Generics 1n Java

Advanced Programming

4/18/16 1

The collections’ interfaces




Collections 1n Java

Array

has a special language support

Iterators

- Iterator(I)

Collections also called containers

Collection(I)
Set(D)
+ HashSet(c), TreeSet(c)
- List(I)
» ArrayList(c), LinkedList(c)
- Map()
» HashMap(c), TreeMap(c)

4/18/16 Barbara Russo

Getting from a collection

o Let us consider this example:

List myIntegerlList = new LinkedList();
myIntegerlList.add(new Integer(0));

Integer x = (Integer) mylIntegerlList.iterator().next();

e The cast on line 3 is slightly annoying

e The compiler can only guarantee that iterator

returns an object of type Object

4/18/16




Getting from a collection

e The casting introduces a run time error, since the

programmer might be mistaken

o What if programmers could mark a list as being of a

particular data type?

e This is the idea behind generics

4/18/16 5

Generics

» Generics allow you to abstract over types
e The most common examples are container (e.g., arrays
and lists) types, such as those in the Collection

hierarchy

o List<Integer>is a generic type that says that the list is
of integers.

List<Integer> aList = new List<Integer>();

4/18/16




Example

e casting e with generics .
compile
time

=
List mylIntegerList = new LinkedList(); List<Integer> mylIntegerList = new

mylIntegerList.add(new Integer(0)); LinkedList<Integer>();

Integer x = (Integer) mylntegerList.add(new Integer(0));

myIntegerList.iterator().next(); Integer x = mylIntegerList.iterator().next();

No casting! we get an Integer object

4/18/16 7

Increasing robustness

o With generics, the compiler can check the type

* In contrast, the cast tells us something the programmer

thinks is true at a single point in the code and it will be

checked at run time

4/18/16




Generics and derivation

List<String> 1s = new ArraylList<String>(); //0k

List<Object> 1o = 1s; // Compiler error!!!! Why?

e Observe line 2: 1s a List of String a List of Object?

 If yes, we could do the following:

lo.add(new Object()); // We can add an object of type Object
String s = 1s.get(@); // attempts to assign an Object to a String!NO!

» The object referenced by Is does not hold only strings
anymore! We need to have another instrument more
flexible, the Wildcards

4/18/16 9

Wildcards

o As List<Integer> is not a subtype of List<Object> we
cannot use some useful practices of the old good

collections anymore

e For example, List can have any type of members
whereas List<Integer> can only have Integer

members

e Wildcards are used to get back classic behaviours for

subtyping

4/18/16 10




Example: Collection of unknown

e Collection<?> ...The type of collection is unknown
Collection<?> aCollection = new ArraylList<String>(Q);

e aCollection 1s a reference of a Collection of unknown

type and points to an object of type ArrayList of String

- Note that Collection is an interface and ArrayList

Implements List which extends Collection

11

4/18/16

Limitation — adding

o With the collection of unknown, we cannot directly
add to Collection a specific object:
aCollection.add(@,new Object()); // compiler error!
e As we do not know of what type 1s the collection (it 1s
unknown to the compiler!) and we can only pass
clements that are subtypes of the unknown,

- since we do not know the unknown type -> we can only
pass “null”, which is subtype of any type

4/18/16 12




Gaining - getting

« There 1s no compile time error to use get() and make

use of the result, instead

» We get back an unknown type, but we always know
that 1t will be a subtype of Object

» Thus we can assign the result of get() to a variable of
type Object (covariant property the return type: a
return type can be a subtype of the return type: it

can be a subclass of Object)

13

With collection of unknown...

“Populating a list is uncertain getting from a list is

certain”

4/18/16 14




Bounded Wildcards

List<? extends Shape>

e It is a wildcard bounded by Shape

- This allows to use the Wildcards with all the subtypes of

Shape

e As direct subtyping for generics is not allowed,

bounded Wildcards allow to extend behaviours to

children

4/18/16

15

Example

public abstract class Shape{
public abstract void draw(Canvas c);

}

public class Circle extends Shape{
public void draw(Canvas c){..};

}

public class Rectangle extends Shape{
public void draw(Canvas c){..};

3

public class Canvas{
public void draw(Shape s){
s.draw(this);
}
public void drawAll(List<Shape> alist){
for(Shape s : alList){
s.draw(this);

e drawAll() can be only used with Shape and it
cannot be used with any derived class!

e Then we define

public void drawAllReally(List<? extends Shape>
alList){
for(Shape s : alist){
s.draw(this);
}

e Now we can use lists of any derived type of
Shape

List<Circle> alListCircle= new List<Circle>();

myCanvas.drawAl1lReally(aListCircle);

see code LECT10

16




Careful!

e Again, it is illegal to write directly into a list through the body
of a method
public void addRectangle(List<? extends Shape> alList){
aList.add(@,new Rectangle()); //compile time error

}

o As we do not know the subtypes of Shape and whether the
subtype of Shape is a Rectangle (or a parent class of Rectangle)
1e.:

- Rectangle extends Base and Base extends Shape

- We need a new instrument: parametrised types and methods...

4/18/16 17

Parameterised type

e A parameterised type is a class
public class Map<E> {.} ;

- Where E is a parameter (it is known but not defined)
 In the use of the class, all occurrences of the formal type

parameter (E) are replaced by the actual type argument (e.g.,
Integer).

Map<Integer> aMap = new aMap<Integer>();

e Map<Integer> stands for a version of Map where E has been
uniformly replaced by Integer

4/18/16 18




Note: Pseudo polymorphism with
Marker Interfaces

e The parametrisation of a class can be done in another

way: through the use of empty interfaces called Marker

e Makers allow to group classes that want to have the

same services. They are empty

o Ex: all the classes that implement Cloneable (I) can use

(and must override) the clone() method of Object

e Maker interfaces are not really a parameter like the <E>

Parametrised types ...

public interface Map<K, V> {

public void put(K key, V va ; a parameterised type can

have more than one

public V get(K key); parameter

Map<String, String> m = new HashMap<String, String>Q);

e where HashMap<String,String> defines an

implementation of Map<String, String>

4/18/16 20




...and methods

e one or more parameters are inserted after the modifier

parameters in method declaration

public <T> void add(T t, List<T> alList){

aList.add(t); //correct as T is known now!

4/18/16 21

...and methods

public <T> void add(T t, List<T> alList){alList.add(t); //finally we can fill a list}
e Or

public <T> void add(List<T> alist, List<? Extends T> aChildList){..};

* Or

public <T,S extends T> void add(List<T> alist, List<S> aSmalllList){..};

// equivalent to the one above if S extends T

e Or

public <T> void add(List<T> dalist, List<S extends T> aSmalllLsit){..};

// equivalent to the one above

e Or

public <T> List<T> returnNewList(List<T> alist){.};

4/18/16 22




Parameterising

» With pseudo polymorphism;

 java.lang.Comparable is an interface

class MySortedList{

private Comparable [] elements;

public MySortedList (O{

elements = new Comparable[size];

1
public int add(Comparable t);

public Comparable remove(int index);

public int size();

* With generics

class MySortedList<T implements Comparable>{

private T [] elements;

public MySortedList (O{
elements = new T[size];

}

public int add(T t);

public T remove(int index);

public int size(Q);

4/18/16

23

Parameterising

public static void main(String [] args){
MySortedList list =
new MySortedList();
// adding Integers

Integer i = (Integer)list.remove(0);

As I do not know what will be the implementation

type of the object at 0, I have to cast in any

case

public static void main(String [] args){
MySortedList<Integer> list =
new MySortedList<Integer>();

// adding Integers

Integer i = list.remove(@);

Here I only know that T implements
Comparable.

4/18/16

24

http://docs.oracle.com/javase/1.3/docs/api/java/lang/Comparable.html




Inference of types

o What does it happen when types in parametrised

methods are different?

e The compiler infers types

- It always infer the most generic

4/18/16 25

Compiler’s inference - Example

Static <T> fromArrayToCollection(T[] a, Collection<T> c){ fromArrayToCollection(aC0,aCollectionObject);
for(T o : a){ //T is inferred to be Object

c.add(o); fromArrayToCollection(aCS,aCollectionString);
} // T is inferred to be String

} fromArrayToCollection(aCS,aCollectionObject);
//'T is inferred to be Object

Object[] aCO = new Object[100]; fromArrayToCollection(aCI,aCollectionNumber);

Collection<Object> aCollectionObject = new Arraylist<Object>(); , T s inferred to be Number

) ) fromArrayToCollection(aCF,aCollectionNumber);
String[] aCS = new String[100]; /I T is inferred to be Number

Collection<String> aCollectionString = new ArraylList<String>(); fromArrayToCollection(acN,aCollectionNumber);

/I T is inferred to be Number

Integer(] aCl = new Integer[100]; fromArrayToCollection(aCN,aCollectionString);

Float[] aCF = new Float[100];
Number[] aCN = new Number[1007;

//'T compile time error

Collection<Number> aCollectionNumber = new ArrayList<Number>(); Lhe compiler infers from the less specialised type

from: http://download.oracle.com/javase/tutorial/extra/generics/methods.html




Raw type

e A raw type is the classic type

e For example

- Collection is a classic type

- Collection<V> is the corresponding generic with type V. The
raw type of Collection<V> is Collection

4/18/16 27

Type erasure

» Type Erasure 1s the phase after Inference of types in

which the compiler translates the source into bytecode.

o Type erasure exists to have compliance with non

generics code (legacy code)

4/18/16 28




Type erasure

o At erasure the generic type are removed

- List<Number> becomes List which can contain any type of
object

e The compiler just check the correctness of the types

and then save byte code as 1n traditional Java compiled

code

o At run time it is impossible to deduce the original type

4/18/16 29

class Pair<elem> {

elem x; elemy;

Pair (elem x, elem y) {this.x = x; this.y = y;}
o void swap () {elemt =x;x =y; y = t;}
Original Code

Pair<5tring> p = new Pair(”WOI’Id!”Y ”Hello,”);

p.swap();
System.out.printIn(p.x + p.y);

class Pair {
Object x; Object y;
Pair (Object x, Object y) {this.x = x; this.y = y;}

Compiler’s Translation il =i | {PRES E= M R=F § =%}

Pair p = new Pair((Object)” world!”, (Object)” Hello,");
p.swap();
System.out.printIn((String)p.x + (String)p.y);

4/18/16 30




Two ways to handle parameterized types

e Specialization of objects

- each instance of the parameterized type creates a new representation.
List<Integer> and List<Float> are two different representations of
List<T>

» Sharing of objects

- the code for List<T> is generated by the compiler for one representation
and all the instances created refer to this representation
e Java uses the second approach

- Some problems with simple types: a generic with simple type is not
allowed as they are treated differently by the compiler

4/18/16 31

Getting an 1nstance of a parametric type

o 1tis illegal to write (code will not compile)
new T();

e where T is a parametric type as we do not know the
true type of the object and as such we cannot call its

constructor

4/18/16 32




Static generic type class and method

A static member cannot be implemented as generics

e This is because it is shared by all the objects and the

objects of a generic type are of unknown type

4/18/16 33

Example

interface MinMax<T extends Comparable<T>> { public class GenIFDemo {
T minQ; . . ) . .
T maxQ); public static void main(String args[]) {
¥ Integer inums[] = {3, 6, 2, 8, 6 };
class MyClass<T extends Comparable<T>>
implements MinMax<T> { Character chs[] = {'b', 'r', 'p', 'w' };
T[] vals;

MyClass(T[] o) { vals = o; } MyClass<Integer> iob = new MyClass<Integer>(inums);

MyClass<Character> cob = new MyClass<Character>(chs);
public T min() {

T v = vals[@];
for(int i=1; i < vals.length; i++){ System.out.println("Max value in inums: " + iob.max());
if(vals[i].compareTo(v) < @) v = vals[il; System.out.println("Min value in inums: " + iob.min());
¥ System.out.println("Max value in chs: " + cob.max());
) return v; System.out.println("Min value in chs: " + cob.min());
}
public T max() { }
T v = vals[0@];

for(int i=1; i < vals.length; i++){
if(vals[i].compareTo(v) > @) v = vals[i];
}

return v;

34




