
Barbara Russo
SwSE - Software and Systems Engineering

�1

Software Reliability  
Introduction

�2

• Reliability concerns the study of failures as
effects of an error

• There are different notions of effect of an error

• Often the difference concerns where and when an
error occurs and who is involved in the event

• There is a not clear bidirectional relationship
between faults (cause) and failures (effect)

Lessons learned

�3

Relationship btw Faults & Failures

Faults Failures

Not clear

Yes

Before shipping In field

�4

• Faults describe reliability of the system as a
internal product attribute, like complexity,
functionality etc.

• Failures describe reliability as an external
product attribute, like usability, robustness, etc

Lessons learned

�5

• There are many different models for software quality, but in
almost all models, reliability is one of the criteria, attribute or
characteristic that is incorporated

• ISO 9126 [1991] defines six quality characteristics, one of
which is reliability.

• ISO/IEC 25010, which supersedes ISO/IEC 9126-1, March
2011
• Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — System
and software quality models (last reviewed in 2017)

Reliability as a Quality Attribute

�6

• ISO 25010 has eight product quality
characteristics:
• Reliability has a new sub-characteristic :

Availability

�7

• IEEE 982.1-1988 defines Software Reliability
Management as

• "The process of optimizing the reliability of
software through a program that emphasizes
software error prevention, fault detection
and removal, and the use of measurements to
maximize reliability in light of project
constraints such as resources, schedule and
performance."

Software Reliability Management

�8

• Software reliability comprises three activities:
• Error/Faults prevention
• Fault detection and removal
• Measurements support the first two activities

and predict future failures
• Fault tolerance: how to deliver correct service

in the presence faults

Did you ever
performed any of
these?

Barbara Russo
SwSE - Software and Systems Engineering

�9

Example of error/fault prevention

�10

• To increase the reliability by preventing
software errors;

• The focus must be on
• Comprehensive requirements and comprehensive

testing plan, ensuring all requirements are tested
• Maintainability of the software

• Ensure the code can easily be engineered without
injecting additional errors

Error prevention

�11

• Seven measures
• Lines of Text - Physical lines of text as a measure of size
• Imperatives - Words and phrases that command that something must be done

or provided. The number of imperatives is used as a base requirements count
• Continuances - Phrases that follow an imperative and introduce the specification

of requirements at a lower level, for a supplemental requirement count
• Directives – References provided to figures, tables, or notes
• Weak Phrases - Clauses that are apt to cause uncertainty and leave room for

multiple interpretation measure of ambiguity
• Incomplete – Statements within the document that have TBD (To be

Determined) or TBS (To Be Supplied)
• Options - Words that seem to give the developer latitude in satisfying the

specifications but can be ambiguous

Fault prevention in the requirements

�12

• For example, Compilers and Type Systems are
common instruments to perform Fault
Prevention

• Syntax Fault
• Type Mismatch Fault

Fault prevention in coding

�13

• Constants Propagation: finding the program
variables assigned once and never more (to be
replaced by constants)

• Dead variables: a variable x is dead at some
point in the program if its value is no longer
necessary, otherwise is alive.

Fault prevention in coding

�14

• Information flow security:
• Example: in a program data is partitioned in two

different security levels.
• These levels cannot be violated: for example, do

not copy a high level variable into a lower level
variable

Fault prevention in coding

�15

• To support fault prevention
• To detect faults
• To remove faults
• To predict future occurrences of failures

Measurements in reliability

�16

• From Hardware reliability
• Static analysis of failures, failure occurrences,

failure fix…
• Initial research:

• Models defined on failure rates
• Models derived from hardware reliability

• Later:
• Deviation of hardware models
• Models coming from social and economic sciences

Measurement in Software
Reliability

�17

• The probability that in a given interval of time
a failure occurs given that no failure has
occurred before
• Measure: number of failures per hour

Failure rate

�18

Bath tube curve: three behaviors

�19

• Software reliability attempted to extrapolate the mathematics of
hardware reliability to the prediction of software - W.H. von Alvin,
in his book Reliability Engineering

• However, most hardware reliability models are predicted on failures
due to wear out rather than to design defects - Pressman (R. S.
Pressman. Software Engineering: A Practitioner’s Approach, 6th
Edition, McGraw Hill, 2005.)

• Software failures can be traced back to design or
implementation failures

Hardware & software reliability

�20

• Hardware reliability discipline since ’70

Hardware and software reliability

�21

• Difference between hardware failure rate and software
failure rate

• For hardware, the initial number of faults is high
but then decreases as the faulty components are
identified and removed or the components stabilize

• The component then enters the useful life phase
• As the component physically wears out, the fault rate

starts to increase

Hardware and software reliability

�22

• Software has a different fault / error rate
• The error rate is at the highest level at

integration and test
• As it is tested, errors are identified and removed
• This removal continues at a slower rate during

its operational use
• The number of errors continually decreases,

assuming no new errors are introduced

Hardware and software reliability

�23

• Software does not have moving parts and does
not physically wear out as hardware, but is
does outlive its usefulness and becomes
obsolete

�24

Software reliability curve

�25

• Firstly …few statistical notions
• Random variables
• Conditional probability

• Reliability theory

• Definitions

• Failure rate

• Mean Time To Failure

• Failure Intensity

Software Reliability theory

�26

• Discrete random variable X
• E a countable space of independent and

complementary events
• O a set of output values of these events
• Probability density function (pdf), x∈O

p(x) = P{X=x}

Few notion of statistics

�27

• Example, the probability of X=“tossing coin”

• p(head)=P(X=“head”) =1/2

• Note: a function p(x) is a density function iff
p(x)>=0 and ∑p(xi)=1

�28

• When there is an order on x, we can define the
• Cumulative distribution function (cdf)

P(X< = x)= ∑p(xi) for xi < =x

Few notion of statistics

�29

• Expected mean of X
• E[X]= ∑xi p(xi)
• Weighted average of x values weighted by

the probability density of the x values

Few notion of statistics

�30

• Variance of X
• Var(X)= E[X2] –(E[X]) 2 =E[(X-E[X])2]
• and E[X2] = ∑xi2 p(xi)
• Var(X)= ∑xi2 p(xi) - (∑xi p(xi))2

�31

• S= set of die sides
• X “roll of a die”
• p(x)=1/6 for every x in S
• E[X]=

1*1/6+2*1/6+3*1/6+4*1/6+5*1/6+6*1/6= 7/2
• Var(X)= 1/6+4/6+9/6+16/6+25/6+36/6 - 49/4 =

35/12

Example

1 2 3 4 5 6

7/2

�32

• Continuous random variable
• f(x) as p(x): f is continuous and satisfies f(x)>=0

and ∫f(x)dx=1

• F(x) = P(X<=x)= ∫-∞
x
 f(x)dx

• E[X]= ∫x*f(x) dx – “weighted mean”

• Var[X]= ∫ x2p(x)-(∫ x*p(x))2

Few notion of statistics

F’(t) = f(t)

�33

• P(A∩B)=0 independent
• P(A∩B)=P(A⎢B)P(B) dependent
• P(A∪B)=P(A)+P(B) independent
• P(A∪B)=P(A)+P(B)-P(A∩B) dependent
• P(C(A))=1-P(A) complement

Properties we need

�34

• The probability that an event happens when a
condition holds

P(A|B)=P(A ∩ B)/P(B)

Michael Baron “Probability and statistics for computer scientists”

Conditional probability

�35

• Urn with 3 white balls, 5 black balls and 7 red
balls

• Pick two white balls (two cases)
• 1/25 or 1/5*1/7=1/35? when and why?
• Rephrase in case of failure occurrences
• 15 failures occur …

Example

�36

• Firstly …few statistical notions

• Random variables

• Conditional probability

• Reliability theory

• Definitions
• Failure rate
• Mean Time To Failure
• Failure Intensity

Software Reliability theory

Barbara Russo
SwSE - Software and Systems Engineering

�37

Reliability theory

�38

• The goal is to estimate the expected life of a
system, that is the time during which the
system will function successfully without
maintenance or repair

Reliability theory

�39

• We proceed in two steps:

• Firstly we consider the case of one failure

• In this case, we introduce the random variable time
of failure
• This is the local view surrounding only one

failure

• Then we consider the case in which systems
experience more then one failure

Reliability theory

�40

• T is the time in which the failure occurs:

• Time of Failure

• We analyze the probability of T (continuous
random variable) in some interval (t,t+Δt)

P(Δ t) = P{ t ≤ T ≤ t+Δt }

Reliability theory – one failure case

�41

P(Δ t) = P(T ≤ t+Δt) - P(T ≤ t) =

= F(t+Δt) - F(t) = ∫t
t+ Δt f(x)dx

as
 F’(t) = f(t) (the derivative of the cdf
is the pdf)

One failure case - relations

�42

t+dtt

P{T<=t}

P{T<=t+dt} - P{T<=t}

f(t)
F(t) =

�43

• The probability of success at time t

• R(t), is the probability that Time of Failure is
larger than t (T>t):

R(t)=P(T>t)= 1-F(t)=∫t+∞ f(x)dx

• The system is reliable until t

Reliability function

�44

Example

t

R(12 months)

1	year

0

t=12 months
f(t)

�45

• The failure rate is a conditional probability:
• The probability that a failure occurs in the interval [t,t+Δt], given that a

failure has not occurred before t, per unit of time

P(t ≤ T ≤ t+Δ t | T ≥ t} / Δ t

• Failure rate is also equal to

P(Δ t) / (Δ t * R(t)) =F(t+ Δ t) - F(t) / (Δt * R(t))
• in an interval Δ t

Failure rate

�46

�47

�48

�49

• Hazard rate is the limit of Δ t —> 0 of the
Failure rate

 h(t)= f(t) / R(t)

• The Hazard rate is the instantaneous probability
that a failure occurs in a (very small) interval dt
given that it had not occurred before

Hazard rate

�50

• F(t), cumulative distribution function

• f(t), probability density function

• R(t), reliability function and

• h(t) hazard rate

• Do you remember the expected value for a
random variable, E[T]?

Ingredients for reliability analysis

�51

• We define the mean time of failure

E[T]= ∫-∞
+∞ t*f(t) dt

• which is the expected value for the time of
failure T

• We expect that the time of failure in the whole interval of time
considered will be at E[T]

• We can use the expected value to predict the time of failure

Ingredients for reliability analysis

Barbara Russo
SwSE - Software and Systems Engineering

�52

How do we derive E[T]?

�53

• f(t) =1/3, t<=3 otherwise 0
• F(t)=1/3 * t, t<=3 otherwise 1

• R(t)=1- 1/3 * t, t<=3 otherwise 0
• A failure for sure has occurred after t=3

• h(t)= t<3 otherwise is not defined:

• E[T]= ∫xf(x)dx = ∫x*1/3 dx= 1/6*(x2) 30= 3/2
• Each instant is equivalent to another : failures have the same

probability of occurrence in different instants

Example - uniform probability
density

				1/3

(1-1/3*t)

�54

Expected value

t

Probability that a
single failure occurs

f(t)

3 Years1 Year
Probability	that	a	failure	occurs	in	one	year

F(1	Year)=P(T<=1	Year)=1/3

1/3

3/2 Year

Expected time to failure

�55

• The previous example does not draw the case
of a software system.
• The hazard rate is a function that tends to

infinite at t=3

• Which are the typical functions for the hazard
rate?

Typical Hazard rate of a sw system

																	1/3
h(t)	=			-----------
 (1-1/3*t)

�56

Hazard rate the bath tube curve

Source: Lyu Handbook of Software Engineering

�57

• h(t)= λ/(2√t) with λ>0
• F(t)= -e-λ√t+1
• f(t)= λ/(2√t) *e-λ√t

• R(t)= e-λ√t

• E[T]= 1/√2√λ

Debugging phase – region 1

�58

• Region 2: Useful life period or normal
operating phase

• The probability that a failure occurs is equal in
each instant of time. Constant hazard rate

• It represents chance failures caused by sudden
stress or extreme conditions

Comments

�59

• f(t)= λe-λt

• F(t)= 1-e-λt

• R(t)= e-λt

• h(t)= λe-λt/e-λt=λ à

• hazard rate is the instantaneous probability that
a failure occurs given that it has never occurred
before t à as it is constant h(t) does not
depend on time à the event occurs randomly

Example f(t)=λe-λt

�60

• h(t)= λ = f(t)/R(t) = f(t)/(1-F(t))

• dF(t)/dt= λ*(1-F(t)) differential equation

• The solution is F(t)= -e-λt+1

• Exercise:

By integrating by parts between 0 and +infinite,
we get:

E[T]= ∫t*f(t)dt = ∫ λt*e-λt dt =1/ λ

Note

�61

h(t)

�62

• Region 3: wear-out failures

• It is characterized by a rapid increase of the
hazard rate

• This is not suitable for software as software
does not wear out

Comments

�63

• h(t)= Kt with K>0

• h(t)= Kt =f(t)/R(t)=f(t)/(1-F(t))

• dF(t)/dt= Kt * (1-F(t)) differential equation whose solution is:

 F(t)= -e-Kt2/2+1

f(t)= Kt * e-Kt2/2

R(t)= e-Kt2/2
• E[T]= ∫tf(t)dt = ∫Kt2 * e-Kt2/2dt E[T]= √(π/2K)

Linearly increasing hazard rate– region 3

�64

Linearly increasing hazard rate – region 3

h(t)

