
I/O and serialization

Advanced Programming

Streams
• A stream is an abstraction that either produce or

consumes information

• Streams are implemented in the java.io and java.nio
packages

• Predefined stream: the java.lang.System class

I/O streams
• Byte Streams I/O of raw binary data.

• Character Streams I/O of character data, automatically handling translation
to and from the local character set

• Buffered Streams optimise input and output by reducing the number of calls
to the native API.

• Scanning and Formatting allows a program to read and write formatted text

• I/O from the Command Line describes the Standard Streams and the
Console object.

• Data Streams handle binary I/O of primitive data type and String values.

• Object Streams handle binary I/O of objects.

3

Byte streams
• Top abstract classes: InputStream and OutputStream

with methods read() and write() that read and write
byte streams

• Examples of derived classes:
– FileInputStream – read() byte-streams from file
– FileOutputStream – write() byte-streams to file
– BufferedInputStream – read() byte-streams from current buffer
– BufferedOutputStream – write() byte-streams to current buffer
– PrintStream - OutputStream that contains print() and println()

Standard Streams
• The Java platform supports the command line

interaction in two ways: through the Standard
Streams and Console

• They are byte streams

5

java.lang.System
• Public static final java.lang.System.in,

java.lang.System.out, java.lang.System.err

• Contains the following fields:
– System.in is the keyboard of type InputStream

– System.out is the console of type PrintStream

– System.err of type PrintStream

The Console class
• A more advanced alternative to the Standard Streams

is the Console

• To read and write from a console if one exists

• Console has no constructor

• It is final

• One can get a Console object by invoking the method
public Console console()

Console c = System.console();

The Console class
• Besides the usual methods to read from a line, Console

has the method

char[] readPassword()

• that reads a string entered in the keyboard until the
user presses ENTER

readPassword()
• This method helps secure password entry in two ways.

• First, it suppresses echoing, so the password is not
visible on the user's screen.

• Second, it returns a character array, not a String
(it is immutable!), so the password can be
overwritten, removing it from memory as soon as
it is no longer needed

9

Have you tried?
• Console does not work in an IDE!

• see file BBReader.java

10

Character streams
• Character streams use UNICODE1 so that they can be

internationalised

• Top abstract classes: Reader and Writer with methods read()
and write() that read or write character streams

– Examples of derived classes:

11

BufferedReader – characters
stream
StringReader – reads form string
BufferedWriter – characters
stream
StringWriter – writes to string
FileReader – reads from file
FileWriter – writes to file

InputStreamReader - translates bytes to
characters
OutputStreamWriter - translates characters
to bytes
LineNumberReader – counts lines
PrintWriter – contains print() and println()

1http://unicode-table.com/en/

int read()
Reader reader = new FileReader("c:\data\myfile.txt”);
 int data = reader.read();
 while(data != -1){
 char dataChar = (char) data;
 data = reader.read();
 }
InputStream returns one byte at a time, i.e. a value between 0 and 255 (or -1 if
the stream has no more data)
Reader returns a char at a time, i.e. a value between 0 and 65535 (or -1 if the
stream has no more data)
“-1” tells there are no more data

Wrapping byte into char streams
– Standard Streams for historical reasons are byte

streams

– System.out and System.err are defined as internal
objects of System of type PrintStream

– OK! PrintStream is byte stream but uses an internal
character stream object to emulate many of the
features of character streams

13

Wrapping byte into char streams
– System.in is a byte stream with no character stream

features.

– To use System.in as a character stream, wrap
System.in in InputStreamReader

InputStreamReader wrin = new InputStreamReader(System.in);

14

Reading characters / strings
• BufferedReader

• int read() throws IOException returns integer value
for a character (needs to be casted to char), -1 if it is
EOL (end of line)

• String readLine() throws IOException returns String

• BufferedReader store characters in a buffer for further
use

Unbuffered I/O
• Each read or write request is handled directly by the

underlying OS

• This can make a program much less efficient:

• each request often triggers disk access or network
activity

• E.g.: Inputstream / Outputstream

16

Buffered I/O
• Buffered input streams read data from a memory area

known as a buffer

• Buffered output streams write data to a buffer

• Buffers are automatically emptied, but one can use
flush() to force it

• A program can convert an unbuffered stream into a
buffered stream using the wrapping idiom

17

Reading from console input
• Wrapping System.in as object of BufferedReader by passing an

anonymous object of type InputStreamReader with parameter
System.in

BufferedReader br = BufferedReader(new InputStreamReader(System.in))

• With constructors

BufferedReader(Reader myReader)
InputStreamReader(InputStream myInputStream)

It takes a byte inputstream, it translates it to a character stream by wrapping it
into InputStreamReader and then store it in a buffer for further use by wrapping
it into a BufferedReader

Example from reference book

Flushing
• Streams are often accessed by threads that periodically empty

their content and, for example, display it on the screen, send
it to a socket (socket is an endpoint for communication
between two machines) or write it to a file

• This is done for performance reasons

• Flushing an output stream means that we want to stop, wait
for the content of the stream to be completely transferred to
its destination, and then resume execution with the stream
empty and the content sent.

flush()
• flush(): the streams are stored in a temporary memory

location in our computer called buffer

• When all buffers are full then invoking flush() empty
them and write out the streams on the device we want
(i.e. in a file or console)

• close() invokes flush() by default, but sometimes we
want to force flush() even before we close the stream
for performance reasons

Using PrintWriter for console output

PrintWriter class
• It is one of character based classes so it is better than

using System.out for internationalization

• If the return value is not primitive, its print methods
invoke toString() of Object to display the results

PrintWriter(OutputStream outputStream, boolean flushingOn)

the boolean parameter indicates whether flush() is performed and
print() and println() empty the buffer automatically

Reading/writing/manipulating files
• Classes in java.io:

• FileInputStream , FileOutputStream,

• File,

• FileReader, FileWriter, PrintWriter,

• Methods: read(), readLine(), print(), println(), flush(), write(),
close() a file

• Exceptions: IOException (FileNotFoundException), IOError,
SecurityException (attempt to open a file with security policy,
better used with applet that have default security manager)

FileInputStream constructors
• FileInputStream(String filePath)

• FileInputStream(File fileObj)

FileInputStream fileStream=new FileInputStream(“/
game.bat”);

or

File file = new File(“/game.bat”);

FileInputStream afileStream = new FileInputStream(file)

FileOutputStream constructors
• FileOutputStream(String filePath)

• FileOutputStream(File fileObj)

• FileOutputStream(String filePath, boolean append)

• FileOutputStream(File fileObj, boolean append)
– filePath is the full path

– boolean determines whether to append a content of on the
file

close()
• void close() throws IOException – you can use it in

the body of a method, in a finally block or you do not
use it with try-with-resources() block(after SDK 1.7)
– Not closing a file results in memory leaks that is allocating

memory to unused resources

– Exercise: instantiate a file as you wish and try to close it outside
the method block or in a finally block etc…

Writing files as chars or bytes
PrintWriter writer = new PrintWriter("the-file-name.txt", "UTF-8");

writer.println("The first line");

writer.close();

byte dataToWrite[] = //...

FileOutputStream out = new FileOutputStream("the-file-name.txt");

out.write(dataToWrite);

out.close();

see file B_ReadLines.java and CopyFile.java

FileReader
• It reads the content of a file

• Constructors:
– FileReader(String filePath)

– FileReader(File fileObj)

Example from the book

FileWriter
• FileWriter creates a Writer that you can use to write to

a file

• FileWriter will create the file before opening it for
output when you create the object.

• In the case where you attempt to open a read-only file,
an IOException will be thrown.

FileWriter
• Constructors

– FileWriter(String filePath)

– FileWriter(String filePath, boolean append)

– FileWriter(File fileObj)

– FileWriter(File fileObj, boolean append)

The File class
• An abstract representation of file and directory pathnames.

• It can store a file or a directory. In the last case, use
isDirectory() to check it. Only if it returns TRUE you can
use the list() method that returns the String array of all the
files in a directory

• Sometimes you have sub-directories as in the following
example

• see class MyFolder.java and FileDemo.java

Reading a directory
Here the sub-directories are listed as
files of one directory

Here I can see the difference between
a sub-directory and a file

Constructors
• File(String directoryPath)

• File(String directoryPath, String filename)

• File(File dir, String filename)

• File(URI uri)
File f1 = File(“/”);

File f2 = File(“/”, “game.bat”);

File f3 = File(f1, “game.bat”);

Exercise
• Count the number of projects of your workspace and

their total size

Note
• To use try-with-resources classes (resources) must

implement the closeable interface

• The class File does not do it by default

• The stream abstract classes (byte or char) yes

Limiting the number of files
• To limit the number of files returned from list() we can

use the interface FilenameFilter

• It allows to filter the files by matching a string

accept(File thisDirectory, String matchName)

• and then use

String[] list(FilenameFiler myfiles)

Directory in which we look
up, string we want to match

Example

Drawbacks of File
• Many methods do not throw exceptions when they

failed (depending on the access defined by the OS)

• Instances of File are immutable: the abstract path name
represented by a File object will never change (see
code example “RenamedFile.java”

41

Drawbacks of File
• The rename() method didn't work consistently across

OSs

• Accessing file metadata is inefficient (file
permissions, file owner, and other security attributes)

42

Drawbacks of File
• Many of the File methods didn't scale. Requesting a

large directory listing over a server could stack.

• Large directories could also cause memory leak,
resulting in a denial of service

43

The java.nio package
• The NIO system is built on two foundational items:

– A buffer holds data

– A channel represents an open connection to an I/O device,
such as a file or a socket

– We will review two major Files and Paths classes

java.nio.file.Path (I)
• A Java Path instance represents a path in the file

system

• A path can point to either a file or a directory

• A path can be absolute or relative

45

java.nio.file.Paths (C)
• To get an object of Path (is an interface!) we use

factory methods (often static calls)

Path pathOne = Paths.get(“data/myfile.txt");

or Path pathOne = Paths.get(“c:\\data\\myfile.txt");

Path pathTwo = FileSystems.getDefault().getPath("data", “myfile.txt");

BufferedReader reader = Files.newBufferedReader(pathOne,
StandardCharsets.UTF_8);

Relative path
• base path : “data”

• relative path: “projects/myFoo.txt”
Path pathBase = Paths.get(“data");
Path pathFolder = Paths.get(“data”, “projects”);
Path pathFile = Paths.get(“data”, “projects/myFoo.txt”);

Path currentDir = Paths.get(".");

47

java.nio.file.Files (C)
• The java.nio.file.Files class works with

java.nio.file.Path instances

 boolean pathExists =
 Files.exists(pathOne,new LinkOption[]{…});

• Files.createDirectory() method creates a new directory
from a Path instance
try {
 Path newDir = Files.createDirectory(pathTwo);
} catch(FileAlreadyExistsException e){
 // the directory already exists.
} catch (IOException e) {
 //something else went wrong
 e.printStackTrace();
} 48

Serialisation
• When group of objects or

states can be transmitted
as one entity and then at
arrival reconstructed into
the original distinct
objects

49

Serialisation
• Serialisation is the process to write the state of an

object to a byte stream:
– An object is represented as a sequence of bytes that includes

the object's data as well as information about the object's
type and the types of data stored in the object.

Serialisation
• Later one may restore these objects by using the

deserialisation process:
– it can be read from the persistent storage (e.g., a file, or a

socket) and deserialised it that is, the type information and
bytes that represent the object and its data can be used to
recreate the object in memory.

Top classes
• Top classes ObjectInputStream and

ObjectOutputStream

Java object serialisation
• The ObjectOutputStream class contains the method

public final void writeObject(Object x)
throws IOException

• The method serialises an Object and sends it to the
output stream

53

Java object deserialisation
• Similarly, the ObjectInputStream class contains the

method for deserialising an object:

public final Object readObject() throws
IOException, ClassNotFoundException

• This method retrieves the next Object out of the stream
and deserialises it

• Casting to appropriate data type is needed as the
method returns Object

54

How to build a serialisable class
• First a class must implement the interface

java.io.Serialisable

• All of the class fields must be serializable too
• If a field is not serializable, it must be marked as

transient

• see file Employee.java

55

Deserialisation
• Read an object from the ObjectInputStream.

• The class of the object, the signature of the class, and
the values of the non-transient and non-static fields of
the class and all of its super-types are read.

• Objects referenced by this object are read transitively
so that a complete equivalent graph of objects is
reconstructed by readObject.

56

• The root object is completely restored when all of its
fields and the objects it references are completely
restored.

57

Directed graph of object relations
• Assume that an object to be serialised has references to

other objects, which, in turn, have references to other
objects

• This set of objects and the relationships among them
form a directed graph

Circular reference

59

 A B

myA.move(B b)

myB.checkStatus(A a)

Circular references
• There may also be circular references within this

object graph.

• That is, object A may contain a reference to object
B, and object B may contain a reference back to
object A

• Not a good design

• Objects may also contain references to themselves and
self references

class A{
 B b1;
 A() {b1=new B();}
}

class B{
 A a1;
 B(){a1=new A();}
}

public class Demo{
 public static void main(String[] args){
 A obj=new A();
// throw away the reference from the stack
 obj=null; // inaccessible circular
references now exists
 }
}

class A{
 private B b;
 public void setB(B b) { this.b = b;}
}

class B {
 private A a;
 public void setA(A a) { this.a = a;}
}

public class Demo{
 public static void main(String[] args) {
 A myA = new A();
 B myB = new B();
 // Make the objects refer to each other
(creates a circular reference)
 myA.setB(myB);
 myB.setA(myA);
/* Throw away the references from the main
*method; the two objects are still referring to
/*each other
 myA = null;
 myB = null;
 }
}

Stack overflow: not
a circular reference

Circular reference

Exercise
• draw the stack and heap models for the above code

Serialize the graph
• When we serialise an object at the top of an object

graph, all of the other referenced objects are
recursively located and serialised

• Similarly, during the process of deserialisation, all of
these objects and their references are correctly restored

Properties of serialization
• The entire process is JVM independent, meaning an

object can be serialised on one platform and
deserialised on an entirely different platform

• Useful with Remote Method Invocation (RMI)
– RMI allows object of one machine to call methods of objects

in another machine
• An object can be passed of parameter of the remote method. The

sending machine serialize it and transmit it, while the receiving
machine deserialize it

• A FileOutputStream is created that refers to a file
named "serial", and an ObjectOutputStream is
created for that file stream.

• invoking writeObject() of the class
ObjectOutputStream to serialize the object of
FileOutputStream.

• The object of FileOutputStream is flushed and closed.

• ObjectOutputStream is used to create binary
representation of Serializable objects

• Note that MyClass is defined to implement the
Serializable interface.

• If this is not done, a NotSerializableException is
thrown.

