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Definition of a Design Pattern

} “A Pattern describes a problem which occurs 
over and over again in our environment, and then 
describes the core of the solution to that 
problem, in such a way that you can use this 
solution a million times over, without 
ever doing it the same way twice”  

(Alexander, Ishikawa, Silverstein, Jacobson, Fiksdhal-King, 
Angel “A Pattern Language”, 1977)
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Looking for 
Patterns
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Same 
Pattern in 
a Similar 
Tower
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Same 
Pattern in a 
Slightly 
Different 
Tower
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Same Pattern in a  
Completely Different Tower
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Reflecting …
} Here we identify 

} the problem: Building the tower 
} the solution: a suitable configuration of bricks 

} The reuse of the solution ... 
} The pattern is repeated … become robust

Design Patterns in Software Development

} We can translate the concept of design patterns to 
software development 

} We have to define: 
} The “bricks” 
} The “configurations of the bricks” 

} Object-Orientation provides a “natural way” to express 
design patterns
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OO Design Patterns
} Design objects are our “bricks” 
} Informally, a design pattern is a particular configuration 

of design objects 
} … that is, a set of objects and their mutual relations 

(inheritance, composition, aggregation, association, creation, …)
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Design Patterns (cont’d)
}  A pattern has four elements: 

❶ The pattern name. This is used to describe a problem, its 
solutions and consequences in one or two words. 

❷ The problem. This element describes a particular design 
problem and its context. 

❸ The solution. This describes the design elements, their 
relationships, their responsibilities, and collaborations. 

❹ The consequences. These elements are the results and trade-
offs of applying design patterns.
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Example
❶ The pattern name.  Tower. 
❷ The problem. Being visible at distance over 360o . 
❸ The solution. Bricks are put side by side in a (circular) 

sequence. Circles of brick are put one over the other until to 
reach a predefined height 

❹ The consequences. The height can be relevant if the surrounding 
ground is not flat

Exercise
} Describe a pattern 

❶ The pattern name.  
❶ The problem.  
❶ The solution.  
❶ The consequences. 



The reference book to read
} The "Gang of Four": 

} Erich Gamma, 
} Richard Helm, 
} Ralph Johnson, 
} John Vlissides 

} Design Patterns: Elements of Reusable Object-Oriented 
Software,  Addison-Wesley

The GoF Approach
} GoF distinguishes 3 kinds of patterns:  

} Creational: patterns dealing with object creation 

} Structural: patterns dealing with the composition of classes 
and objects 

} Behavioral: patterns dealing with objects interactions and 
sharing of responsibilities
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Patterns

Singleton
} Goal:  

} a class has only one instance AND  
} any other instantiation points to the same object 

} Use: very useful in context where we want to have only 
one object of a given class  
} If we want to have one and only one we can additionally make 

all the member data static or nesting a static class



The Singleton
} Examples 

} Having only one file system 
} Having only one window manager 
} Having one accounting system per single company

Singleton pattern
} Hiding the creation of the class instance in a static 

function 
} Clients can access to the instance only through the 

function 
} The constructor is either private or protected



 Singleton 
 static instance() 
 SingletonOperation()  
 GetSingletonData() 
 static uniqueInstance 
 singletonData 

 
 return uniqueInstance 

in Java, constructor must be private.

The Singleton Pattern - Creational
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Uniqueness of the Budget
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Budget
 static instance()
 BudgetOperation()
 GetBudgetData()
 static uniqueBudget
 static noBudgetCreated
 budgetData

 return uniqueBudget



Java Skeleton

public class Budget { 
 private static Budget uniqueBudget = null; 
  public static Budget instance() { 
  if (uniqueBudget == null) 
   uniqueBudget=new Budget(); 
    return uniqueBudget; 
   } 
  } 
 private Budget() { ... } 
 ...  
} 
...  

Budget townshipBudget = Budget.instance(); 

Budget wrongBudget = new Budget(); WRONG!!!
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Structural Patterns

} These patterns are concerned with how structures are 
formed by the composition of classes and objects.  

} Two types of structural patterns: 
} Structural class pattern which uses inheritance to compose 

interfaces or implementations.  
} Structural object pattern, which describes the ways to 

compose objects to realize new functionality.  
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Goal and use
} Goal:  

} It structures objects and compositions in a tree 
structure 

} It lets clients treat individual objects and 
compositions in a uniform way 

} Use:  Very useful when we deal with objects that can 
be located at different levels of abstractions



The	
  Composite	
  Pattern
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Component
	
  Operation()
	
  Add(Component)
	
  Remove(Component)
	
  GetChild(int)

Leaf
	
  Operation() 	
  forall	
  g	
  in	
   children

	
  	
  	
  	
  g.Operation();

Client

Composite
	
  Operation()
	
  Add(Component)
	
  Remove(Component)
	
  GetChild (int)

children

*

Example
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Graphic
	
  Draw()
	
  Add(Graphic)
	
  Remove(Graphic)
	
  GetChild(int)

Text
	
   Draw() 	
  for	
  all	
  g	
  in	
  graphs

	
  	
  	
  	
  g.Draw();

Client

Picture
	
  Draw()
	
  Add(Graphic	
  g)
	
  Remove(Graphic	
  g)
	
  GetChild (int)

graphs

*

Rectangle
Draw()

add	
  g	
  to	
  
the	
  list	
  of	
  graphs



Example of Component
class Directory { 
    Directory dir; 
    File[] f; 
    ... 
    boolean isDirectory() { return f == null; } 
    boolean isFile() { return f != null; } 
    File getFile(int i) { 
         if (isFile()) return f[i]; 
         return null 
    }  
    Directory getDirectory() { 
        if (isDirectory()) return dir;  
        return null; } 
.... } 

Re-written to get a  
child

Benefits
} Composite objects can in turn be compounded to created 

iteratively new complex object  
} The client has a easier work as they can deal with 

composite and primitive objects at the same way.  
} Clients do not know whether they operate with primitive 

or composite 
} It is easier to add new objects. No existing code needs to 

be modified with the addition of a new object



Shortcomings
} It can make a project too generic   
} It is hard to limit the expansion of the tree 
} Anyone can add a new leaf or composite

Adapter (Wrapper)
} Let different classes work together when they have 

incompatible interfaces 
} Also called Wrapper
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Example - Subclasses of Shape 

LineShape and Polygon shape are strightforward to 
implement as they are composite of few drawing objects 
and rules for re-shaping.   
TextShape is harder it may need complex updating of the 
text and memory management 
A TestView class is used to visualize TextShape,  

The problem is that is not built for visualizing other 
format shapes. 
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Two solutions
} Inheriting the interface of Shape and implementing 

TextView (class adapter) 
} Compounding an instance of TextView in a TextShape and 

implementing TextShape through the interface Shape 
(object adapter)



Class Adapter (with multiple inheritance)
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Target 
 Request() 

 

Adapter 
 Request()  SpecificRequest() 

Client Adaptee 
 SpecificRequest() 

(protected or private) 
implementation 

Object Adapter (without multiple inheritance)
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Target
 Request()

Adapter
 Request()  adaptee->SpecificRequest()

Client Adaptee
 SpecificRequest()

adaptee



Example

 

TextShape 
 BoundingBox() 

 Return text.GetExtent() 

TestView 
 GetExtent() 

Text in TextShape class 

Z
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Observer (1/2)
} Intent 

} Define a 1:n dependency between objects so that when one 
object changes state, all its dependents are notified and 
updated automatically 

} Also Known As 
} Dependents, Publish-Subscribe, Model-View Controller 

} Motivation 
} The need to maintain consistency between related objects 

without making classes tightly coupled
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Observer (2/2)



39

Structure
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Participants (1/2)

} Subject 
} Keeps track of its observers 
} Provides an interface for attaching and detaching Observer 

objects 

} Observer 
} Defines an interface for update notification
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Participants (2/2)
} ConcreteSubject 

} The object being observed 
} Stores state of interest to ConcreteObserver objects 
} Sends a notification to its observers when its state changes 

} ConcreteObserver 
} The observing object 
} Stores state that should stay consistent with the subject's 
} Implements the Observer update interface to keep its state 

consistent with the subject's
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Consequences (1/3)
} Benefits 

} Observers can be added without modifying the subject 

} All subjects know its list of observers 

} Subject does not need to know the concrete class of an 
observer
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Implementation Issues (1/4)
} How does the subject keep track of its observers? 

} Array, linked list 
} What if an observer wants to observe more than one 

subject? 
} Have the subject tell the observer who it is via the update 

interface
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Implementation Issues (2/4)

} Make sure the subject updates its state before sending 
out notifications 

} How much info about the change should the subject send 
to the observers? 
} Push Model – Lots 
} Pull Model - Very Little
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Implementation Issues (3/4)
} Can the observers subscribe to specific events of interest? 

} If so, it's publish-subscribe 
} Can an observer also be a subject? 

} Yes
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Implementation Issues (4/4)
} What if an observer wants to be notified only after several 

subjects have changed state? 
} Use an intermediary object which acts as a mediator, 

ChangeManager 
} Subjects send notifications to the mediator object which 

performs any necessary processing before notifying the 
observers



MVC - Model View Controller
} Model/View/Controller user interface framework 

} Model = Subject 
} View = Observer 
} Controller is whatever object changes the state of the subject 
} Since Java 1.1 AWT/Swing.event  package
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Java implementation of Observer
} Java provides the Observable/Observer classes as built-

in support for the Observer pattern 
} The java.util.Observable class is the base Subject class. 

} Provides methods to add/delete observers 
} Provides methods to notify all observers 
} Uses a Vector for storing the observer references 

} The java.util.Observer interface is the Observer 
interface. It must be implemented by any observer class
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Observable/Observer Example (1/6)

/** 
 * A subject to observe! 
 */ 
public class ConcreteSubject extends Observable { 
  private String name; 
  private float price; 

  public ConcreteSubject(String name, float price) { 
    this.name = name; 
    this.price = price; 
    System.out.println("ConcreteSubject created: " + name 
                       + " at " + price); 
  }
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Observable/Observer Example (2/6)
  public String getName() { 
    return name; 
  } 
  public float getPrice() { 
    return price; 
  } 
  public void setName(String name) { 
    this.name = name; 
    setChanged(); 
    notifyObservers(name); 
  } 
  public void setPrice(float price) { 
    this.price = price; 
    setChanged(); 
    notifyObservers(new Float(price)); 
  } 
}
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Observable/Observer Example (3/6)
// An observer of name changes. 
public class NameObserver implements Observer { 
  private String name; 

  public NameObserver() { 
    name = null; 
    System.out.println("NameObserver created: Name is " + name); 
  } 
   
  public void update(Observable obj, Object arg) { 
    if (arg instanceof String) { 
       name = (String)arg; 
       System.out.println("NameObserver: Name changed to " + name); 
    } else { 
      System.out.println("NameObserver: Some other change to 

subject!"); 
    } 
  } 
}
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Observable/Observer Example (4/6)
// An observer of price changes. 
public class PriceObserver implements Observer { 
  private float price; 

  public PriceObserver() { 
    price = 0; 
    System.out.println("PriceObserver created: Price is " + price); 
  } 

  public void update(Observable obj, Object arg) { 
     if (arg instanceof Float) { 
       price = ((Float)arg).floatValue(); 
       System.out.println("PriceObserver: Price changed to " + price); 
     } else { 
      System.out.println(”PriceObserver: Some other change to 

subject!"); 
     } 
  } 
}
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Observable/Observer Example (5/6)

// Test program for ConcreteSubject, NameObserver and  
// PriceObserver 
public class TestObservers { 
  public static void main(String args[]) { 
    // Create the Subject and Observers. 
    ConcreteSubject s = new ConcreteSubject("Corn Pops",  1.29f); 
    NameObserver nameObs = new NameObserver(); 
    PriceObserver priceObs = new PriceObserver(); 
    // Add those Observers! 
    s.addObserver(nameObs); 
    s.addObserver(priceObs); 
    // Make changes to the Subject. 
    s.setName("Frosted Flakes"); 
    s.setPrice(4.57f); 
    s.setPrice(9.22f); 
    s.setName("Sugar Crispies"); 
  } 
}
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A Problem With Observable/Observer (1/2)
} Problem 

} Suppose the class which we want to be an observable is already 
part of an inheritance hierarchy: 

} class SpecialSubject extends ParentClass 

} Since Java does not support multiple inheritance, how can 
we have ConcreteSubject extend both Observable and 
ParentClass?



A Problem With Observable/Observer (2/2)
} Solution 

} Use Delegation 
} We will have SpecialSubject contain an Observable object  
} We will delegate the observable behavior that SpecialSubject needs to 

this contained Observable object
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