» Artefacts: log events

<INFO

TimeStamp= 20170605T05:54:05.520Z

File= ObservingModeBaselImpl. java

Line= 260

Routine= beginSubscan

Host= gas01

Process= CONTROL/ACC/javaContainer

SourceObject= CONTROL/Array001

Thread= Thread771

LogId= 20375

Audience= Operator >
<! [CDATA[’Scan 5, subscan 3 has an intent of HOT, takes
5.760 seconds from 05:54:05.520 to 05:54:11.280°1]>
</INFO>

-_ Freie Universitat Bo;
un|bz Libera Universita di Bolzano
— Universita Liedia de Bulsan

45

Review

* The goal 1s to examine a software/system
artefact and to approve it

* Systematic inspection of software/system to find
and resolve defects

* Typically, performed manually

* Documents like requirements, system designs,
codes, test plans and test cases

_— Freie Universitit Bozen
Libera Universita di Bolzano 46

Testing

* Analysis and review are typically static

* Testing 1s a dynamic process

* It requires to execute the software or run the
system

* It can be done only when the artefacts to be
tested are “executable”

Freie Universitdt Bozen
u nlbz Libera Universita di Bolzano
Universita Liedia de Bulsan

47

Exercise

[1] int foo (int a, int b, int ¢, int d, float e) {

[2] if (a==0){
[3] return O;
[4] }

[5] intx=0;

[6] if ((a==b) Il ((c==d) && bug(a))){
[7] x=1;

8l }

[9] e=1/x;

[10] return e;

[11]}

bug(a) = TRUE if la==0 else 0

Freie Universitit Bozen

Universita Liedia de Bulsan

48

Exercise g . >
Verification technique

» Statement coverage

» If 100% of statement are
covered b:j tesks Ehen bEhe method
Ls correct

Freie Universitdt Bozen
unibz Libera universita di Bolzano 49
Universita Liedia de Bulsan

Exercise - Statement coverage

* Identify input values that execute all statements

 How many t-uples of input values? What 1s the
output for each of them?

» [/O and pass and fail criterion define a test case

Test case - notation

¢ T Output value (in“t VallleS)

¢ TFileNotFoundException(O, “HGHO”, 03)
* T5(0, “Home”, 3)
* T(3.4(1, “Home™, “Layout”)

51

Exercise - program analysis

* Property: correctness
* First check manually 1f the method 1s correct
* Then use statement coverage

* Do the selected inputs catch the failure?

* Discuss accuracy of statement coverage with
the t-uples of input values you chose: FP? FN?

