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Abstract—Change coupling is the implicit relationship be-
tween two or more software artifacts that have been observed
to frequently change together during the evolution of a software
system. Researchers have studied this dependency and have
observed that it points to design issues such as architectural
decay. It is still unknown whether change coupling correlates
with a tangible effect of design issues, i.e., software defects.

In this paper we analyze the relationship between change
coupling and software defects on three large software systems.
We investigate whether change coupling correlates with de-
fects, and if the performance of bug prediction models based
on software metrics can be improved with change coupling
information.

Keywords-Change coupling; Software defects

I. INTRODUCTION

The analysis of the evolution of software [16], has two
main goals, namely to infer causes of its current problems,
and to predict its future development. Many approaches based
on evolutionary information demonstrated that not only can
this information be used to predict a system’s future evolution
[17], [24], but it can also provide good starting points for
reengineering activities [12].

The history of a software system also holds information
about change coupling [2], [10]. These are implicit and
evolutionary dependencies between the artifacts of a system
which, although potentially not structurally related, evolve
together and are therefore linked to each other from an
evolutionary point of view. In short, these coupled entities
have changed together in the past and are thus likely to
change in the future. Change coupling information reveals
potentially misplaced artifacts in a software system, because
entities that evolve together should be placed close to each
other for cognitive reasons: A developer who modifies a file
in a system could forget to modify related files because they
are placed in other subsystems or packages.

Change coupling has been considered a bad symptom
in a software system [10], [11]: At a fine grained level
because a developer who changes an entity might forget
to change related entities or, at the system level, because
high change coupling among modules points to design issues
such as architecture decay. Researchers have studied change
coupling in order to address these two issues using change
recommendation systems and software evolution analysis
approaches.

To address the issue of co-changing entities, change
recommendation systems use fine grained change coupling

information to predict entities that are likely to be modified
when another is being modified [5], [28]. To pinpoint
architectural design issues, software evolution analysis ap-
proaches abstract change coupling information to analyze
the architecture of the system and/or to detect candidates for
reengineering [4], [10], [11], [22]. In this scenario, change
coupling information is used to find good starting points for
the reengineering process, because coupled artifacts lead to
maintenance problems, while decreasing the change coupling
in a system leads to an improved system structure.

All these approaches are based on the assumption that
change coupling indeed is a cause of issues in a software
system. However, the relationship between change coupling
and a tangible effect of software issues has not been studied
yet. To perform such a study, one needs an objective
quantification of the issues that affect a software system and
its components. A software defect repository, which records
all the known issues about a software system, provides such a
quantification. Eaddy et al. performed a similar study linking
cross-cutting concerns with defects [8], but the specific case
of change coupling remains unaddressed.

In this paper we define various measures of change
coupling and analyze their correlations with software defects.
The contributions of this paper are:

• We provide empirical evidence, through three case
studies, that indeed change coupling correlates with
defects extracted from a bug repository, and investigate
the relationships of change coupling with defects based
on the severity of the reported bugs.

• We compare the correlation of change coupling with a
catalog of complexity metrics (including the Chidamber
& Kemerer metrics suite [6]), and find that change
coupling correlates with defects better than complexity
metrics.

• We show that the performance of defect prediction
models, based on complexity metrics, can be improved
with change coupling information.

Structure of the paper. We describe our dataset in Sec-
tion II, introduce change coupling measures in Section III and
analyze their correlation with software defects in Section IV.
In Section V we explain how to enrich defect prediction
models with change coupling information. We address the
threats to validity in Section VI, look at related work in
Section VII and conclude in Section VIII.



II. DATA COLLECTION

To analyze the relationship between change coupling and
software defects, we first need to create and populate a model
with the necessary data.
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Figure 1. Creating a model with bug and change coupling information.

Figure 1 shows how we create a model of a software
system, containing source code data, bug information and
change coupling measures.

Creating a Source Code Model (Figure 1.1): To
create the source code model, we retrieve and parse the source
code, by performing a check out from the SVN (or CVS)
repository and by parsing it using the iPlasma tool (available
at: http://loose.upt.ro/iplasma). The result is a FAMIX [7]
model of the source code.

Creating the History Model (Figure 1.2): To detect
co-change occurences, we model how the system changed
during its lifetime by parsing the versioning system log files
and by creating a model of the history of the system. We
model the system’s history with the transactions extracted
from the SCM system’s repository. A transaction corresponds
to a commit in the SCM repository, i.e., it is a set of
files which were modified and committed to the repository,
together with the commit timestamp, the author and the
comment written by the author at commit time. SVN marks
co-changing files at commit time as belonging to the same
transaction while in CVS the transactions must be inferred
from the modification time (plus commit comment and
author) of each file. In the case of CVS, we reconstruct
the transactions using a sliding time window approach.

Linking Classes with Bugs (Figure 1.3): To reason
about the presence of bugs affecting parts of the software sys-
tem, we first map each problem report with the components
of the system that it affects. We link FAMIX classes with
versioning system files and these files with bugs retrieved
from a Bugzilla repository, as shown in Figure 2.

A file version in the versioning system contains a developer
comment written at commit time, which often includes a
reference to a problem report (e.g., “fixed bug 123”). Such
references allow us to link problem reports with files in the
versioning system, and therefore with source code artifacts,
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Figure 2. Linking bugs, SCM files and FAMIX classes.

i.e., classes. However, the link between a CVS/SVN file
and a Bugzilla problem report has not yet been formally
defined. To find a reference to the problem report id, we use
pattern matching techniques on the developer comments, an
approach widely used in practice [9], [27].

Due to the file-based nature of SVN and CVS and to the
fact that Java inner classes are defined in the same file as
their containing class, in our approach several classes might
point to the same CVS/SVN file, i.e., a bug linking to a file
version, might actually be linking to more than one class.
We are not aware of a workaround for this problem, which
in fact is a shortcoming of the bug tracking system. For this
reason, we do not consider inner classes.

Change Coupling Computation (Figure 1.4): At this
point we have a model including source code information
and defects data. The last thing we do, before proceeding
with the analysis, is to enrich the model with the four change
coupling measures that we define in the next section, and
compute their values for each FAMIX class.

Case Studies: To study the relationship between change
coupling and software defects we analyze three large Java
software systems: ArgoUML, Eclipse JDT Core, and Mylyn.

ArgoUML JDT Core Mylyn
System version 0.28 3.3 3.1.0
Versioning system SVN CVS CVS
# Classes 2197 1193 3050
# Transactions 15257 13186 9373
Avg. # transactions per class 14.3 68 11.7
Avg. # shared transactions per class 0.37 5.3 0.39

Table I
MEASURES OF THE STUDIED SOFTWARE SYSTEMS.

Table I shows the size of the systems in terms of classes
and transactions. In computing the change coupling, we
filtered out the transactions involving more than 100 classes,
which were 86 for ArgoUML, 59 for Eclipse JDT Core, and
102 for Mylyn. We manually inspected the commit comments
of these transactions, the vast majority of which concerned
license changes, Javadoc and documentation updates.

http://loose.upt.ro/iplasma


III. CHANGE COUPLING MEASURES

Change coupling is the implicit and evolutionary depen-
dency of two software artifacts that have been observed
to frequently change together during the evolution of a
software system. The more they changed together, the
stronger the change coupling dependency is. However, there
is no consensus on the formal definition of change coupling,
and several alternative measures exist. We formally define 4
measures of change coupling emphasizing different aspects.

To measure the correlation of change coupling with
software defects we need change coupling measures which
are defined for each entity in the system. The entity in our
case is a class, as classes are a cornerstone of the object-
oriented paradigm, and we want to be able to compare change
coupling with object oriented metrics.

The measures we define concern the coupling of a class
with the entire system. An alternative is a measure of change
coupling for each pair of entities in the system. However
since bugs are often mapped to one entity only, a coupling
measure involving only one entity is prefereable. We can
define a measure of coupling of a class with the entire system
simply by aggregating the pairwise coupling measures.

In the following definitions we use the concept of n-
coupled classes. We consider two classes n-coupled when
there are at least n transactions which include both the classes.
Thus, all our change coupling measures are functions of
n. Given two classes c1 and c2, they are n-coupled if the
following condition holds:

|{t ∈ T |c1 ∈ t ∧ c2 ∈ t}| ≥ n (1)

where T is the set of all the transactions. Given a class c
we define the set of coupled classes (SCC) as:

SCC(c, n) = {ci|ci 6= c ∧ c is n-coupled with ci} (2)

Figure 3 shows an example scenario with 5 classes
and 6 transactions. In this case SCC(c1, 3) = {c2, c5},
SCC(c1, 4) = {c2, c5} and SCC(c1, 5) = {c5}. In com-
puting n-coupled classes we filter out large transactions, as
previously mentioned.

A. Number of Coupled Classes (NOCC)

The first per-class measure of change coupling is the
number of classes n-coupled with a given class c. This
measure emphasizes the raw number of classes with which
a given class is coupled with. NOCC is defined as:

NOCC(c, n) = |SCC(c, n)| (3)

The NOCC measure is the cardinality of the set of coupled
classes. In the example in Figure 3 NOCC(c1, 3) = 2.
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Time

Figure 3. Sample scenario of classes and transactions.

B. Sum of Coupling (SOC)

The sum of coupling is the sum of the shared transactions
between a given class c and all the classes n-coupled with c.
We define SOC as:

SOC(c, n) =
X

ci∈SCC(c,n)

|{t ∈ T |ci ∈ t ∧ c ∈ t}| (4)

The SOC measure is the sum of the cardinalities of the
sets of transactions which include the class c and the classes
n-coupled with c. Compared to NOCC, SOC also takes
into account the strength of the couplings. In Figure 3
SOC(c1, 3) = 4 + 5 = 9.

C. Exponentially Weighted Sum of Coupling (EWSOC)

EWSOC is a variation of SOC, where the shared transac-
tions are exponentially weighted according to their distance
in time, emphasizing recent changes over past changes. We
define EWSOC as:

EWSOC(c, n) =
X

ci∈SCC(c,n)

EWC(ci, c), where (5)

EWC(ci, c) =
X

tk∈T (c)

(
0 if ci /∈ tk

1

2|T (c)|−k if ci ∈ tk
(6)

T (c) are all the transactions, sorted by time, which include
the class c. Figure 4 shows an example of computation of
EWSOC for the class c1 for n = 3. In this case T (c1) =
{t1, t3, t4, t5, t6}, |T (c1)| = 5 (t2 is not included in the
computation since c is absent in it) and therefore

EWSOC(c1, 3) = EWC(c1, c2)

=
1

25−5
+

1

25−4
+

1

25−3
+ 0 +

1

25−1
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Figure 4. Example EWSOC and LWSOC computations.

D. Linearly Weighted Sum of Coupling (LWSOC)

The last per-class measure of change coupling is another
variation of the sum of coupling, in which the shared
transactions are linearly weighted according to their distance
in time. Like EWSOC, LWSOC emphasizes recent changes,
penalizing past changes less. We define LWSOC as:

LWSOC(c, n) =
X

ci∈SCC(c,n)

LWC(ci, c), where (7)

LWC(ci, c) =
X

tk∈T (c)

(
0 if ci /∈ tk

1
|T (c)|+1−k

if ci ∈ tk
(8)

In Figure 4, LWSOC(c1,3) is equal to LWC(c1,c2)

LWC(c1, c2) =
1

6− 5
+

1

6− 4
+

1

6− 3
+ 0 +

1

6− 1

E. Common Behaviors and Differences

All the measures are defined on a class-by-class level, and
aggregated to recover a measure of the coupling of one class
with the entire system. All the defined measures decrease if n
increases, as the set of coupled classes at the value n shrinks
if n increases. Beyond that, these 4 measures emphasize
different aspects of change coupling: NOCC measures only
the number of co-change occurences of a class with all the
other classes that exceed the threshold n. On the other hand,
SOC takes into account the magnitude of each coupling
relationship beyond the threshold, so that a pair of classes
changing extremely often together is taken into account
differently. EWSOC and LWSOC function similarly, but
take into account the recency of the co-change relationships.
A reason for this is that two classes may have been co-
changed heavily in the past, but have since been refactored
to not depend on each other. Their past behavior should not
affect their current coupling value. EWSOC discounts the
past more quickly than LWSOC does.

IV. CORRELATION ANALYSIS

The goal of our study is to answer the following questions:
1) Does change coupling correlate with software defects?

If so, which change coupling measure correlates best?
2) Does change coupling correlate more with severe

defects than with minor ones?
To answer these questions we use the Spearman correlation

coefficient, which measures the correlation between two
rankings. High correlations are indicated by values close
to 1 and −1, in which 1 denotes an identical ranking and
−1 an opposite ranking, while values close to 0 indicate
no correlation. All the Spearman correlations we report
are significant at the 0.01 level. We compute the values
of the correlation between the number of defects per class
(or number of defects with a given severity) and the various
measures of change coupling. For comparison purposes, we
also compute the Spearman coefficient for other metrics: The
Chidamber & Kemerer object oriented metrics suite –CK
metrics– [6] (WMC: Weighted Method Count, DIT: Depth of
Inheritance Tree, RFC: Response For Class, NOC: Number
Of Children, CBO: Coupling Between Objects, LCOM: Lack
of Cohesion in Methods), a selection of other object-oriented
metrics (NOA: Number Of Attributes, NOM: Number Of
Methods, FANIN, FANOUT, LOC: Lines Of Code) and the
number of changes to a class (Changes).

A. Results

Figure 5 and Figure 6 show the Spearman correlation
of the number of bugs with the metrics we tested accross
the 3 case studies. Figure 5 displays the correlation for all
levels, while Figure 6 shows it for selected categories of
bugs, according to their labels in the bug tracking system
(major bugs and high priority bugs). All the graphs follow the
same format: The Spearman correlation is indicated on the
y axis, while the x axis indicates the threshold used for the
computation of change couplings metrics (i.e., the value of n
used as a basis to compute n-coupled classes). For example,
all the change coupling measures at the x position of 3 are
computed using the set of 3-coupled classes. Metrics which
do not depend on this threshold (such as Changes, FANOUT,
or CBO) are hence flat lines. The metrics on each graph are
the 4 coupling metrics (NOCC, SOC, EWSOC, LWSOC), the
number of changes metric, and the best-performing among
the object-oriented metrics for each project and each bug
category.

Correlation with all types of bugs: Figure 5 shows the
correlation of metrics with all types of bugs, for all systems.
The best performing object-oriented metrics are: Fan out
for Eclipse and ArgoUML, and CBO for Mylyn. For all
the software systems change coupling indeed correlates with
the number of bugs, since the Spearman correlation reaches
values above 0.5, especially for Eclipse where the maximum
Spearman is above 0.8. The SOC measure is the best for
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Figure 5. Correlations between number of bugs and change coupling measures, number of changes and the best object-oriented metric. The correlations
are measured with the Sperman correlation coefficient.

ArgoUML and Mylyn, and the second best for Eclipse. All
the coupling measures decrease after a certain value of n:
3 for ArgoUML and Mylyn, 10 for Eclipse. EWSOC and
LWSOC do not correlate for low values of n, while they are
comparable with NOCC and SOC for n ≥ 3 in ArgoUML
and Mylyn, n ≥ 10 for Eclipse.

Correlation with major bugs: Figure 6(a) shows the
Spearman correlation between the number of major bugs and
change coupling measures. We consider a bug as major if
its severity is major, critical or blocker. We also show the
correlations with number of changes and the best object-
oriented metric: Fan out for Eclipse and LOC for Mylyn. For
Eclipse, with 3 ≤ n ≤ 20 NOCC and SOC are very close
to number of changes (about 0.7). EWSOC and LWSOC
have bad performances with n < 10, while starting from 10
they are above 0.6. In the case of Mylyn the correlations
are lower, with a maximum of circa 0.4. For n = 5 all the
change coupling measures are at the maximum and above
number of changes, and for n > 8 they rapidly decrease. We
do not show the result for ArgoUML because the number of
major bugs is not large enough to get significant correlations.

Correlation with high priority bugs: Figure 6(b)
shows the Spearman correlations for the number of high
priority bugs. This time, the best object-oriented metrics
are Fan out for Eclipse and CBO for ArgoUML. For this
particular type of bugs, the correlations are weaker, with a
maximum around 0.55 for Eclipse and 0.45 for ArgoUML.
The change coupling measures are often better than the
number of changes. In the case of Eclipse, NOCC is always
better, SOC is better for n ≥ 5 and LWSOC for n ≥ 15,
while EWSOC is always worse. For ArgoUML all the change
coupling measures have a maximum for n = 8, which is
greater than the correlation of the number of changes. After
that, for n > 8 the correlations rapidly decrease. We do not
show the result for Mylyn because the number of high priority
bugs is not large enough to get significant correlations.

B. Discussion
Based on the data presented in Figure 5 and Figure 6 we

derive the following insights.
Change coupling works better than metrics: From

Figure 5 we see that, for every system, there is a range
of values of n in which change coupling measures indeed
correlate with number of defects. They correlate more than
the CK and other object-oriented metrics, but less than
the number of changes. The fact that number of changes
correlates with number of defects was already assessed by
Nagappan and Ball [19]. One possible reason why the number
of changes correlates more is that this information is defined
for every class in the system, while only some classes have
change coupling measures greater than 0. This also explains
why change coupling measures peak at a given index and
then decrease in accuracy, as very few classes have a change
history large enough to exceed moderately high thresholds
of co-change. Further, since not all the bugs are related
to a change coupling relationship, all in all the number of
changes have an higher correlation with defects. Similar to
this situation, Gyimóthy et al. found that LOC is among
the best metrics to predict defects [14], since it is defined
for all entities in the system. In conclusion, we can answer
question 1: Change coupling correlates with defects, more
than metrics but less than number of changes.

Change proneness plays a role: Another observable
fact in Figure 5 is that for ArgoUML and Mylyn the
correlation of the change coupling measures rapidly decreases
with n ≥ 5, while for Eclipse this happens with n ≥ 20. The
reason behind this is that Eclipse classes have, on average,
many more changes and more shared transactions than classes
in the other two systems. In Eclipse the average number of
changes per class is 68, while in ArgoUML it is 14.3 and
in Mylyn 11.7. The average number of shared transactions
per class is 5.3 for Eclipse, 0.37 for ArgoUML and 0.39
for Mylyn. Since we consider three systems, we cannot
derive a general formula, but limit ourselves to note that the
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Figure 6. Spearman correlations between number of major/high priority bugs and change coupling measures.

correlation depends on the change proneness of the system.
In short the insight is the following: The correlation between
change coupling measures and defects varies with n. The
trend and the maximum correlation values depend on the
software system and in particular on its change proneness.

Change coupling is harmful: The situation in Figure 6
is different from the one in Figure 5. The average value of
the Spearman correlation is lower when considering only
major or high priority bugs than with all the bugs. This is
not surprising, since there is a smaller amount of data and
therefore the correlation is less precise. The interesting fact
here is the delta beween the number of changes and the
change coupling measures: It is lower for major and high
priority bugs, with respect to all the bugs, and it is often
negative, i.e., change coupling measures correlate more than
number of changes with number of major/high priority bugs.
One possible explanation is that change coupling can be
detected only in the evolution of a system. As such, this
type of dependency is often hidden and might be related

to bugs with a high priority or a high severity. The answer
to question 2 is then: On average the correlation between
change coupling measures and number of major/high priority
bugs is lower than with all the bugs. For these particular bugs
change coupling measures are always better than software
metrics and, in many cases, than number of changes.

Sometimes it is better not to forget the past: One
last observation from both Figure 5 and Figure 6 is that
the correlation for EWSOC is always below the one for
LWSOC, and the latter one is always below NOCC and SOC.
From this we infer that “penalizing” couplings in the past
does not work in correlating with number of defects, i.e.,
couplings in the past also correlate with defects. EWSOC,
which penalizes the past more than LWSOC, correlates
less with defects. “Penalizing” change coupling in the past
decreases the correlation with number of defects. The best
change coupling metrics are then NOCC and SOC. This is
the second part of the answer to question 1.
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Figure 7. Results of the regression analysis for Eclipse.

V. REGRESSION ANALYSIS

Our goal is to answer the following questions:
1) Does the use of change coupling improve explanative

and predictive powers of bug prediction models based
on software metrics?

2) Is the improvement greater for severe bugs?
To do so, we create and evaluate different regression

models in which the independent variables (for predicting)
are respectively metrics, change coupling measures, number
of changes and their combinations, while the dependent
variable (the predicted one) is the number of bugs, the
number of major bugs and the number of high priority
bugs. Our experiments follow the methodology proposed
by Nagappan et al. in [20] and used also in [26], which
consists in the following steps: Principal component analysis,
building regression models, evaluating explanative power and
evaluating prediction power.

Principal Component Analysis: Principal component
analysis (PCA) is a standard statistical technique to avoid the

problem of multicollinearity among the independent variables.
This problem comes from intercorrelations amongst these
variables and can lead to an inflated variance in the estimation
of the dependent variable.

We do not build the regression models using the actual
variables (e.g., metrics, change coupling measures) as in-
dependent variables, but instead we use sets of principal
components (PC). PC are independent and therefore do not
suffer from multicollinearity, while at the same time they
account for as much sample variance as possible. In our
experiments we select sets of PC that account for a cumulative
sample variance of at least 95%.

Building Regression Models: To evaluate the predic-
tive power of the regression models we do cross validation,
i.e., we use 90% of the dataset (90% of the classes) to build
the prediction model, and the remaining 10% of the dataset
to evaluate the efficacy of the built model. For each model
we perform 50 “folds”, i.e., we create 50 random 90%-10%
splits of the data.



Evaluating Explanative Power: To evaluate the ex-
planative power of the regression models we use the R2

coefficient. It is the ratio of the regression sum of squares
to the total sum of squares. R2 ranges from 0 to 1, and the
higher the value is, the more variability is explained by the
model, i.e., the better the explanative power of the model is.
Another indicator of the explanative power is the adjusted
R2, which takes into account the degrees of freedom of the
independent variables and the sample population.

We also test the statistical significance of the regression
models using the F-test. All the regression models that we
build are significant at the 99% level (p < 0.01).

Evaluating Prediction Power: To evaluate the pre-
diction power of the regression models, we compute the
Spearman correlation between the predicted number of
defects and the actual number. We compute the Spearman
on the validation set, which is 10% of the original dataset.
Since we perform 50 folds cross validation, the final value
of the Spearman is the average over the 50 folds.

Results: Figure 7 shows the results of our experiments
for Eclipse in terms of explanative power (R2) and predictive
power (Spearman correlation). We show the results for
the regression models built using the following sets of
variables: (1) object-oriented metrics, (2) metrics and number
of changes, (3) metrics and NOCC, (4) metrics and SOC,
(5) metrics and EWSOC, (6) metrics and LWSOC, (7) all
NOCC, i.e., the NOCC metrics for each value of n and (8)
all CC measures, i.e., all the measures of change coupling
for each value of n. For space reasons we do not show all
the results, but only a subset of them including all bugs and
major bugs for Eclipse. The other results, for the high priority
bugs and for the other two systems (ArgoUML and Mylyn)
are on the same line with the ones presented in Figure 7.
We do not show the values of adjusted R2, since it tends to
remain comparable to R2.

Discussion: Regression models based on object-
oriented metrics and change coupling information have a
greater explanative and predictive power than models based
only on object-oriented metrics. However, the model based
on metrics and number of changes have a slightly better
prediction power, than “all CC measures” and “NOCC
all”, and a slightly worse explanative power, than “all CC
measures”. This answers the first question mentioned in this
section.

When considering only major bugs the overall performance
is lower, but the models based on change coupling are better
than the one based on number of changes. This answers our
second question. The model based on “all CC measures” is
the best in terms of explanative power, but it also suffers for
overfitting, since its prediction performance is much lower.
On the other hand, the model based on “NOCC all” is the
best in terms of prediction (slightly better than number of
changes), but not in terms of R2.

The conclusions drawn for the correlation analysis are still

valid for the regression. First it is better not to forget the past,
i.e., change coupling measures which penalize past coupling
relationships (EWSOC and LWSOC) have bad explanative
and prediction power. Second, change proneness play a role,
i.e., the change coupling measures have different trends for
different software systems. This is because different systems
have different average numbers of transactions and shared
transactions per class. For lack of space we do not show the
regression results for ArgoUML and Mylyn, but the trends
of NOCC, SOC, EWSOC and LWSOC are similar to the
ones presented in Figure 5 for the correlation analysis.

VI. THREATS TO VALIDITY

Threats to construct validity: These threats regard
the relationship between theory and observation, i.e., the
measured variables may not actually measure the conceptual
variable. A first construct validity threat concerns the way
we link bugs with versioning system files and subsequently
with classes. In fact, the pattern matching technique we
use to detect bug references in commit comments does not
guarantee that all the links are found. In addition to this,
we made the assumption that commit comments do contain
bug fixing information, which limits the application of our
approach only to software projects where this convention is
used. However, this technique currently represents the state
of the art in linking bugs to versioning system files and
is widely used in the literature [9], [27]. A second threat
concerns inner classes. Linking a Java class with a versioning
system file implies that we cannot consider inner classes,
because in Java they are defined in the same file in which
the container class is defined. A last construct validity threat
is due to the noise affecting Bugzilla repositories. Antoniol
et al. showed that a considerable fraction of problem reports
marked as bugs in Bugzilla (according to their severity) are
indeed “non bugs”, i.e., problems not related to corrective
maintenance [1]. As part of our future work, we plan to
apply the approach proposed by Antoniol et al. to filter “non
bugs” out.

Threats to statistical conclusion validity: These con-
cern the relationship between the treatment and the outcome.
In our experiments all the Spearman correlation coefficients
and all the regression models were significant at the 99%
level.

Threats to external validity: These concern the gen-
eralization of the findings. In our approach there are three
threats belonging to this category: First we have analyzed
only three software systems and, second, they are all open-
source. This is a threat because of the differences between
open-source and industrial development. The last threat
concerns the language: The considered software systems
are all developed in Java. To generalize more the results, as
part of our future work we plan to apply our bug prediction
approach to industrial systems as well as systems written in
other object-oriented languages such as C++ and Smalltalk.



VII. RELATED WORK

To our knowledge, ours is the first study on the relationship
between change coupling and software defects. However,
change coupling has been intensively studied in the literature
and a number of approaches for bug prediction were
proposed.

A. Change Coupling

The concept was first introduced by Ball and Eick [2].
They used this information to visualize a graph of co-changed
classes and detect clusters of classes that often changed
together during the evolution of the system. The authors
discovered that classes belonging to the same cluster were
semantically related.

A number of approches exploited fine grained change
coupling information. Gall et al. detected change couplings
at the class level [11] and validated it on 28 releases of an
industrial software system. The authors showed that archi-
tectural weaknesses, such as poorly designed interfaces and
inheritance hierarchies, could be detected based on change
coupling information. Ying et al. proposed an approach that
applies data mining techniques to recommend potentially
relevant source code to a developer performing a modification
task [25]. The authors showed that the approach can reveal
valuable dependencies by applying it to the Eclipse and
Mozilla open source projects. Zimmermann et al. proposed
a technique which predicts entities (classes, methods, fields
etc.) that are likely to be modified when another is being
modified [28]. Breu and Zimmermann [5] applied data
mining techniques on co-changed entities to identify and
rank crosscutting concerns in software systems.

Several approaches abstract the change couplings to the
level of modules or (sub)system. Gall et al. analyzed the
dependencies between modules of a large telecommunications
system and showed that the change coupling information
helps to derive useful insights on the system architecture
[10]. Pinzger et al. proposed a visualization in which they
represent modules as Kiviat diagrams and change coupling
between modules as edges connecting the Kiviat diagrams
[22], showing that the visualization facilitates the detection
of potential refactoring candidates.

Other visualization approaches, as the seminal work of
Ball and Eick [2], use an energy-based layout to cluster
groups of files which have been frequently changed together.
The Evolution Storyboards [4], by Beyer and Hassan, is a
sequence of animated panels that shows the files composing a
CVS repository, where the distance of two files is computed
according to their change coupling. The visualization allows
the user to easily spot clusters of related files.

B. Bug Prediction

In [27] Zimmermann et al. used object-oriented metrics
and past defects to predict future defects. The technique
performed well, producing a Spearman correlation of 0.907

at the file level. Nagappan et al. proposed a technique which
uses historical data to select appropriate metrics and build
regression models to predict post-release defects [20]. They
applied the approach on 5 Microsoft software systems and
concluded that (1) complexity metrics should not be used for
prediction without previously validating them on the project
(exploiting the historical data) and (2) metrics which were
validated from history should be used to identify low-quality
components. Nagappan and Ball used particular types of
historical data, the code churn metrics, to predict defect
density [19]. They proved that source files with high activity
rate are more likely to generate bugs than files with low
activity rate. Moreover, they found out that relative measures
are better predictors than absolute measures of code churn.
In [15] Khoshgoftaar et al. classified modules as defect-prone
based on the number of past modifications to the source files
composing the module. They proved that the number of lines
added or removed in the past is a good predictor for future
defects at the module level. Ostrand et al. [21] proposed
a regression model to predict defect density and location
in large industrial software systems. They used historical
data, such as bug and modification history from up to 17
releases, together with the code length of the current release
to predict the files with the highest defect density in the
next release. Graves et al. developed an approach based on
statistical models to find the best predictors for modules’
future faults [13]. They found out that the best predictor is
the sum of contributions to a module in its history.

Several techniques use information extracted from the
source code for defect prediction. One of the first approaches
to prove that object-oriented metrics correlate with defects
was proposed by Basili et al. [3]. In [23] Subramanyam
et al. provided empirical evidence, through eight industrial
case studies, that object-oriented metrics are significantly
associated with defects. Nagappan et al. computed the static
analysis defect density and used it as a predictor for pre-
release defect density [18], obtaining Spearman correlations
above 0.5. In [26] Zimmermann et al. provided empirical
evidence that network measures of the software dependency
graph correlate with number of defects, and can be used to
enrich regression models based on standard software metrics.

VIII. CONCLUSION

Change coupling has long been considered a significant
issue. However, no empirical study of its correlation with
actual software defects had been done until now. We
performed such a study on three large software systems and
found that there was indeed a correlation between change
coupling and defects which is higher than the one observed
with complexity metrics. Further, defects with a high severity
seem to exhibit a correlation with change coupling which,
in some instances, is higher than the change rate of the
components. We also enriched bug prediction models based
on complexity metrics with change coupling information,



and the results –in terms of explanative and predictive power–
corroborate our previous findings.

In the future, we plan to replicate our experiments on a
larger number of systems and improve the quality of the
dataset by filtering non-bugs out as proposed by Antoniol et
al. [1].
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