
Design Patterns

Barbara Russo

Definition of a Design Pattern

} “A Pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without
ever doing it the same way twice”

(Alexander, Ishikawa, Silverstein, Jacobson, Fiksdhal-King,
Angel “A Pattern Language”, 1977)

2

Looking for
Patterns

3

Same
Pattern in
a Similar
Tower

4

Same
Pattern in a
Slightly
Different
Tower

5

Same Pattern in a  
Completely Different Tower

6

Reflecting …
} Here we identify

} the problem: Building the tower
} the solution: a suitable configuration of bricks

} The reuse of the solution ...
} The pattern is repeated … become robust

Design Patterns in Software Development

} We can translate the concept of design patterns to
software development

} We have to define:
} The “bricks”
} The “configurations of the bricks”

} Object-Orientation provides a “natural way” to express
design patterns

8

OO Design Patterns
} Design objects are our “bricks”
} Informally, a design pattern is a particular configuration

of design objects
} … that is, a set of objects and their mutual relations

(inheritance, composition, aggregation, association, creation, …)

9

Design Patterns (cont’d)
} A pattern has four elements:

❶ The pattern name. This is used to describe a problem, its
solutions and consequences in one or two words.

❷ The problem. This element describes a particular design
problem and its context.

❸ The solution. This describes the design elements, their
relationships, their responsibilities, and collaborations.

❹ The consequences. These elements are the results and trade-
offs of applying design patterns.

10

Example
❶ The pattern name. Tower.
❷ The problem. Being visible at distance over 360o .
❸ The solution. Bricks are put side by side in a (circular)

sequence. Circles of brick are put one over the other until to
reach a predefined height

❹ The consequences. The height can be relevant if the surrounding
ground is not flat

Exercise
} Describe a pattern

❶ The pattern name.
❶ The problem.
❶ The solution.
❶ The consequences.

The reference book to read
} The "Gang of Four":

} Erich Gamma,
} Richard Helm,
} Ralph Johnson,
} John Vlissides

} Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley

The GoF Approach
} GoF distinguishes 3 kinds of patterns:

} Creational: patterns dealing with object creation

} Structural: patterns dealing with the composition of classes
and objects

} Behavioral: patterns dealing with objects interactions and
sharing of responsibilities

14

Patterns

Singleton
} Goal:

} a class has only one instance AND
} any other instantiation points to the same object

} Use: very useful in context where we want to have only
one object of a given class
} If we want to have one and only one we can additionally make

all the member data static or nesting a static class

The Singleton
} Examples

} Having only one file system
} Having only one window manager
} Having one accounting system per single company

Singleton pattern
} Hiding the creation of the class instance in a static

function
} Clients can access to the instance only through the

function
} The constructor is either private or protected

 Singleton
 static instance()
 SingletonOperation()
 GetSingletonData()
 static uniqueInstance
 singletonData

 return uniqueInstance

in Java, constructor must be private.

The Singleton Pattern - Creational

19

Uniqueness of the Budget

20

Budget
 static instance()
 BudgetOperation()
 GetBudgetData()
 static uniqueBudget
 static noBudgetCreated
 budgetData

 return uniqueBudget

Java Skeleton

public class Budget {
 private static Budget uniqueBudget = null;
 public static Budget instance() {
 if (uniqueBudget == null)
 uniqueBudget=new Budget();
 return uniqueBudget;
 }
 }
 private Budget() { ... }
 ...
}
...

Budget townshipBudget = Budget.instance();

Budget wrongBudget = new Budget(); WRONG!!!

21

Patterns

Structural Patterns

} These patterns are concerned with how structures are
formed by the composition of classes and objects.

} Two types of structural patterns:
} Structural class pattern which uses inheritance to compose

interfaces or implementations.
} Structural object pattern, which describes the ways to

compose objects to realize new functionality.

23

Goal and use
} Goal:

} It structures objects and compositions in a tree
structure

} It lets clients treat individual objects and
compositions in a uniform way

} Use: Very useful when we deal with objects that can
be located at different levels of abstractions

The	
 Composite	
 Pattern

25

Component
	
 Operation()
	
 Add(Component)
	
 Remove(Component)
	
 GetChild(int)

Leaf
	
 Operation() 	
 forall	
 g	
 in	
 children

	
 	
 	
 	
 g.Operation();

Client

Composite
	
 Operation()
	
 Add(Component)
	
 Remove(Component)
	
 GetChild (int)

children

*

Example

26

Graphic
	
 Draw()
	
 Add(Graphic)
	
 Remove(Graphic)
	
 GetChild(int)

Text
	
 Draw() 	
 for	
 all	
 g	
 in	
 graphs

	
 	
 	
 	
 g.Draw();

Client

Picture
	
 Draw()
	
 Add(Graphic	
 g)
	
 Remove(Graphic	
 g)
	
 GetChild (int)

graphs

*

Rectangle
Draw()

add	
 g	
 to	

the	
 list	
 of	
 graphs

Example of Component
class Directory {
 Directory dir;
 File[] f;
 ...
 boolean isDirectory() { return f == null; }
 boolean isFile() { return f != null; }
 File getFile(int i) {
 if (isFile()) return f[i];
 return null
 }
 Directory getDirectory() {
 if (isDirectory()) return dir;
 return null; }
.... }

Re-written to get a
child

Benefits
} Composite objects can in turn be compounded to created

iteratively new complex object
} The client has a easier work as they can deal with

composite and primitive objects at the same way.
} Clients do not know whether they operate with primitive

or composite
} It is easier to add new objects. No existing code needs to

be modified with the addition of a new object

Shortcomings
} It can make a project too generic
} It is hard to limit the expansion of the tree
} Anyone can add a new leaf or composite

Adapter (Wrapper)
} Let different classes work together when they have

incompatible interfaces
} Also called Wrapper

30

Example - Subclasses of Shape

LineShape and Polygon shape are strightforward to
implement as they are composite of few drawing objects
and rules for re-shaping.
TextShape is harder it may need complex updating of the
text and memory management
A TestView class is used to visualize TextShape,

The problem is that is not built for visualizing other
format shapes.

31

Two solutions
} Inheriting the interface of Shape and implementing

TextView (class adapter)
} Compounding an instance of TextView in a TextShape and

implementing TextShape through the interface Shape
(object adapter)

Class Adapter (with multiple inheritance)

33

Target
 Request()

Adapter
 Request() SpecificRequest()

Client Adaptee
 SpecificRequest()

(protected or private)
implementation

Object Adapter (without multiple inheritance)

34

Target
 Request()

Adapter
 Request() adaptee->SpecificRequest()

Client Adaptee
 SpecificRequest()

adaptee

Example

TextShape
 BoundingBox()

 Return text.GetExtent()

TestView
 GetExtent()

Text in TextShape class

Z

37

Observer (1/2)
} Intent

} Define a 1:n dependency between objects so that when one
object changes state, all its dependents are notified and
updated automatically

} Also Known As
} Dependents, Publish-Subscribe, Model-View Controller

} Motivation
} The need to maintain consistency between related objects

without making classes tightly coupled

38

Observer (2/2)

39

Structure

40

Participants (1/2)

} Subject
} Keeps track of its observers
} Provides an interface for attaching and detaching Observer

objects

} Observer
} Defines an interface for update notification

41

Participants (2/2)
} ConcreteSubject

} The object being observed
} Stores state of interest to ConcreteObserver objects
} Sends a notification to its observers when its state changes

} ConcreteObserver
} The observing object
} Stores state that should stay consistent with the subject's
} Implements the Observer update interface to keep its state

consistent with the subject's

42

Consequences (1/3)
} Benefits

} Observers can be added without modifying the subject

} All subjects know its list of observers

} Subject does not need to know the concrete class of an
observer

43

Implementation Issues (1/4)
} How does the subject keep track of its observers?

} Array, linked list
} What if an observer wants to observe more than one

subject?
} Have the subject tell the observer who it is via the update

interface

44

Implementation Issues (2/4)

} Make sure the subject updates its state before sending
out notifications

} How much info about the change should the subject send
to the observers?
} Push Model – Lots
} Pull Model - Very Little

45

Implementation Issues (3/4)
} Can the observers subscribe to specific events of interest?

} If so, it's publish-subscribe
} Can an observer also be a subject?

} Yes

46

Implementation Issues (4/4)
} What if an observer wants to be notified only after several

subjects have changed state?
} Use an intermediary object which acts as a mediator,

ChangeManager
} Subjects send notifications to the mediator object which

performs any necessary processing before notifying the
observers

MVC - Model View Controller
} Model/View/Controller user interface framework

} Model = Subject
} View = Observer
} Controller is whatever object changes the state of the subject
} Since Java 1.1 AWT/Swing.event package

47

Java implementation of Observer
} Java provides the Observable/Observer classes as built-

in support for the Observer pattern
} The java.util.Observable class is the base Subject class.

} Provides methods to add/delete observers
} Provides methods to notify all observers
} Uses a Vector for storing the observer references

} The java.util.Observer interface is the Observer
interface. It must be implemented by any observer class

48

49

Observable/Observer Example (1/6)

/**
 * A subject to observe!
 */
public class ConcreteSubject extends Observable {
 private String name;
 private float price;

 public ConcreteSubject(String name, float price) {
 this.name = name;
 this.price = price;
 System.out.println("ConcreteSubject created: " + name
 + " at " + price);
 }

50

Observable/Observer Example (2/6)
 public String getName() {
 return name;
 }
 public float getPrice() {
 return price;
 }
 public void setName(String name) {
 this.name = name;
 setChanged();
 notifyObservers(name);
 }
 public void setPrice(float price) {
 this.price = price;
 setChanged();
 notifyObservers(new Float(price));
 }
}

51

Observable/Observer Example (3/6)
// An observer of name changes.
public class NameObserver implements Observer {
 private String name;

 public NameObserver() {
 name = null;
 System.out.println("NameObserver created: Name is " + name);
 }

 public void update(Observable obj, Object arg) {
 if (arg instanceof String) {
 name = (String)arg;
 System.out.println("NameObserver: Name changed to " + name);
 } else {
 System.out.println("NameObserver: Some other change to

subject!");
 }
 }
}

52

Observable/Observer Example (4/6)
// An observer of price changes.
public class PriceObserver implements Observer {
 private float price;

 public PriceObserver() {
 price = 0;
 System.out.println("PriceObserver created: Price is " + price);
 }

 public void update(Observable obj, Object arg) {
 if (arg instanceof Float) {
 price = ((Float)arg).floatValue();
 System.out.println("PriceObserver: Price changed to " + price);
 } else {
 System.out.println(”PriceObserver: Some other change to

subject!");
 }
 }
}

53

Observable/Observer Example (5/6)

// Test program for ConcreteSubject, NameObserver and
// PriceObserver
public class TestObservers {
 public static void main(String args[]) {
 // Create the Subject and Observers.
 ConcreteSubject s = new ConcreteSubject("Corn Pops", 1.29f);
 NameObserver nameObs = new NameObserver();
 PriceObserver priceObs = new PriceObserver();
 // Add those Observers!
 s.addObserver(nameObs);
 s.addObserver(priceObs);
 // Make changes to the Subject.
 s.setName("Frosted Flakes");
 s.setPrice(4.57f);
 s.setPrice(9.22f);
 s.setName("Sugar Crispies");
 }
}

54

A Problem With Observable/Observer (1/2)
} Problem

} Suppose the class which we want to be an observable is already
part of an inheritance hierarchy:

} class SpecialSubject extends ParentClass

} Since Java does not support multiple inheritance, how can
we have ConcreteSubject extend both Observable and
ParentClass?

A Problem With Observable/Observer (2/2)
} Solution

} Use Delegation
} We will have SpecialSubject contain an Observable object
} We will delegate the observable behavior that SpecialSubject needs to

this contained Observable object

55

