
Virtual Functions and Late
Binding

Advanced Programming

Content
• Introduction

• Notion of virtual function

• Virtual functions in Java

• Simple exercises

4/25/16 Barbara Russo 2

4/25/16 Barbara Russo 3

» OOP: behavior of objects determined at the latest
possible stage, if possible at run time

» In conventional programming languages, this is usually
possible only through switch or if statements

» The so-called virtual functions are an elegant and
flexible solution to this problem

» Virtual functions implement a mechanism called late
binding

Introduction

4/25/16 Barbara Russo 4

» Association of function names and function bodies is
called binding

binding cannot be performed when a function or a
method is defined, but when a function or a method is

effectively called

Binding

4/25/16 Barbara Russo 5

Virtual Functions
• Virtual functions: functions for which the association

between name and body is performed at run time to
identify of the most suited body to use

– The control on the presence of the body and of its
conformance to the specifications is not performed
at compile time but at execution time, thus reducing
the checks available while the code is being
developed

Overriding (1/2)
• A method of a (base) class can be “redefined” in

derived classes

• Together with a method we have:
– method name
– parameters number and type(s)
– return value type

• The name of the method and its parameter number and
type(s) are called the signature of the method

4/25/16 Barbara Russo 6

4/25/16 Barbara Russo 7

• You can also override a method with the same
signature that returns a subclass of the object returned
by the original method.

• This is called covariant return type

Overriding (2/2)

4/25/16 Barbara Russo 8

• Overloading: the same name with a different
signature in the base class and in the derived class

• The decision of which method to execute is based on the
types of the actual parameters – not on the type of the
return!

• Same signature with different return type (except
covariant return type) returns a compiler error, this is
because that the compiler cannot choose: choices have the
same cost

Overriding and Overloading

9

• The access modifier for the overriding method can
allow more but not less access than the overridden
method:

• For example, a protected method in the base class
can be made public but not private method in the
derived class

• The derived class is at least as accessible as the base
class

Overriding and Overloading

Note
• Remember that overriding pertains only the signature

and the return value; it does not say anything on the
modifiers or the type of methods (static, non-static)

• Therefore we need to reason on them separately

4/25/16 10Barbara Russo

Questions and answers
• Can I override a static method with a static method?

– No, it does not turn into a compiler error but in fact it
does not overridden. The derived method is hidden by
the base method. A static method can hide only static
methods

• Can I override a static method with a non-static one?
– No it is a compiler error as a child class is-a parent class

• Can I override a non-static method with a static
method?
– No it is a compiler error as a child class is-a parent class

4/25/16 11Barbara Russo

Behaviour of virtual functions (1/5)

• Virtual functions are a techniques of object oriented
programming languages that takes advantage of
overriding

4/25/16 Barbara Russo 12

4/25/16 Barbara Russo 13

» When a virtual function f is invoked for an object o of
class D derived from B there are three (basic)
possibilities:

– f is defined in D only: compiler error
– class B { }
– class D extends B {
– void f() { }
– }
– B o = new D();

– o.f(); // COMPILER ERROR!!

Behaviour of virtual functions (2/5)

4/25/16 Barbara Russo 14

• f is defined in B only: B.f
class B {
void f() { }

}
class D extends B {
}
…
B o = new D();
o.f(); // Call to B.f()

Behaviour of virtual functions (3/5)

4/25/16 Barbara Russo 15

• f is overridden in D: D.f()
class B {

void f() { <something> }
}
class D extends B {
 void f() { <something else> }
}

B o = new D();
o.f(); // Call to D.f()

Behaviour of virtual functions (4/5)

4/25/16 Barbara Russo 16

• To access the function f of B:
class B {

void f() {...}
 void fOfB() { f(); }
}
class D extends B {
 void f() {...}
 void fOfB() { super.f(); }
}

B o = new D();
o.f(); // Call to D.f()
o.fOfB() ; // Call to B.f() using super

Behaviour of virtual functions (5/5)

Example of virtual functions (Pseudocode)

4/25/16 Barbara Russo 17

Is a “A a = new B()” with B determined at run-
time; here we must include some sort of run-

time exception!

The transmit protocol is decided at
run-time

Declaration of virtual functions
• There is no need to declare a method to be virtual in

Java
• Every (non-static) method is always virtual in Java
• Static methods are non-virtual (see previous example)
• It is possible to prevent the overriding of methods by

declaring it “final”
• It is possible to prevent the extension of a class by

declaring it “final”

4/25/16 Barbara Russo 18

Exercise

4/25/16 Barbara Russo 19

public class CoffeeMaker {
 ...
 public static void whoAreYou() {
 System.out.println("I am a coffee maker!");
 }
 public void whoAreYouReally() {
 System.out.println("I am a coffee maker!");
 }
 ...
}

Exercise

4/25/16 Barbara Russo 20

public class EspressoMaker extends CoffeeMaker {
 public static void whoAreYou() {
 System.out.println("I am an espresso maker!");
 }
 public void whoAreYouReally() {
 System.out.println("I am an espresso maker!");
 }
 public static void main(String[] args) {
 CoffeeMaker cm = new CoffeeMaker();
 CoffeeMaker eCM = new EspressoMaker();
 EspressoMaker em = new EspressoMaker();
 cm.whoAreYou();
 cm.whoAreYouReally();
 eCM.whoAreYou();
 eCM.whoAreYouReally();
 em.whoAreYou();
 em.whoAreYouReally();
 }
}

Exercise: Sample Output
• I am a coffee maker!
• I am a coffee maker!
• I am a coffee maker!
• I am an espresso maker!
• I am an espresso maker!
• I am an espresso maker!

4/25/16 Barbara Russo 21

Be careful (1/2)!

4/25/16 Barbara Russo 22

 public class AmericanCoffeeMaker extends CoffeeMaker {
 public static void whoAreYou() {
 System.out.println("I am an American coffee maker!");
 }
 public void whoAreYouReally(int i) {
 System.out.println("I am American coffee maker code"+ i);
 }

Be careful (2/2)!

4/25/16 Barbara Russo 23

 public static void main(String[] args) {
 CoffeeMaker cm = new CoffeeMaker();
 CoffeeMaker aCM = new AmericanCoffeeMaker();
 AmericanCoffeeMaker am = new AmericanCoffeeMaker();
 cm.whoAreYou();
 cm.whoAreYouReally();
 aCM.whoAreYou();
 aCM.whoAreYouReally();
 aCM.whoAreYouReally(3);
 am.whoAreYou();
 am.whoAreYouReally();
 am.whoAreYouReally(3);
 AmericanCoffeeMaker am2;
 am2 = (AmericanCoffeeMaker) aCM; // Attention
 // Some compilers may not like this line
 // And it is dangerous anyway, for example if the
 //coffee maker is not an American coffee maker
 am2.whoAreYou();
 am2.whoAreYouReally();
 am2.whoAreYouReally(3);
 }
 }

Exercise: Sample output & wrong lines
• I am a coffee maker!
• I am a coffee maker!
• I am a coffee maker!
• I am a coffee maker!
• I am an American coffee maker!
• I am a coffee maker!
• I am American maker code 3
• I am an American coffee maker!
• I am a coffee maker!
• I am American maker code 3

✗ aCM.whoAreYouReally(3); error because
there is no such method in CoffeeMaker

4/25/16 Barbara Russo 24

Remember!
• We cannot access to local method of a derived class

from a reference variable of the parent class if the local
method does not overrides a base method!

4/25/16 25Barbara Russo

Final methods do not allow overriding

4/25/16 Barbara Russo 26

 public class AmericanCoffeeMaker extends CoffeeMaker {
 ...
 public final static void whoAreYou() {
 System.out.println("I am an American coffee maker!");
 }
 public void whoAreYouReally(int i) {
 System.out.println("I am American coffee maker code"+
 i);
 }
 ...
 }
 public class StarbucksCoffeeMaker extends
 AmericanCoffeeMaker {
 // public final static void whoAreYou() { ERROR!!!
 // System.out.println("I am a Starbucks maker!");
 // }
 public void whoAreYouReally(int i) { // This is OK!
 System.out.println("I am Starbucks coffee maker code"+
 i);
 }
 }

