
Barbara Russo
SwSE - Software and Systems Engineering research group

1

Verification and Validation

2

• Software and systems are imperfect as they are
created by human beings

• We need to ensure a certain degree of quality of
the final product/system

• This is the goal of V&V

Motivation

3

• It a process whose goal is to check the
consistency of an implementation with a
specification

• “How”: check the quality of building processes
•Are we building the product right?
(B. Boehm)

• Example: A music player plays (it does play)
the music when I press Play

Verification - how

4

• Check consistency between two descriptions
(roles) of the system at subsequent stages of
the development process

• Examples
• UML class diagram and its code implementation
• Specification document and UML class diagram
• …

Verification

5

Chain of Two Roles

SSecificaWiRQ

SSecificaWiRQ

IPSlePeQWaWiRQ IPSlePeQWaWiRQ

becRPe

SSecificaWiRQ

becRPe
... ...

< / > < / > < / >
ULM dLagUaPReTXLUePeQWVReTXLUePeQWVReTXLUePeQWV

E[aPSOe

6

• Check the degree at which a software system
fulfills user’s requirements

• “What”: checks the product itself
•Are we building the right product ?
(B. Boehm)

• Example: A music player plays a song (it does
not show a video) when I press Play

Validation - What

7

• Requirements are goals of a system
• Specifications are solutions to achieve

requirements
• System that matches requirements ⇒

useful system
• System that matches specifications ⇒

dependable system

Usefulness vs. dependability

7

• Requirements are goals of a system
• Specifications are solutions to achieve

requirements
• System that matches requirements ⇒

useful system
• System that matches specifications ⇒

dependable system

Usefulness vs. dependability

Validation

Verification

7

• Requirements are goals of a system
• Specifications are solutions to achieve

requirements
• System that matches requirements ⇒

useful system
• System that matches specifications ⇒

dependable system

Usefulness vs. dependability

Validation

Verification

8

• Degree at which a system complies with its
specifications

• Specifications are prone to defects as they have
been written by human beings, but
• Verification does not question
the correctness of the
specifications

Dependability

9

•A verification technique assumes
specification self-consistency

• Consistency: Specification vs specification, no
conflicts

• No ambiguity: open to interpretations,
uncertainty

• Adherence to standards: consistency with
benchmarks

Specification Self-consistency

10

Verification & Validation activities
Delivered Package

User
Acceptance

Unit
Specifications

Sub-s\stem
Specifications

S\stem
 Specifications

Unit

Subs\stem

S\stem

Unit Test

S\stem Test /
Regression Test

Integration Test /
API Test

RevieZ

Anal\sis /
RevieZ

Anal\sis /
RevieZ

Actual needs and
contraints

User revieZ of behavior
Validation

Verification

11

• Validation involves stakeholders' judgment

• Exercise: Discuss acceptance testing as
validation technique

Verification vs. Validation

12

• Acceptance testing: customers verify and
validate user stories (requirements)

• alpha testing: performed by users in a
controlled environment. Capture operational
profiles decided by the organisation

• beta testing: performed by users in a their own
environment. Capture real operational profiles

Examples of validation techniques

13

Verification manly focuses on
dependability and concerns four

software/system properties

Verification

14

• Correctness: consistency with specification
• Reliability: statistical approximation to correctness;

probability that a system deviates from the expected
behavior

• Robustness: being able to maintain operations
under exceptional circumstances of not full-
functionality

• Safety: robustness in case of hazardous behaviour
(e.g., attacks)

Dependability properties

15

•How can we check whether our
software satisfies any of the
dependability properties?

• For example, correctness: given a set of
specifications and a program we want to find
some logical procedure (e.g., a proof) to say
that the program satisfies the specifications

Checking dependability

16

Some problems cannot be solved
by any computer program (Alan
Turing)

Undecidability of problems

17

Given a program P and an input I, it is not
decidable whether P will eventually halt when it
runs with that input I or it runs forever

The halting problem

18

• Given a program P and a verification technique
T for a dependability property Q, we do
not know whether the technique
can verify the program in finite
time

• ... and even when checking is feasible it might
be very expensive

Undecidability of program
verification

19

• Thus, verification techniques are inaccurate
when checking dependability properties

• They can have optimistic and pessimistic
inaccuracy

Inaccuracy of verification
techniques

20

• Technique that verifies a property Q can return
TRUE on programs P that do not have the
property (FALSE POSITIVE)

Optimistic Inaccuracy

21

• Testing is an optimistic verification technique
for correctness

• It returns that a program is correct even if no
finite number of tests can guarantee correctness

Example

22

• Technique that verifies a property Q can return
FALSE on programs P that have the
property (FALSE NEGATIVE)

• Also called conservative technique

Pessimistic Inaccuracy

23

• Automatic testing is pessimistic for correctness
as it typically runs on rules
• Software that does not adhere to such rules is

not correct
• This can be extended to other techniques that

are defined on rules (expert systems)

Example

24

Accuracy: confusion matrix

Pred.
TRUE

Pred.
FALSE

TRUE TP FN

FALSE FP TN

Predicted by
the technique

Truth

25

• Being positive or negative depends on the goal
of the verification activity: Carefully define
what is positive!

• Example: Unreachable code is dead code?
• A code checker that alerts programmers to

cases of bad programming style
• Positives: reachable code

Careful!

26

• Formulate negatives, false positives and false
negatives

• Discuss optimistic or pessimistic accuracy of
the code checker

Exercise

27

• First-order logic description:

• ⊨ P : for program P the verification with T of
property Q is TRUE

• ⊢ P : for program P the verification with T of
property Q is provable TRUE or the
verification technique T for Q reports TRUE on
P or detects P as TRUE

PROVABLE TRUE and TRUE

28

• If P has a dependability property Q (⊨ P i.e., P
has property Q), then a verification technique T
reports true on P for the property Q (⊢P i.e., P
is verifiable with T for Q);

⊨P ⇒ ⊢P

FN=0

Completeness for dependability

29

• If a verification technique T reports true on a
program P for a dependability property Q (⊢P),
then P has the property Q (⊨ P)

⊢P ⇒ ⊨P

FP=0

Soundness for dependability

30

Sound vs Complete

PositiYe detected
PositiYe PositiYe detected

PositiYe

Sound Complete

31

Sound vs Complete

PositiYe detected
PositiYe PositiYe detected

PositiYe

Sound Complete
X XX X FNFP

32

If a verification technique
wrongly determines that some

reachable code is unreachable, is
it unsound or incomplete?

Exercise

33

• It depends on the verification’s goal mandate:
• If it is a code checker that alerts programmers

to cases of bad programming style
• Positives: reachable code

Solution

34

• It is complete: all reachable codes are detected
reachable; FN=0

• It is sound: all detected reachable codes are
reachable; FP=0

• It is incomplete: it detects reachable code as
unreachable (FN>0)

• It is unsound: it detects unreachable code as
reachable (FP>0)

Solution

35

• Rephrase (un)soundness and (in)completeness
for a code checker

Example

36

• Incomplete: the code checker detects bad style
where there is not: waste of time and
resources to check code detected unreachable
which is in fact reachable

• Unsound: the code checker does not alarm
developers on bad code (unreachable): poor
quality of the code

Solution - interpretation

37

• A dead-code-removal algorithm of an
optimizing compiler, which aims at removing
unreachable code

• Positives: unreachable

Cont. solution - exercise at slide 31

38

• It is unsound: the compiler will remove code
that it should not

• It is incomplete: unreachable code is detected
reachable by depriving the compiler of an
optimization

• Give a definition of soundness and
completeness in this case

Solution

39

• Optimistic = unsound
• Pessimistic = incomplete

Note

40

• In complex system, a direct verification can be
infeasible

• Often this happens when properties are related
to specific human judgements, but not only

Substituting principle

41

• Substituting a property Q with another one Q’
that can be easier verified

• Examples:
• Constraining the class of programs to verify
• Separate human judgment from objective

verification
• Exploiting programming language’s feature:

serialization

Substituting principle

42

• “Race condition": interference between writing
data in one process and reading or writing
related data in another process (e.g., an array
accessed by different threads)

• To avoid race conditions: testing the integrity
of shared data
• It is difficult as it is checked at run time
• Substitution principle: adhere to a protocol of

serialisation

Example - correctness

43

• When group of objects or states can be
transmitted as one entity and then at arrival
reconstructed into the original distinct objects

Serialisation

44

• An object can be represented as a sequence of
bytes that includes the object's data as well as
information about the object's type and its types
of data

•

Example: Java object serialisation

45

• After a serialised object has been written into
some kind of memory, it can be read from it
and deserialised: the type information and bytes
that represent the object and its data can be
used to recreate the object in memory

• The serialized object is not modified while is
dispatched, thus the deserialized object
preserves the integrity of the original object

46

• The ObjectOutputStream class contains the
method
public final void writeObject(Object x)
throws IOException

• The method serialises an Object and sends it to
the output stream

Java object serialisation

47

• Similarly, the ObjectInputStream class contains
the method for deserialising an object:
public final Object readObject() throws
IOException, ClassNotFoundException

• This method retrieves the next Object out of the
stream and deserialises it

Java object serialisation

48

48

It	serializes	the	
object

48

It	serializes	the	
object

It	deserializes	the	
object

