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Verification and Validation
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• Software and systems are imperfect as they are 
created by human beings 

• We need to ensure a certain degree of quality of 
the final product/system 

• This is the goal of V&V

Motivation
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• It a process whose goal is to check the 
consistency of an implementation with a 
specification 

• “How”: check the quality of building processes 
•Are we building the product right? 
(B. Boehm) 

• Example: A music player plays (it does play) 
the music when I press Play

Verification - how
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• Check consistency between two descriptions 
(roles) of the system at subsequent stages of 
the development process 

•  Examples 
• UML class diagram and its code implementation 
• Specification document and UML class diagram 
• …

Verification
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Chain of Two Roles
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• Check the degree at which a software system 
fulfills user’s requirements 

• “What”: checks the product itself 
•Are we building the right product ? 
(B. Boehm) 

• Example: A music player plays a song (it does 
not show a video) when I press Play

Validation - What
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• Requirements are goals of a system 
• Specifications are solutions to achieve 

requirements 
• System that matches requirements ⇒ 

useful  system 
• System that matches specifications ⇒ 

dependable system

Usefulness vs. dependability
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• Degree at which a system complies with its 
specifications  

• Specifications are prone to defects as they have 
been written by human beings, but 
• Verification does not question 
the correctness of the 
specifications

Dependability
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•A verification technique assumes 
specification self-consistency 

• Consistency: Specification vs specification, no 
conflicts 

• No ambiguity: open to interpretations, 
uncertainty 

• Adherence to standards: consistency with 
benchmarks

Specification Self-consistency
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Verification & Validation activities
Delivered Package

User
Acceptance 

Unit 
Specifications

Sub-s\stem
Specifications

S\stem
 Specifications

Unit

Subs\stem

S\stem

Unit Test

S\stem Test /
Regression Test

Integration Test /
API Test

RevieZ

Anal\sis /
RevieZ

Anal\sis /
RevieZ

Actual needs and
contraints

User revieZ of behavior
Validation

Verification
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• Validation involves stakeholders' judgment 

• Exercise: Discuss acceptance testing as 
validation technique

Verification vs. Validation 
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• Acceptance testing: customers verify and 
validate user stories (requirements)  

• alpha testing: performed by users in a 
controlled environment. Capture operational 
profiles decided by the organisation 

• beta testing: performed by users in a their own 
environment. Capture real operational profiles

Examples of validation techniques
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Verification manly focuses on 
dependability and concerns four 

software/system properties

Verification
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• Correctness: consistency with specification 
• Reliability: statistical approximation to correctness; 

probability that a system deviates from the expected 
behavior 

• Robustness: being able to maintain operations 
under exceptional circumstances of not full-
functionality 

• Safety: robustness in case of hazardous behaviour 
(e.g., attacks)

Dependability properties
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•How can we check whether our 
software satisfies any of the 
dependability properties? 

• For example, correctness: given a set of 
specifications and a program we want to find 
some logical procedure (e.g., a proof) to say 
that the program satisfies the specifications

Checking dependability
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Some problems cannot be solved 
by any computer program (Alan 
Turing)

Undecidability of problems
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Given a program P and an input I, it is not 
decidable whether P will eventually halt when it 
runs with that input I or it runs forever

The halting problem
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• Given a program P and a verification technique 
T for a dependability property Q, we do 
not know whether the technique 
can verify the program in finite 
time 

• ... and even when checking is feasible it might 
be very expensive

Undecidability of program 
verification
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• Thus, verification techniques are inaccurate 
when checking dependability properties 

• They can have optimistic and pessimistic 
inaccuracy

Inaccuracy of verification 
techniques
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• Technique that verifies a property Q can return 
TRUE on programs P that do not have the 
property (FALSE POSITIVE)

Optimistic Inaccuracy 
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• Testing is an optimistic verification technique 
for correctness 

• It returns that a program is correct even if no 
finite number of tests can guarantee correctness

Example
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• Technique that verifies a property Q can return 
FALSE on programs P that have the 
property (FALSE NEGATIVE) 

• Also called conservative technique

Pessimistic Inaccuracy
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• Automatic testing is pessimistic for correctness 
as it typically runs on rules 
• Software that does not adhere to such rules is 

not correct 
• This can be extended to other techniques that 

are defined on rules (expert systems)

Example
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Accuracy: confusion matrix

Pred. 
TRUE

Pred. 
FALSE

TRUE TP FN

FALSE FP TN

Predicted by 
the technique

Truth
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• Being positive or negative depends on the goal 
of the verification activity: Carefully define 
what is positive! 

• Example: Unreachable code is dead code? 
• A code checker that alerts programmers to 

cases of bad programming style 
• Positives: reachable code

Careful!
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• Formulate negatives, false positives and false 
negatives 

• Discuss optimistic or pessimistic accuracy of 
the code checker

Exercise
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• First-order logic description: 

• ⊨ P : for program P the verification with T of 
property Q is TRUE 

• ⊢ P : for program P the verification with T of 
property Q is provable TRUE or the 
verification technique T for Q reports TRUE on 
P or detects P as TRUE

PROVABLE TRUE and TRUE
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• If P has a dependability property Q (⊨ P i.e., P 
has property Q), then a verification technique T 
reports true on P for the property Q (⊢P i.e., P 
is verifiable with T for Q);  

⊨P ⇒ ⊢P 

FN=0 

Completeness for dependability
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• If a verification technique T reports true on a 
program P for a dependability property Q (⊢P), 
then P has the property Q (⊨ P) 

⊢P ⇒ ⊨P 

FP=0 

Soundness for dependability
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Sound vs Complete

PositiYe detected
PositiYe PositiYe detected

PositiYe

Sound Complete
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Sound vs Complete

PositiYe detected
PositiYe PositiYe detected

PositiYe

Sound Complete
X XX X FNFP
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If a verification technique 
wrongly determines that some 

reachable code is unreachable, is 
it unsound or incomplete?

Exercise
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• It depends on the verification’s goal mandate: 
• If it is a code checker that alerts programmers 

to cases of bad programming style 
• Positives: reachable code

Solution
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• It is complete: all reachable codes are detected 
reachable; FN=0 

• It is sound: all detected reachable codes are 
reachable; FP=0 

• It is incomplete: it detects reachable code as 
unreachable (FN>0) 

• It is unsound: it detects unreachable code as 
reachable (FP>0)

Solution
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• Rephrase (un)soundness and (in)completeness 
for a code checker

Example
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• Incomplete: the code checker detects bad style 
where there is not: waste of time and 
resources to check code detected unreachable 
which is in fact reachable 

• Unsound: the code checker does not alarm 
developers on bad code (unreachable): poor 
quality of the code

Solution - interpretation
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• A dead-code-removal algorithm of an 
optimizing compiler, which aims at removing 
unreachable code 

• Positives: unreachable

Cont. solution - exercise at slide 31
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• It is unsound: the compiler will remove code 
that it should not  

• It is incomplete: unreachable code is detected 
reachable by depriving the compiler of an 
optimization 

• Give a definition of soundness and 
completeness in this case

Solution
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• Optimistic = unsound 
• Pessimistic = incomplete

Note
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• In complex system, a direct verification can be 
infeasible 

• Often this happens when properties are related 
to specific human judgements, but not only

Substituting principle
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• Substituting a property Q with another one Q’ 
that can be easier verified 

• Examples: 
• Constraining the class of programs to verify 
• Separate human judgment from objective 

verification 
• Exploiting programming language’s feature: 

serialization

Substituting principle
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• “Race condition": interference between writing 
data in one process and reading or writing 
related data in another process (e.g., an array 
accessed by different threads) 

• To avoid race conditions: testing the integrity 
of shared data  
• It is difficult as it is checked at run time 
• Substitution principle: adhere to a protocol of 

serialisation

Example - correctness 
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• When group of objects or states can be 
transmitted as one entity and then at arrival 
reconstructed into the original distinct objects

Serialisation
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• An object can be represented as a sequence of 
bytes that includes the object's data as well as 
information about the object's type and its types 
of data 

•

Example: Java object serialisation
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• After a serialised object has been written into 
some kind of memory, it can be read from it 
and deserialised: the type information and bytes 
that represent the object and its data can be 
used to recreate the object in memory 

• The serialized object is not modified while is 
dispatched, thus the deserialized object 
preserves the integrity of the original object 
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• The ObjectOutputStream class contains the 
method 
public final void writeObject(Object x) 
throws IOException 

•  The method serialises an Object and sends it to 
the output stream

Java object serialisation
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• Similarly, the ObjectInputStream class contains 
the method for deserialising an object: 
public final Object readObject() throws 
IOException, ClassNotFoundException 

• This method retrieves the next Object out of the 
stream and deserialises it

Java object serialisation
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It	serializes	the	
object
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It	serializes	the	
object

It	deserializes	the	
object


