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ABSTRACT
Studies on fault prediction often pay little attention to em-
pirical rigor and presentation. Researchers might not have
full command over the statistical method they use, full un-
derstanding of the data they have, or tend not to report
key details about their work. What does it happen when
we want to compare such studies for building a theory on
fault prediction? There are two issues that if not addressed,
we believe, prevent building such theory. The first con-
cerns how to compare and report prediction performance
across studies on different data sets. The second regards fit-
ting performance of prediction models. Studies tend not to
control and report the performance of predictors on histori-
cal data underestimating the risk that good predictors may
poorly perform on past data. The degree of both fitting and
prediction performance determines the risk managers are re-
quested to take when they use such predictors. In this work,
we propose a framework to compare studies on categorical
fault prediction that aims at addressing the two issues. We
propose three algorithms that automate our framework. We
finally review baseline studies on fault prediction to discuss
the application of the framework.

Categories and Subject Descriptors
D.2.8 [Software Engineering ]: Metrics—Product met-
rics, performance measures

General Terms
Measurement, Performance, Reliability, Theory

Keywords
fault, confusion matrix, machine learning, model comparison

1. INTRODUCTION
The majority of the studies on software fault prediction do

not provide value to the empirical research as they should,

[1]. In these studies, researchers are often not enough skilled
to use complex statistical models and tune their parameters
appropriately or they do not have a full command over the
intrinsic limits of their data sets. Such studies do not help
building a proper theory on fault prediction. Hall et al, [1]
ascribe the cause to researchers reporting insufficient con-
textual and methodological details and neglecting the influ-
ence that context and statistical techniques have on model
performance. In their literature review, the authors find
that simple models that do not need to tune parameters
typically perform better. When models require parameter
tuning, researchers often opt to use default values or auto-
matic tools with which they have little control on the tuning
process. Researchers might additionally overestimate the in-
trinsic limits of the data sets they collected. For example,
models performance is not guaranteed when categories of
model output (e.g., faulty or non-faulty) are imbalanced.
As reported by the authors, none of the many studies anal-
ysed investigated the problem. As consequence, the way
researchers understand tools and data affect the way they
report their work and the development of a data science on
fault prediction. This can be a real problem in particular
with the rapid increase of data complexity and size, [2].

In this work, we discuss two issues that, in our opinion,
prevent research on fault prediction to develop any compar-
ative analysis across studies: 1) measuring and reporting the
ability of a model to fit the actual system before using it for
prediction on new fresh data and 2) understanding the di-
mensionality of the prediction problem and use the measures
of performance accordingly.

Nowadays, research on big data puts great emphasis on
the prediction power of models [2] over their sole explana-
tory ability: a model must both represent the current and
the future behavior. This is not that easy to achieve, though.
The point is that models that have good prediction abil-
ity might perform poorly in fitting historical data and vice-
versa. This situation can be unavoidable as it might be
simply due to the population characteristics on which data
mining is performed. In any case, for decision making, mea-
suring and reporting fitting and prediction ability of models
is of paramount importance. For example, managers must
be informed about the risk of using excellent prediction mod-
els with poor fitting ability, as such models have a complex-
ity that does represent the actual system behavior (model
under-fitting or over-fitting, [3]). We will see that the ma-
jority of the baseline studies in Hall et al [1] do not report
fitting accuracy.
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Studies on fault prediction report model performance with
different measures. This might make a comparison harder.
In particular, to compare two or more studies, we need to
consider two facts. First, when the a priori and a posteriori
classifications are given, fault prediction performance is a
two dimensional problem. The a priori classification is the
distribution of faulty and non-faulty instances in a data set.
The distribution characterizes the population from which
the data set is taken and is typically measured by the per-
centage of faulty instances. The a posteriori classification is
determined by a threshold against which the model probabil-
ity is evaluated. Typically this threshold is set to 0.5. Thus,
an instance is predicted as faulty if the probability of the
model on the instance is greater than 0.5, as non-faulty oth-
erwise. The area under the curve of the Receiving Operator
Characteristic measures independency from the threshold
value. Two dimensional problem means that 1. when a pri-
ori and a posteriori classifications are given, any additional
performance measure can be derived from two independent
ones with appropriate formulas (e.g., Conversion Formula
for precision, [4] ), 2. one single performance measure is not
enough to compare models built with different methods (e.g.,
misclassification rate) or overlook some predictive behavior
of the classification model (e.g., expected cost of misclassifi-
cation), [5]. Therefore, it is not important if researchers use
different measures in their studies. What matters is use at
least two independent measures, the nature of the data, and
the probability threshold set for the models to be used.

Studies on fault prediction often do not describe the na-
ture of the data used. Such habit can prevent building a
comparative theory across studies and limit the results of
any literature synthesis on the topic. We will review the
baseline papers selected by Hall et al. [1] to exemplify the
problem.

In this study, we first formalise the theory of fault predic-
tion and provide a simple map for managers to summarize
and visualize performance of fault predictors for a better
comparison. We also present three algorithms that serve to
perform, report, and compare studies on fault prediction.
Finally, we review those studies that adhere to the criteria
of good empirical research on fault prediction identified by
Hall et al. [1] to understand to what extend they can be used
to build a theory.

In Section 2, we formulate our research hypothesis. We
introduce the classification problem and the measures of per-
formance in Section 3 respectively where we also discuss the
dimensionality of the classification problem. In Section 3,
we present and reformulate the classification problem pre-
senting the double nature as data characteristics and model
quality. The algorithms and the risk map are presented in
Section 4. We review the baseline studies in Section 5. We
conclude in Section 6

2. RESEARCH HYPOTHESIS
Synthesis of primary studies has the goal to understand

the state of the art and the open problems that a specific
research needs to solve in its process of knowledge build-
ing. Mining repositories to learn models on fault prediction
is a very active field and provides secondary research with
a generous set of studies. Recent findings of secondary re-
search are not enthusiastic of the scientific rigor that such
primary studies show [1]. By far, this is due to the fact that
software engineers must learn to be data scientists. Data sci-

ence requires a strong command over statistical instruments
and understanding of data intrinsic limits, [2]. In addition,
to build a science, researchers need to be able to compare
studies and comparison requires primary studies reporting
their findings with sufficient rigor.

We believe that even synthesis of research on fault pre-
diction does not have full command over the generalization
instruments that enable researchers to build solid theories
from evidence. In this paper, we will highlight two major
issues that affect both primary and secondary existing stud-
ies.

3. THE CLASSIFICATION PROBLEM
In this section, we describe the fault prediction problem as

presented in Munson and Khoshgoftaar, 1992 [6] for classifi-
cation of software modules by changes. The same approach
has been recently used to classify faulty software modules in
Nagappan et al., [7–9]. This approach focuses on dichoto-
mous output categories. This is the typical setting in re-
search on fault or error prediction. Per this strategy, there
is an a priori classification of modules into two mutually
exclusive groups. A criterion variable is used for the group
assignment. For example, a module is classified with a code
of zero if it has been found faulty, or with a code of 1 oth-
erwise. The a priori classification is determined by the total
number of instances in a set (e.g., the number of modules in
a system) and the percentage of instances in one of the two
groups (e.g., the proportion of faulty modules). A classifier
computes the posterior classification of group membership
associating to an input a given probability to belong to a
group. Depending on a pre-set decision rule (e.g., probabil-
ity greater than 0.5) an input is classified in one or in the
other group. For instance, [6], and [8], use the logistic proba-
bility of module attributes grater than 0.5 to define predicted
fault modules. The module is then assigned to the group for
which it has the greatest probability of membership. False
and true positive rates, precision and true positive rate are
then calculated to evaluate the performance of the posterior
probabilities against the a priori classification.

3.1 The confusion matrix
Assume that the a priori classification divides data into

two groups G1 (faulty modules) and G2 (not faulty mod-
ules). An output is Positive if it is in G1, it is Negative if it
is in G2. True Positives (TP) or True Negatives (TN) are,
respectively, the number of actual fault or actual not fault
instances that have been correctly classified. False Positives
(FP) or False Negative (FN) are respectively the number
of actual not fault or actual fault instances that have been
misclassified. The confusion matrix, Table 1, describes the
performance of the classification problem in terms of TP,
TN, FP, and FN for given a priori and a posteriori classifi-
cations.

3.2 Composite measures of performance
Measures of classification performance are calculated from

the confusion matrix that defines the classification problem.
In Table 2, we report the ones most relevant to this study.
These measures depend on both the model and the a priori
classification defined for a given population. In particular,
they depend on the margins of the classification matrix, Pos
and Neg, determined by the a priori classification Thus, to
compare models with these measures on different data sets,

3



Table 1: Confusion matrix

Pred. Pos Pred. Neg

Pos TP FN

Neg FP TN

the sets must have the same a priori classification.

Table 2: Measures of model performance, [10], [11], [1]

Name Formula

Misclassification rate, (MR)
FP + FN

FP + FN + TP + TN

True Positive rate, recall (TPr)
TP

FN + TP

False Positive rate, (FPr)
FP

FP + TN

Balance 1−
√

(TPr − 1)2 + (FPr)2

2

Precision
TP

FP + TP

Conversion Formula, [4]

Precision=
1

1 + FPr
TPr
· 1
r

, Neg = TN+FP

Pos = TP+FN

r=
Pos

Neg
=

Pos%

(1− Pos%)

3.3 The dimension of the prediction problem
Once the a posteriori classification is known, a classifica-

tion problem on data sets with the same a priori classifica-
tion can be solved with only two independent performance
measures, as they completely determine the confusion ma-
trix. For example, Table 3 shows this for TPr, FPr.

It would be more practical to compare models by one
single measure of performance. Unfortunately, recent re-
search reports that one single performance measure is not
enough, [5], [11]. For example, with the misclassification
rate

MR =
FP + FN

Pos + Neg
.

we cannot decide between two models when one has simulta-
neously greater FP and lower FN than the other. Existing
studies use different measures. Hall et al. [1] report that
there is no common agreement on which measures to use.

Table 3: Confusion matrix in terms of TPr, FPr, Pos, and
total size n.

Pred. Pos Pred. Neg

Pos TPr*Pos (1-TPr)*Pos

Neg FPr*(n-Pos) (1-FPr)*(n-Pos)

For example, Gray et al. [12] advocate the use of precision
and TPr, especially in case of imbalanced sets (i.e., sets with
r far from 1) as “Relying on TPr and FPr or methods based
around them, including: ROC analysis, AUC-ROC, and the
balance metric, can present an overly optimistic view of an
algorithm’s performance if there is a large skew in the class
distribution. Precision is required to give a more accurate
representation of true performance in this context.” We be-
lieve that the point is actually not related to the choice of
two specific measures as we can always transform two per-
formance measures in other two when we know the a priori
classification, [1], [13], [14]. The point is that the classifica-
tion problem is also determined by the a priori classification
and any comparison among different data sets must take this
into account. For example, the conversion formula in Table
2 defines a hyperbolic relation between precision and the ra-
tio FPr

TPr
that varies according to the a priori classification

parameter r, Fig. 1. For every percentage p, the conversion
formula implies that

FPr

TPr
≤ r ∗ (

p

1− p
) iff precision ≥ p (1)

(iff holds for equality too). In Fig. 1 we set p=50% and

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Precision

FP
r/T
P
r

r=0.7

r=1

r=1.7

r=0.0.5

Figure 1: FPr
TPr

against precision. The curve varies with the
values of the a priori classification parameter r. In the figure,
p=50%

draw different hyperboles according to the different values
of r. The blue segment of these curves represents all the pairs
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(FPr, and TPr), that have FPr · 1
r
≤ TPr or equivalently

precision greater than 50%. We can see that decreasing r,
the length of the blue curve segment as well as the chance of
getting models with high precision decreases. For example,
models with true positive rate 70% and false positive rate 3%
would never have precision greater than 50% on data sets
with Pos%≤4% (i.e., r≤ 1/24). In the ROC plan defined
by FPr and TPr, the points on the blue curve fall above
the line y = 1

r
x . Fig. 2 plots the ROC plan in the case

r < 1, e.g., the typical inequality in fault prediction (and
imbalanced data has r much less than 1, [15]). Varying r
varies the slope of the line and the areas above and below
the line where precision is respectively greater and lower
50%. In a more general case for any given value of p, the
two areas are delimited by a line with slope

(1/r) ∗ (p/(1− p)) (2)

and the area above or below the line has precision greater
or lower than p respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPr

TP
r

slope=1/r

precision > 50%

precision < 50%

Figure 2: Areas of high and low precision with respect to
the a priori classification parameter r. In the figure, r< 1
and p=50%.

Our formalisation of the classification problem can also
contribute to a recent debate on the relevance of precision
in assessing performance of fault predictors. According to
Zhang and Zhang [4], when data is imbalanced, models can
detect a good number of faults (TPr is high) and raise few
false alarms (FPr is small), but still be not precise in predic-
tion (precision is small). To prove this fact, they introduce
the conversion formula in Table 2. For this reason, the au-
thors claim that true and false positive rate are not sufficient
to determine the full model performance in case of imbal-
anced data and precision must be computed. On the other
side, imbalanced data sets are very frequent in empirical
software engineering and precision is an unstable measure.
Menzies et al. [11] show that precision computed for differ-
ent types of learning machines and applied on resample data
sets shows the highest variation among performance mea-
sures. With our formalisation, it results more evident that
the solution to the debate resides on variation of the param-
eter r. With the conversion formula, now we know that the

variation of the precision found in Menzies et al. [11] could
be ascribed to the variation of r across the resampled data
sets as precision depends on r and FPr/TPr and that TPr

and FPr can be used when one can control the variation of
the parameter r. Controlling for this variation can be done
with technique of data balancing, [15], but balancing is not
always feasible and requires high Pos, [16].
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slope = 1/r

precision > 50%

precision < 50%

ROC curve

Equal chance

slope = 1/r

precision > 50%

precision < 50%

ROC curve

Equal chance

slope = 1/r

precision > 50% precision < 50%

ROC curve

Equal chance

Higher cost to fix 
undiscovered errors

Higher inspection costs

slope = 1/r

precision > 50%

precision < 50%

ROC curve

Equal chance

slope = 1/r

precision > 50%

precision < 50%

ROC curve

Equal chance

slope = 1/r

precision > 50%

precision < 50%

ROC curve

Equal chance

slope = 1/r

precision > 50%

precision < 50%

ROC curve

Equal chance

Figure 3: ROC curve

Until here we have illustrated the classification problem
in case the a posteriori classification is given. The ROC
curve, the segmented line in Fig. 3, pictures the relation
between TPr, FPr, at different a posteriori classification. In
the figure, we use two thresholds that correspond to two a
posteriori classifications. The Area Under the Curve (AUC)
of the ROC curve is a measure of model performance inde-
pendent from the threshold of the a posteriori classification.
AUC estimates the probability that a random selected posi-
tive instance gets higher probability to be classified positive
than a randomly selected negative instance to be classified
negative. The diagonal plots the point in which the proba-
bility is even. As any single composite measure, AUC can-

X // data set

p // positive float number lees than 1

/*compute a priori classification on X */

compute r

M // classification model

/*Set the decision rule*/

for instance ∈ X

if P(instance) ≥ p
instance =Pos

else

instance =Neg

/*compute measure of performance according to the decision rule*/

compute TPr

compute FPr

return r, TPr, FPr

Figure 4: The classification algorithm.
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not be used alone to compare models across different studies
even when the a priori classification is the same, [17]. Fig.
4 summarises the final classification algorithm that includes
the definition of both the a priori and the a posteriori clas-
sification.

3.4 Comparing models on different data sets
To obtain the ROC curve, the algorithm is repeated for

different p. To compare a model on two or more data sets
with different value of r, we apply the algorithm two or more
times, build the areas of precisions each time, and finally
overlap them. In case of two models, the results is shown
in Fig. 5. In the figure, only models with TPr and FPr in
the top left area guarantee precision greater than 50% in the
two data sets. Good models across data sets need to fall in
the intersection of all top left triangles possibly approaching
the value (0,1).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPr

TP
r

slope=1/r

both models precision > 50%

only model 2 precision > 50%

slope = 1/s

both models precision < 50%

Figure 5: Areas of high and low precision with respect to
two a priori classifications (r, s). In the figure r < 1 < s.

4. THE TTV ALGORITHM: TRAIN, TEST,
AND VALIDATE

We introduce here the TTV algorithm (Fig. 6) that com-
putes the measures of fitting and prediction performance
that we propose in this study. The algorithm has three
stages in which it: 1. trains models on data, 2. tests models
on new fresh data, and 3. validates models on further new
data for prediction. The TTV algorithm aims at formalizing
the process so that all stages are included and for each stage
the appropriate result is output for recoding.

To train models the algorithm uses cross-validation. Cross-
validation is a process that randomly splits the original data
set into k-subsets of equal size (typically, k=10) and trains
a model on the union of k-1 subsets and test it on the re-
maining one. In literature, cross-validation is typical used
to train and validate data with the consequence that test-
ing is skipped. Results on the training performance are not
reported too. TTV uses cross-validation to determine the
best parameters of a model. For example, in neural net-
works training is used to derive the best topology of the

network.
The algorithm uses new fresh data to test the trained

model and computes the model performance on this data.
Testing on new data provides performance measures that are
independent from the data used to build the model. Perfor-
mance measures on testing data indicate the accuracy of the
model to render the actual system behavior.

X // original data set

/* Split X into train, test, and validation sets */

XV = 30% * X // Validation set

C=X-XV

XTr = 60% * C // Training set

XTs = 40% * C // Test set

/* Cross-validation on XTr to tune parameters */

for i in 1:10

/* Randomly split XTr in 10 equal size subsets */

Yi ⊂ XTr and |Yi| =
|XTr|

i and Yi ∩ Yj = for i 6= j

return I ={Yi}
M(τ) // Model with parameters τ

for i in 1:10

/* aggregate 9 subsets to train the model M(τ) */

Wi = ∪j 6=i Yj

train on Wi

/* Test on the remaining one */

test on Yi

/* select the best parameters

according to the best statistic of reference */

compute si on Yi

i0 : si0 = best si

return τi0
M = M(τi0)

/* Evaluate accuracy in fitting */

run classification algorithm for M on XTs

/* Evaluate performance in prediction */

run classification algorithm for M on XV

Figure 6: The TTV algorithm

Finally, the TTV algorithm uses further new fresh data
to make predictions. Measures of performance on this data
represent the future reliability of the system assuming that
the system behaves in the future as it does currently.

4.1 Accuracy of fit and prediction performance
Fig. 7 is what we call the risk map. The map is a se-

mantic representation of the ROC plan. It summarises the
prediction problem in a graphical representation that can
be better presented to the manager. The risk map com-
bines the performance of the model in fitting (accuracy of
fitting) with the performance of the same model in predic-
tion. The upper triangle represent the area in which models
have precision greater than 50% on both test 9performance
in fitting) and validation sets (performance in prediction).
Models must aim at falling in this area.

4.2 Interpreting confusion matrices
We assume that we ran the TTV algorithm and we ob-

tained values of r, TPr, and FPr for both test and validation
sets. Now, we are able to construct the confusion matrix for
both sets. As a matter of example, we use values from a
real case study, whose data we can access to, [16]. The re-
sults on testing and validation and the values for the a priori
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Figure 7: The risk map

classification are:

TPr FPr Pos% size
Test set 86% 5% 39% 21
Valid. set 82% 11% 49% 35
Original set 40% 106

Tables 4 and 5 illustrate the two corresponding confusion
matrices. In the following, we interpret the two confusion
matrices of Table 4 and 5. To our knowledge the only other
study reporting the two matrices in fault prediction is in
Khoshgoftaar et al., [15]. In this case, the authors claimed
that the two measures were enough similar to represent sys-
tem reliability in both fitting and prediction. We argue that
the degree of similarity must be spelled out. To this end, we
will use the risk map.

Table 4: Confusion matrix on test set, derived from Pedrycz
et al. [16]

Pred. Pos Pred. Neg Total

Pos 7 1 8
86% 14% 100%

Neg 1 12 13
5% 95% 100%

Total 8 13 21
Percent 38% 62% 100%

We use the confusion matrix on the test set to describe
the actual system behavior. The Pos percentage indicates
that out of any 1000 instances of the population representing
the system 390 are faulty. The multilayer perceptron is able
to capture about 335 faulty instances (86%*390) with pre-
cision of 91% rising 30 false alarms (5%*610) and 54 faults

left undiscovered (14%*390). Based on the current experi-
ence managers can set a weight for the cost that incurs for
inspecting instances that are not faulty and unexpected cost
of maintenance due to undiscovered faulty instance. In this
example we set the same value for the two types of costs.

Table 5: Confusion matrix on validation set, derived from
Pedrycz et al. [16]

Pred. Pos Pred. Neg Total

Pos 14 3 17
82% 18% 100%

Neg 2 16 18
11% 89% 100%

Total 16 19 35
Percent 45% 54% 100%

To predict the future behavior of the system we use the
confusion matrix derived on the validation set. We first
assume that the behavior of the application in the next
three months is similar to the current one. Thus, we as-
sume that the expected Pos% is the one we found on the
test set, i.e., 39%. Then we suppose that 1000 sequence ab-
stractions are being isolated. Therefore, we expect to have
about 610 non-faulty and about 390 faulty instances. We
apply the multilayer perceptron and predict those features.
Per Table 5, we would expect the model to identify about
450 faulty instances (45% x 1000). Developers could inspect
and test these types with more accuracy. We would expect
they waste time on 67 instances that are actually not faulty
(11% x 610). We would predict the model to identify cor-
rectly about 320 instances that are actually faulty (82% x
390), but fail to identify 70 faulty instances (18% x 390)
that will cause future cost of inspection. Comparing the
test and the validation results, we see that in future costs
will increase. With which accuracy managers need to take
this costs into consideration? If we use the risk map, we
simply have to plot the two pair of values of TPr and FPr.
the maximal slope is 1.56 and corresponds to the a priori
distribution of the test set. We can easily see that the two
pairs of values are in the upper triangle of the risk map de-
fined for r=1.56 and p=50%. Precision is then greater than
50%. With the map the manager can in parallel evaluate
the risk that the model does not fit the actual system be-
havior and the risk that the model predicts wrong instances
assuming that the model fits 100% the actual behavior. In
literature, the second type of risk is measured by the mis-
classification rate MR. In the example above, MR is 8% in
fitting and 14% in prediction. As we mentioned, MR is not
enough to compare the quality of two models, though, as it
is not able to distinguish between two other types of risk: i)
the risk of wasting time in fixing faults where there are none
(values with high FPr in Fig 3) ii) the risk of not inspecting
instances when they should, which causes unbudgeted costs
of maintenance (values with low TPr in Fig 3).
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4.3 Comparing predictions
Fig. 7 is the map a manager is presented with. Each

model obtained with the TTV algorithm is mapped into two
points in the plan defined by FPr and TPr. The two points
represent the model fitting and prediction performance of
the model according to TPr and FPr. The minimal value of
the ratio r computed on test and validation sets determine
the upper triangle and the maximal slope of the border line.
If the two points are above the line with maximal slope, by
eq. 0 we know that the model has precision greater than
a value p (in the figure 50%). Using the distance from the
(0,1) point, we can additionally identify a new area in the
risk map. It is a disc with center (FPr = 0,TPr = 1) and ray
R. Points falling in the disc are“enough”near to the absolute
best performance result (0,1). To determine a value of R
that guarantees proximity with the point (0,1) and precision
greater that p, we compute the point in which the circle of
the disc is tangent to the border line of the upper triangle.
Solving a simple a algebraic problem, we find that:

R0 =
rmin ∗ (1− p)√

p2 + r2min ∗ (1− p)2
(3)

and consequently

balance0 = 1− rmin ∗ (1− p)√
2 ∗

√
p2 + r2min ∗ (1− p)2

(4)

If we assume p≥ 50% and r≤ 1 (i.e., imbalanced data sets
as in typical fault prediction studies), from eq. 1, we get the
slope of the border line greater than 1. As such the disc of
ray R0 will always fall above the diagonal of the risk map (i.e.
equal chance line). Thus, the prediction problem reduces to
find those models whose TPr and FPr values determine a
point in the disc of ray R0 for both test and validation sets.
When models satisfy this minimal requirement, they can
be compared with other models or models on different data
sets. The final comparison algorithm is based on this rule.
In Fig. 8, we illustrate the case of two models and two dat
sets but the algorithm can be easily extended to multiple
models and data sets.

5. RE-REVIEWING STUDIES IN MINING
DATA FOR FAULT PREDICTION

We analyze the twenty-one categorical papers used in Hall
et al [1] that report sufficient contextual and methodological
details to be synthesized. These papers provide categorical
models classifying instances by their faultiness (dichotomous
classification). The authors compare such papers by AUC,
F-measure, true positive rate, and precision. The F-measure
can be written in terms of true positive rate and precision.
As such, the papers are ultimately compared by AUC, pre-
cision and true positive rate. We see indeed that not all the
papers report AUC and the majority sets to 0.5 the thresh-
old for the a posteriori classification.

We reviewed all the papers according whether the study
reported:

1. The a priori classification (the r value)

2. Measures that could be transformed into TPr and FPr

3. Accuracy of fitting

4. Any cross-validation technique and if this technique
used the training, testing, and validation procedure

X // data set

Y // data set

p // positive float number lees than 1

M // classification model

N // classification model

run the TTV algorithm for M on X

PXtest =(FPr,TPr) on test set of X

PXval =(FPr,TPr) on validation set of X

compute rX = min {rtest, rval} for X

compute R0 with rmin = rX

if dist(PXtest, (0, 1)) < R0 & dist(PXval, (0, 1)) < R0

rX , PXval

else

X = 0

run the TTV algorithm for N on Y

PYtest =(FPr,TPr) on test set of Y

PYval =(FPr,TPr) on validation set of Y

compute rY = min {rtest, rval} for Y

compute R0 with rmin = rY

if dist(PYtest, (0, 1)) < R0 & dist(PYval, (0, 1)) < R0

rY , PYval

else

rY = 0

if (rX = 0 & rY = 0)

r0 = 0

else

compute r0 = min {rX , rY }
/* compare M and N on X and Y*/

compute R0 with rmin = r0

if (dist(PXval(N), (0, 1)) < R0 & dist(PYval(M), (0, 1)) < R0)

if (PXval(N), (0, 1)) <dist(PY
val(M), (0, 1))

return PXval

else

return PYval

else

if (dist(PXval(N), (0, 1)) < R0)

return PXval

else if dist(PYval(M), (0, 1)) < R0)

return PYval

else

return Φ

Figure 8: The comparison algorithm

Table 6 summarizes our findings. In the table, we illustrate
whether the a priori classification is specified only for orig-
inal, or also for training, testing, or validation sets. The
comparison algorithm works the best with all these details.
We also reported all the measures of model performance
that we found in the papers and not only the one used in
the Hall et al. paper. This is because we need to understand
whether a paper solve completely the classification problem.
In other words, we check whether the measures can deter-
mine the confusion matrix and therefore can be transformed
into TPr and FPr. We also check whether fitting perfor-
mance is reported. We found that in the majority of the
study it is not reported. This is also due to the fact that
many researchers use the n-fold cross validation as a black
box statistical instrument that outputs only performance on
the kth fold used for prediction. In this way, researchers do
not have any command on the accuracy of the model on the
remaining n-1 folds.

Finally, only 4 studies more or less satisfy our criteria that

8



are conducted two different group of researchers (Simula lab
and at the Empirical Software Engineering Laboratory at
Florida Atlantic University). Arisholm et al. [18] use the
TVV approach splitting the original data set into three dis-
joint sets. The a priori classification is reported only for the
training set which is then balanced (r=1) for the training.
Precision and TPr are reported for the test and validation
sets, but with no information on the a priori classification
of these sets we are not able to derive the FPr and the con-
fusion matrix. Arisholm et al. [19] apply the same approach
that in their previous paper [18], but this time they use
also FPr. Unfortunately, this time the result of the fitting
and prediction performance are not reported separately and
again we cannot map their result onto the risk map. What
is missing in Khoshgoftaar et al. [5] are only the measures
useful to fully derive the confusion matrix or equivalently
the pair TPr and FPr. The paper that provides all details to
run our algorithm is the one of Khoshgoftaar and Seliya [20].
Fig. 9 illustrates the authors’ result mapped in the risk map.
The figure reports the border lines for the test set (release
2) used for fitting accuracy and the validation set (release 4)
for prediction performance. The lines are reported for both
p=10% (solid lines) and p=50% (dashed lines). The points
are the values of FPr and TPr for seven different models
for release 2 (red) and 4 (black). From the larger circle the
manager can see that some models have precision less than
10% in prediction and all the models have precision for both
fitting and prediction less than 50% (smaller circle). This
result is not much satisfactory.
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Figure 9: The risk map for the study of Khoshgoftaar and
Seliya [20]

6. CONCLUSIONS
In this study, we propose a framework to conduct fault

prediction analyses. The framework is expressed as three
consecutive algorithms and want to control two crucial is-
sues that can hamper a comparison across studies: compute
and report accuracy of fitting of a model and determine the
set of parameters and variables needed to describe the solu-
tion and the context of a classification problem. Overall, the
present study aims at building the needed environment to

generalize results across studies on fault predictions. Such
environment is unfortunately still missing, [1]. We also re-
viewed the baseline studies that result compliant with the
quality criteria of Hall et al. [1]. Among the twenty-one
studies we found four that have almost all the characteris-
tics of rigor to apply our framework. We selected one and
applied framework and produced the risk map. The risk
map partition the ROC plan in areas related to the values
of precision. In this way managers can better evaluate the
risk to select models according to TPr, FPr and the nature
of the data.
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[23] G. Denaro and M. Pezzè, “An empirical evaluation of
fault-proneness models,” in Proceedings of the 24th
International Conference on Software Engineering,
ser. ICSE ’02. New York, NY, USA: ACM, 2002, pp.
241–251.

[24] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical
validation of object-oriented metrics on open source
software for fault prediction,” Software Engineering,
IEEE Transactions on, vol. 31, no. 10, pp. 897–910,

Oct 2005.
[25] H. Zhang, “An investigation of the relationships

between lines of code and defects,” in Software
Maintenance, 2009. ICSM 2009. IEEE International
Conference on, Sept 2009, pp. 274–283.

[26] A. Kaur and R. Malhotra, “Application of random
forest in predicting fault-prone classes,” in Advanced
Computer Theory and Engineering, 2008. ICACTE
’08. International Conference on, Dec 2008, pp. 37–43.

[27] T. M. Khoshgoftaar, X. Yuan, E. B. Allen, W. D.
Jones, and J. P. Hudepohl, “Uncertain classification of
fault-prone software modules,” Empirical Softw. Engg.,
vol. 7, no. 4, pp. 297–318, Dec. 2002.

[28] T. Mende and R. Koschke, “Effort-aware defect
prediction models,” in Software Maintenance and
Reengineering (CSMR), 2010 14th European
Conference on, March 2010, pp. 107–116.

[29] T. Mende, R. Koschke, and M. Leszak, “Evaluating
defect prediction models for a large evolving software
system,” in Software Maintenance and Reengineering,
2009. CSMR ’09. 13th European Conference on,
March 2009, pp. 247–250.

[30] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno,
“Spam filter based approach for finding fault-prone
software modules,” in Mining Software Repositories,
2007. ICSE Workshops MSR ’07. Fourth International
Workshop on, May 2007, pp. 4–4.

[31] O. Mizuno and T. Kikuno, “Training on errors
experiment to detect fault-prone software modules by
spam filter,” in Proceedings of the the 6th Joint
Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser.
ESEC-FSE ’07. New York, NY, USA: ACM, 2007,
pp. 405–414.

[32] R. Moser, W. Pedrycz, and G. Succi, “A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction,” in Proceedings
of the 30th international conference on Software
engineering, ser. ICSE ’08. New York, NY, USA:
ACM, 2008, pp. 181–190.
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