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Abstract—As any other software system, frameworks and
libraries evolve over time, and so their APIs. Consequently, client
systems should be updated to benefit from improved APIs. To
facilitate this task and preserve backward compatibility, API
elements should always be deprecated with clear replacement
messages. However, in practice, there are evidences that API
elements are usually deprecated without such messages. In this
paper, we study a set of questions regarding the adoption of
deprecation messages. Our goal is twofold: to measure the usage
of deprecation messages and to investigate whether a tool is
needed to recommend such messages. Thus, we verify (i) the
frequency of deprecated elements with replacement messages,
(ii) the impact of software evolution on such frequency, and (iii)
the characteristics of systems which deprecate API elements in
a correct way. Our large-scale analysis on 661 real-world Java
systems shows that (i) 64% of the API elements are deprecated
with replacement messages per system, (ii) there is almost no
major effort to improve deprecation messages over time, and
(iii) systems that deprecated API elements in a correct way are
statistically significantly different from the ones that do not in
terms of size and developing community. As a result, we provide
the basis for the design of a tool to support client developers on
detecting missing deprecation messages.

I. INTRODUCTION

Nowadays, it is common practice to implement systems
on top of frameworks and libraries [1], taking advantage
of their Application Programming Interfaces (APIs) to reuse
functionalities [2] and increase productivity [3]. However,
as any other software system, frameworks/libraries and their
APIs are subjected to evolve over time. Naturally, public
types, methods and fields provided by such APIs may be
renamed, removed or updated. Consequently, client systems
should migrate to benefit from improved API elements.

To facilitate client developers making the transition and
preserve backward compatibility, API elements should always
be deprecated with replacement messages. Mechanisms to sup-
port API deprecation are provided by most of the programming
languages. For example, Java has two solutions to deprecate
types, methods, and fields: using deprecation annotations
and/or deprecation Javadoc tags. Both annotations and Javadoc
tags warn developers referencing deprecated APIs, however,
the latter may be accompanied by replacement messages to
suggest what to use instead. Ideally, APIs should use these
mechanisms to assist client developers. In practice, previous
studies indicate that API elements are often deprecated with
missing or unclear replacement messages [4]–[6]. However,

we are still unaware about the size of this phenomenon and
whether it tends to get better (or worse) over time.

In this paper, we study a set of questions regarding the
adoption of API deprecation messages. We analyze (i) the
frequency of deprecated API elements with replacement mes-
sages, (ii) the impact of software evolution on such frequency,
and (iii) the characteristics of systems which deprecate API
elements in a correct way in terms of popularity, size, com-
munity, activity and maturity. Our goal is twofold: to measure
the usage of deprecation messages and to investigate whether
a tool is needed to recommend such messages. Thus, we
investigate the following research questions to support our
study:

• RQ1. What is the frequency of deprecated APIs with
replacement messages?

• RQ2. What is the impact of software evolution on the
frequency of replacement messages?

• RQ3. What are the characteristics of software systems
with high and low frequency of replacement messages?

In this study, we provide a large-scale analysis on 661 real-
world Java systems. Our results show that (i) 64% of the API
elements are deprecated with replacement messages per sys-
tem, (ii) there is almost no major effort to improve deprecation
messages over time, and (iii) systems that deprecated API
elements in a correct way are statistically significantly different
from the ones that do not in terms of size and developing
community. As a result, we provide the basis for the design
of a tool to support client developers on detecting missing
deprecation messages. Thus, the contributions of this paper
are summarized as follows:

• We provide a large-scale study to better understand to
what extend APIs are being deprecated with replacement
messages.

• We provide the motivation to the need of a recommen-
dation tool to assist client developers in the detection of
missing replacement messages.

Structure of the paper: In Section II, we present the back-
ground in more details. We describe our experiment design in
Section III. We present the experiment results in Section IV.
Summary and implications are shown in Section V and threats
to validity in Section VI. Finally, we present related work in
Section VII, and we conclude the paper in Section VIII.



II. BACKGROUND

We define an API element as a public/protected type, field
or method. In theory, before being replaced, API elements
should be flagged as deprecated to support client developers
making the transition to new ones. Deprecated API elements
continue in the system to preserve backward compatibility, but
they should not be used by developers because they may be
removed in the future.

Java has two solutions to deprecate types, methods, and
fields: using the annotation @Deprecated (supported since
J2SE 5.0), and/or using the Javadoc tag @deprecated (sup-
ported since J2SE 1.1), as presented in Figure 1.

Fig. 1. Deprecation example using annotation, tag, and replacement message.

The annotation @Deprecated causes the compiler to issue
a warning when it finds references to deprecated API ele-
ments. The Javadoc tag @deprecated also warns developers
about deprecated elements. However, its associated Javadoc
comment may be accompanied by a message to suggest
developers what to use instead, i.e., a replacement message.
Java deprecation guidelines present two solutions to create
these replacement messages:

• Javadoc 1.1: Using the annotation @see to indicate the
replacement API.

• Javadoc 1.2 and later: Using the word use followed by
the annotation @link to indicate the replacement API (as
shown in Figure 1).

Notice, however, that Java deprecation guidelines are not
mandatory to follow: developers may adopt other conventions
to create replacement messages, or simply do not use them.

Ideally, an API element should be deprecated with depre-
cation annotation, deprecation Javadoc tags, and replacement
messages in order to support developers migrating to new/bet-
ter ones. However, in practice, previous studies indicate that
API elements are often deprecated with missing or unclear
replacement messages [4]–[6]. In this work, we verify at
a large-scale level (i) the frequency of deprecated elements
with replacement messages in Java systems, (ii) whether this
frequency is increasing or decreasing over time, (iii) and the
characteristics of systems which are deprecating API elements
in a correct way.

III. EXPERIMENT DESIGN

A. Selecting Case Studies

We analyze Java systems hosted on the popular social
coding platform GitHub. We use three criteria to select the

systems: number of stars, releases, and deprecated API ele-
ments.

1) Number of stars. GitHub provides the feature number
of stars that lets users show their interest on systems.
We select systems with 100 or more stars in GitHub in
order to filter real-world and popular ones.

2) Number of releases. We select systems with three or
more public releases available on GitHub. We use this
criteria to assess API deprecation evolution.

3) Number of deprecated APIs. We select systems with
one or more public/protected deprecated API elements.
We use this criteria to filter out systems with no dep-
recated element. These systems are not in the scope of
our study.

Based on the above filtering criteria, we selected 661
systems. To better characterize such systems, Figure 2 presents
the distribution of the three criteria. For number of stars,
the first quartile, median, and third quartile is 154, 279, and
593, respectively. The top-3 systems with more stars are elas-
tic/elasticsearch (12.4K stars), nostra13/Android-Universal-
Image-Loader (9.7K), and google/iosched (7.7K). For num-
ber of releases, the first quartile, median, and third quartile
is 11, 24, and 57. The top-3 systems with more releases
are JetBrains/kotlin (2.9K releases), rstudio/rstudio (2.1K),
and freenet/fred (1.9K). Finally, for number of deprecated
API elements, the first quartile, median, and third quartile
is 3, 12, and 39. The top-3 systems with more depre-
cated APIs are groovy/groovy-eclipse (2.3K deprecated APIs),
openmrs/openmrs-core (1.2K), and OpenGamma/OG-Platform
(994).

Fig. 2. Distribution of number of stars, releases, and deprecated API elements
in the selected systems.

B. Extracting Deprecated API Elements

As a first step to support answering our research questions,
we extract all deprecated API elements (types, fields, and
methods) and their associated Javadoc from the systems under
analysis. As presented in Section II, a Java API element can be
deprecated using the annotation @Deprecated or the Javadoc
tag @deprecated. To find deprecated API elements, we imple-
mented a parser based on the Eclipse JDT library to look for
deprecation annotations and tags. We restricted our analysis
to public and protected API elements because they represent



the external contract to clients. We extracted 5,802 deprecated
types, 4,427 deprecated fields, and 26,890 deprecated methods,
corresponding to a total of 37,119 deprecated API elements.

C. Extracting Replacement Messages in Deprecated API Ele-
ments

When a method is deprecated with the Javadoc tag, it may
be accompanied by a replacement message to help client
developers. As presented in Section II, Java guidelines present
two solutions to create deprecation replacement messages: (i)
using the annotation @see, or (ii) using the word use and the
annotation @link. In practice, however, developers may adopt
other guidelines to create replacement messages or simply do
not use any.

To detect alternative guidelines, we extracted deprecation
messages in deprecated API elements with the support of the
JDT library, and we manually inspected a subset of these
messages. As a result of such manual analysis, we detected,
in addition to the word use, three frequent words/patterns to
indicate replacement: refer, equivalent, replace* (i.e., replace,
replaced, replacement), see, moved, instead, and should be
used. We also confirmed the two frequently adopted annota-
tions: @link and @see.

Table I shows the frequency for each replacement guideline
as well as message examples. The most adopted guideline
is the word use: with 17,810 cases, it occurs in 47.9% of
the deprecated API elements. In contrast, the least adopted
guideline is should be used: with 33 cases, it occurs only in
0.09%. Notice that some guidelines may occur together in
the same message. For example, use commonly happens with
@link. In total, 22,075 (59.5%) API elements were deprecated
with replacement messages from all 37,119. Such data is
further explored in Research Question 1, and its evolution is
analyzed in Research Question 2.

D. Defining Metrics Likely to Impact API Deprecation

To support answering Research Question 3, about the
characteristics of systems that deprecate API elements with
replacement messages, we define metrics in five dimensions
which are likely to affect development practices: system pop-
ularity, size, community, activity, and maturity. The idea is
to investigate whether such metrics have an impact on the
way developers deprecate API elements. These dimensions and
metrics are described below, and summarized in Table II.

• Popularity. It includes metrics that represent how popular
is the system in GitHub in number of stars, number
of watchers, and number of forks. The rationale is that
popular systems may have more clients, thus they may
have more concerns about their APIs.

• Size. It includes metrics related to system size in terms
of number of files and number of API elements (i.e., sum
of number of types, fields and methods). The rationale
is that larger systems may be harder to maintain, so it
should be more difficult to keep track of all API changes.
In contrast, smaller systems may be easier to control and
to keep track of.

• Community. It includes metrics that represent the system
community size in number of contributors, average files
per contributor, and average API elements per contribu-
tor. The rationale is that systems with larger community
(i.e., more contributors, but less files and API elements
per contributor) may be somehow easier to maintain, thus
it should be easier to keep track of API changes.

• Activity. It has metrics related to the system activity level
in terms of number of commits, number of releases, aver-
age days per release. The rationale is that systems with
more activity tend to respond faster to client complains.
Therefore they may be more likely to improve their APIs.

• Maturity. It is about the system age, in number of days.
The rationale is that older systems are reliable, thus they
may have more stable APIs. In contrast, it is natural to
expect that newer systems may have more unstable APIs.

TABLE II
METRICS LIKELY TO IMPACT API DEPRECATION.

Dimension Metric

Popularity
number of stars
number of watchers
number of forks

Size number of files
number of API elements

Community
number of contributors
average files per contributor
average API elements per contributor

Activity
number of commits
number of releases
average days per release

Maturity age (in number of days)

E. Extracting Metrics from Case Studies

We extracted the proposed metrics from two group of
systems: the ones deprecating API elements in a correct way
and the ones not doing that. Then, we assessed such groups
to verify whether they are statistically different with respect
to the proposed metrics. These two steps are detailed below.
Selecting systems and extracting metrics. We sorted all
systems, in descending order, based on the percentage of dep-
recated API elements with replacement messages. We selected
two groups, top-25% (i.e., systems with the highest percentage
of deprecated API elements with replacement messages) and
bottom-25% (i.e., systems with the lowest percentage). Each
group has 166 systems. Figure 3 shows the distribution of
the percentage of deprecated API elements with replacement
messages in each group. The median percentage is 100%
for top systems and 12.5% for bottom systems. Finally, we
extracted the metrics described in the previous subsection for
the top and bottom systems.
Assessing selected systems. We compare the values of each
metric in top and bottom systems. We first analyze the sta-
tistical significance of the difference between the two groups
by applying the Mann-Whitney U test at p-value = 0.05. To
show the effect size of the difference between the two groups,
we compute Cliff’s Delta (or d). Following the guidelines



TABLE I
FREQUENCY OF REPLACEMENT MESSAGE GUIDELINES IN DEPRECATED API ELEMENTS.

Guideline Frequency Replacement Message Example

use 17,810 (47.9%) use encodeURL(String url) instead (Apache Tomcat)
replace* 2,171 (5.8%) Replace to getParameter(String, int) (Dubbo)
refer 1,070 (2.9%) property will be removed, refer @link #getEncoded(boolean) (Actor Platform)
equivalent 166 (0.3%) The @link Iterable equivalent is @link ImmutableSet#of() (Google Guava)
see 777 (2.1%) See servlet 3.0 apis like HttpServletRequest.getParts() (Eclipse Jetty)
moved 224 (0.6%) deprecated since 2008-05-28. Moved to stapler (Eclipse Hudson)
instead 14173 (38.2%) Use KEY_LMETA instead (Facebook Nifty)
should be used 33 (0.09%) org.bukkit.entity.minecart.PoweredMinecart should be used instead (Bukkit)
@link 14,852 (40%) Use @link #setController(DraweeController) instead (Facebook Fresco)
@see 2,334 (6.3%) @see #getStartRequests (WebMagic)

Fig. 3. Distribution of the percentage of deprecated APIs with replacement
messages in top-25% and bottom-25% systems.

in [7]–[9], we interpret the effect size values as small for
0.147 < d < 0.33, medium for 0.33 < d < 0.474, and large
for d < 0.474.

IV. RESULTS

A. RQ1. What is the frequency of deprecated APIs with
replacement messages?

We analyze the frequency of deprecated API elements with
replacement messages for types, fields, and methods in the
last release of the cases studies. As presented in Table III,
3,825 (65.9%) deprecated types contains replacement mes-
sages. For deprecated fields and methods, these numbers are
2,621 (59.2%) and 15,629 (58.1%), respectively. Considering
all deprecated API elements, 22,075 (59.5%) contains replace-
ment messages.

TABLE III
NUMBER OF DEPRECATED API ELEMENTS WITH REPLACEMENT

MESSAGES.

Types Fields Methods All

3,825 (65.9%) 2,621 (59.2%) 15,629 (58.1%) 22,075 (59.5%)

Next we present the absolute and relative analysis per
system. For types, fields and methods analysis, we consider
only systems that have at least one deprecated type, field, and
method, respectively.

Absolute analysis. Figure 4 shows the distribution of the
absolute number of deprecated API elements with replacement
messages per system. For types, the first quartile is 1, the
median is 2, and the third quartile is 6. Fields present first
quartile 0, median 1, and third quartile 5. For methods, the
first quartile is 1, the median is 4, and the third quartile is
15. In absolute terms, we note that methods are the most
deprecated elements with replacement messages (median 4 per
system) while fields are the least one (median 1 per system).
Considering all API elements, the 1st quartile is 1, the median
is 5, and the 3rd quartile is 18.

Fig. 4. Absolute distribution of deprecated API elements with replacement
messages.

Relative analysis. Figure 5 presents the distribution of the
relative number of deprecated API elements with replace-
ment messages per system. For types, the first quartile is
25%, the median is 71.7%, and the third quartile is 100%.
There are 118 systems with 100% of types deprecated with
replacement messages, such as spring-projects/spring-android,
jenkinsci/github-plugin and google/guava. In contrast, there
are 63 systems with types deprecated without replacement
messages, e.g.,caelum/vraptor, cymcsg/UltimateAndroid and
spring-projects/spring-roo.

For fields, the first quartile is 0%, the median is 50%,



Fig. 5. Relative distribution of deprecated API elements with replacement
messages.

and the third quartile is 100%. There are 74 systems
with 100% of fields deprecated with replacement messages,
such as spring-projects/spring-framework, hibernate/hibernate-
orm and apache/tomcat70. We also detect 77 systems
with fields deprecated with no replacement messages,
such as goldmansachs/gs-collections, phonegap/phonegap-
app-developer and spring-projects/spring-webflow.

For methods, the first quartile is 28.6%, the median is
61.5%, and the third quartile is 100%. There are 162 systems
with 100% of their deprecated methods with replacement mes-
sages, such as square/picasso, nostra13/Android-Universal-
Image-Loader and eclipse/jgit. We also find 58 systems in
which all deprecated methods do not have replacement mes-
sages, such as JPMoresmau/eclipsefp, spring-projects/spring-
data-neo4j, and hibernate/hibernate-validator.

We note that, according to the median, types are the
most deprecated elements with replacement messages (median
71.7% per system) while fields are the least one (median 50%
per system). The third quartile at 100% for types, fields and
methods shows that 25% of the systems always deprecate
all elements with replacement messages. In contrast, the first
quartile at 0% for fields shows that 25% of the systems never
deprecate fields with replacement messages.

When considering all API elements, the first quartile is
28.6%, the median is 64%, and the third quartile is 97.5%.
That is to say, considering the median, around 2/3 of the
API elements are deprecated with replacement messages while
1/3 lacks such messages. There are 164 systems (24.8%)
with 100% of deprecated API elements with replacement
messages, such as code4craft/webmagic, google/guice and
bumptech/glide.

Summary: According to the median, 64% of the API elements
are deprecated with replacement messages per system. This
percentage is 71.7% for types, 50% for fields, and 61.5%
for methods, suggesting that developers are usually more con-
cerned with types and less with fields. We see that 25% of the

systems deprecate types, fields and methods with replacement
messages. However, other 25% never provide replacement
messages for deprecated fields.

B. RQ2. What is the impact of software evolution on the
frequency of replacement messages?

In order to verify the impact of software evolution on
deprecation, we analyze the frequency of deprecated API
elements with replacement messages in two distinct releases
of the systems. We compare the first publicly available release
with the last one (i.e., the same of Research Question 1).
Considering the first and last releases, we find 10,798 and
22,075 deprecated API elements with replacement messages,
respectively.
Absolute analysis. Figure 6 shows the distribution of the
absolute number of deprecated API elements with replacement
messages per system, in the analyzed releases. In the first
release, the first quartile is 1, the median is 3, and the third
quartile is 17. In the last release, the first quartile is 1, the
median is 5, and the third quartile is 18. Notice that the
median of the absolute number of deprecated API elements
with replacement messages increases over time (from 3 to 5).
In fact, this is expected due to the natural evolution of the
systems which are likely to provide more features.

Fig. 6. Absolute distribution of deprecated API elements with replacement
messages in the two analyzed releases.

Relative analysis. Figure 7 presents the distribution of the
relative number of deprecated API elements with replacement
messages per system, in the analyzed releases. In the first
release, the first quartile is 10.5%, the median is 59.3%,
and the third quartile is 95.4%. In the last release, the first
quartile is 28.6%, the median is 64%, and the third quartile
is 97.5%. Notice that the median of relative number of depre-
cated API elements with replacement messages increases only
4.7% (from 59.3% to 64%). That is to say, according to the
median, there is almost no effort from developers to provide
deprecation messages. Similarly, the third quartile remains
stable, increasing only 2.1% (from 95.4% to 97.5%), meaning
that systems whose developers are concerned with replacement



Fig. 7. Relative distribution of deprecated APIs with replacement messages
in the two analyzed releases.

messages tend to be like that since beginning. In contrast, by
analyzing the evolution of first quartile, we observe significant
changes. The first quartile increased by 18.1% (from 10.5%
to 28.6%), meaning that 25% of the systems are increasingly
by adopting replacement messages.

Overall, from the first to the last release, 152 systems (23%)
increased the relative number of deprecated API elements
with replacement messages. Figure 8 shows the distribution of
the relative number of deprecated messages with replacement
messages for such systems. The first quartile is 0% for the first
release, and 27.4% for last release. The median is 20% against
57.7%, and the third quartile is 53% against 80.2%. Examples
of systems in this category include spring-projects/spring-boot
(increased from 0% to 55%) and Netflix/eureka (increased
from 0% to 64%).

Fig. 8. Relative distribution of systems increasing percentage of replacement
messages.

In contrast, 123 systems (18.6%) decreased the number of
deprecate API elements with replacement messages. Figure 9
shows the distribution for such systems. The first quartile is
57.9% for the first release, and 29.2% for the last release. The

median is 85.1% against 50%, and the 3rd quartile is 100%
against 71.3%. Examples of systems in this category include
aptana/Pydev (decreased from 91.6% to 50%) and spring-
projects/spring-framework (decreased from 98% to 68%).

Fig. 9. Relative distribution of systems decreasing percentage of replacement
messages.

Finally, we observe that in 386 systems (58.4%) the num-
ber of deprecated methods with replacement messages re-
mains stable. Examples include spring-projects/spring-batch
and mcxiaoke/android-volley, both with 100%
Summary: On the median, the relative number of deprecated
API elements with replacement messages remain almost con-
stant (from 59.3% to 64%), showing that there is no major
effort to improve the ratio of deprecation messages. Overall,
for 23% of the systems, the number of deprecation with
replacement messages increases (from 20% to 57.7%) while
for 18.6%, this number decreases (from 85.1% to 50%).

C. RQ3. What are the characteristics of software systems with
high and low frequency of replacement messages?

In this research question we investigate whether system
popularity, size, community, activity, and maturity have an
impact on the way developers deprecate API elements. We
perform that by comparing top and bottom systems; top
systems have 100% of their API elements deprecated with
replacement messages, while bottom barely do that. Table IV
presents the metrics and their respective p-values and d applied
on top and bottom systems (see subsection III-E). Metrics
in bold have p-value < 0.05, and d > 0.147, i.e., they are
statistically significant different with at least a small effect
size in top and bottom systems. We find that the selected top
and bottom systems are statistically significant different with
at least a small effect size in 7 out of the 12 metrics: all size
and community metrics as well as number of commits and
releases in activity. Effect size is large in 2 metrics (number of
API elements and number of commits), medium in 2 (number
of files and average API elements per contributor), and small
in 3 (number of contributors, average files per contributor,
and number of releases). In the following we investigate each
dimension.



TABLE IV
METRICS AND THEIR RESPECTIVE p-values AND d ON top AND bottom SYSTEMS. BOLD MEANS p-value < 0.05 (STATISTICALLY SIGNIFICANT

DIFFERENT), AND d > 0.147 (AT LEAST A SMALL EFFECT SIZE). RELATIONSHIP: “+” = top SYSTEMS HAVE SIGNIFICANTLY HIGHER VALUE ON THIS
METRIC. “-” = bottom SYSTEMS HAVE SIGNIFICANTLY HIGHER VALUE ON THIS METRIC.

Dimension Metric p-value d-value Relationship

Popularity
number of stars 0.846 0.150 (negligible) +
number of watchers 0.130 0.09 (negligible) +
number of forks 0.043 0.09 (negligible) +

Size number of files < 0.001 0.421 (medium) -
number of API elements < 0.001 0.656 (large) -

Community
number of contributors < 0.001 0.265 (small)) -
average files per contributor < 0.001 0.273 (small) -
average API elements per contributor < 0.001 0.317 (medium) -

Activity
number of commits < 0.001 0.466 (large) -
number of releases 0.033 0.169 (small) -
average days per release 0.435 0.095(negligible) -

Maturity age (in number of days) 0.199 0.062 (negligible) -

• Popularity. We detect that there is no difference in top
and bottom systems with respect to the popularity metrics
number of stars, watchers, and forks. Therefore, we can
conclude that system popularity has no statistical effect.

• Size. We observe that top systems are smaller than bottom
ones both in number of files and number of API elements
(notice the “-” on the relationship column). In fact,
smaller systems tend to be easier to maintain and to
keep track of API elements, facilitating the control of
replacement messages.

• Community. We see that top systems have less contribu-
tors than bottom ones. This result is somehow related to
the previous one: it is expected that smaller systems have
less contributors. When we check the ratio of files per
contributor and API elements per contributor, we notice
that relative numbers are significant. Systems with less
files and API elements per contributor are more likely to
have replacement messages.

• Activity. For activity dimension we observe that top
systems have less commits and releases than bottom ones.
An explanation is that bottom systems have more code
changes, thus they may be more likely to degrade their
APIs.

• Maturity. Similarly to popularity, we could not find
relevant difference between top and bottom systems with
respect to their maturity (i.e., age in number of days).
Older systems were expected to be more stable and
to provide better APIs. However, the result shows that
system age has no effect on the way developers deprecate
API elements with replacement messages.

As an example, we present in Table V a comparison between
a top and a bottom system. The top system is linkedin/parseq:
it has 100% (32) of its API elements deprecated with replace-
ment messages. The bottom one is apache/hive: it has 16.9%
(23 from a total of 136) of its API elements deprecated with
replacement messages. In fact, size, community and activity
aspects of both systems are clearly distinct: linkedin/parseq is
easier to manage when comparing to apache/hive.

Summary: Top systems are statistically significantly different
from bottom projects in 7 out of 12 metrics. Top systems are
smaller in terms of number of files and API elements but have
more contributors per files and API elements. System popular-
ity and maturity seems to have no effect on the way developers
deprecate API elements with replacement messages.

TABLE V
COMPARISON BETWEEN A TOP AND BOTTOM SYSTEM.

Metric median
values

linkedin/parseq
(top system)

apache/hive
(bottom system)

number of files 668 339 13,001
number of API elem 4,803 2,269 83,045
number of contrib 18 12 39
avg. files per contrib 42.9 28.2 333.3
avg. API elem/contrib 260.8 189 2,129
number of releases 24 20 76
number of commits 1,232 263 6,848

V. SUMMARY AND IMPLICATIONS

From our analysis on 661 real-word Java systems, we
provide insights into the adoption of replacement messages.
Research Question 1 shows that 64% of the API elements
are deprecated with replacement messages per system. The
percentage is 71.7% for types, 50% for fields, and 61.5% for
methods, suggesting that developers are more concerned with
types and less with fields. Research Question 2 presents that
the proportion of deprecated API elements with replacement
messages does not get much better over time (from 59.3%
to 64%). Thus that there is no major effort to improve
deprecation messages. In this case, the number of deprecation
with replacement messages increases for 23% of the systems
while it decreases for 18.6%. Finally, Research Question 3
shows that top systems are statistically significantly different
from bottom projects in several of the considered metrics. Top
systems are smaller in terms of number of files/API elements
and community (less contributors, but more contributors per
files and API elements). In contrast, system popularity and
maturity have no effect on the way developers deprecate API
elements with replacement messages.



Maintaining API elements in large and complex systems
is not a simple task, but may involve several developers
with different level of knowledge, making it difficult to keep
consistency during their evolution [4], [6], [10]. In fact, there is
an effort in the literature to understand the impact of software
evolution on APIs [4], [6], [11] and to detect how such
impact can be alleviated (e.g., [10], [12]–[20]) by mining client
reactions. However, this is not performed in the context of API
deprecation. Thus, together with the fact that API elements are
usually deprecated without replacement messages per system
(36% per system), and that such situation does not improve
over time, we present two implications of our findings:

Implication 1: A recommendation tool can be constructed to
assist client developers by automatically inferring missing
replacement messages. These messages can be inferred by
mining client system reactions, i.e., learning the solution
adopted by clients when there is no replacement messages.

In contrast, it often happens that API elements are dep-
recated with replacement messages per system (64% per
system). In such cases, developers point out how old API
elements should be replaced. This information provides the
basis for the following implication:

Implication 2: The quality of a recommendation tool to
detect missing messages can be assessed by its correctness
in identifying deprecated API elements with replacement
message. In other words, replacement messages of depre-
cated API elements can be used as an oracle for measuring
accuracy of the tool in detecting valid messages.

VI. THREATS TO VALIDITY

Construct Validity. The construct validity is related to
whether the measurement in the study reflects real-world
situations.

Classification of deprecation messages. One threat of our study
is that messages may be incorrectly classified as having or not
having replacement messages. In order to assess this threat
we performed two analyses. First, we manually analyzed 500
randomly selected deprecation messages classified as having
replacement messages. We detected 4 (<1%) false-positives,
i.e., we classified as they having replacement messages but
they have not. Second, we manually analyzed 500 randomly
selected deprecation messages classified as not having re-
placement messages. In this case, we detected 26 (5%) false-
positives, i.e., we classified as they not having replacement
messages but they have. Therefore, in both cases the risk of
wrong classification is low, so this threat is reduced.

Evolution analysis. We only analyzed the first and the last
release for each system. These two releases do not characterize
the entire evolution of the case studies. However, they do
provide a general overview of their evolution, because the
last release represents the newest one while the first release
represents the oldest one.

Internal Validity. The internal validity is related to uncon-
trolled aspects that may affect the experimental results.

Findings Validation. We paid special attention to the appro-
priate use of statistical machinery (i.e., Mann-Whitney test,
Cliff’s Delta effect size) when reporting our results in Research
Question 3. This reduces the possibility that such results are
due to chance.

Association is not Causation. In Research Question 3, we
examined whether there are metrics associated with top and
bottom systems. Notice, however, that association does not
imply causation [21]. Thus, more advanced statistical analysis,
e.g., causal analysis [22], can be adopted to further extend our
analysis.

Parser Implementation. A possible threat is the possibility of
errors in the implementation of our AST parser, which detects
deprecated API elements. However, as the implementation is
based on JDT (a library developed by Eclipse), the risk of this
threat is very reduced.

External Validity. The external validity is related to the
possibility to generalize our results. We focused on the analysis
of 661 open-source and real-world Java systems, therefore they
are credible and representative case studies. Such systems are
stored in GitHub, the most popular code repository nowadays,
thus their source code are easily accessible. Despite these
observations, our findings—as usual in empirical software
engineering—cannot be directly generalized to other systems,
specifically to systems implemented in other programming
languages or commercial ones. Therefore, our study should
be carried out on other systems, possibly written in other
languages or commercial ones.

VII. RELATED WORK

We separate related work in two categories, the first one
about the impact of API evolution and second one in the
context of API evolution analysis.

A. API Evolution Impact

McDonnell et al. [11] investigate API stability and adop-
tion on a small-scale Android ecosystem. The authors found
that Android APIs are evolving fast and client adoption is
not following the evolution pace. Also in the Android con-
text, Linares-Vásquez [23] analyze how API changes trigger
questions and activity in StackOverflow. Results suggest that
Android developers normally have more questions when the
API behavior is modified.

In a large-scale study, Robbes et al. [4] investigate the
impact of API deprecation in an ecosystem, written in the
dynamic typed programming language Smalltalk. They de-
tected that some API deprecation have large impact on the
ecosystem and that the quality of deprecation messages should
be improved. The authors show evidence that APIs are usually
deprecated with missing and unclear messages, however their
focus is on impact analysis, so they do not deep investigate
deprecation messages themselves.

In a recent work, Hora et al. [6] studied the impact of API
replacement and improvement (i.e., not API deprecation) on a
large-scale ecosystem also written in Smalltalk. The results of



this study also confirm the large impact on client systems, and
hints that deprecation mechanisms should be more adopted.

B. API Evolution Analysis

Several approaches were proposed to support API evolution
and reduce the efforts of client developers. Henkel and Di-
wan [24] propose CatchUp, a tool that uses a modified IDE to
capture and replay refactorings related to API evolution. Chow
and Notkin [25] present an approach that is supported by API
developers: they annotate changed methods with replacement
rules that will be used to update client systems. Hora et
al. [19], [20] propose APIEvolutionMiner and apiwave, tools
to support keeping track of API evolution and popularity.

Kim et al. [26] help to automatically infer rules from
structural changes, computed from modifications at or above
the level of method signatures. Kim et al. [14] propose LSDiff,
a tool to support computing differences between two versions
of one system. In this case, the authors take into account the
body of the method to infer rules, improving their previous
work [26]. Nguyen et al. [27] propose LibSync, atool that uses
graph-based techniques to help developers migrate from one
framework version to another. Dig and Johnson [28] support
developers to better understand the requirements for migration
tools. For instance, they found that 80% of the changes that
break client systems are refactorings.

Dagenais and Robillard [12] present SemDiff, a tool that
suggests replacements for API elements based on how it adapts
to its own changes. Schafer et al. [13] propose to mine API
usage change rules from client systems. Wu et al. [10] present
AURA, an approach that combines call dependency and text
similarity analyses to produce evolution rules. Meng et al. [15]
propose a history-based matching approach (named HiMa) to
support framework evolution. In this case, rules are extracted
from the revisions in code history together with comments
recorded in the evolution history of the framework. Hora et
al. [16], [17] focus on the extraction of API evolution rules
that only make sense for a system or domain under analysis.

Finally, studies also address the problem of discovering the
mapping of APIs between different platforms that separately
evolved. For example, Zhong et al. [29] focus on the mapping
between Java and C# APIs while Gokhale et al. [30] study the
mapping between JavaME and Android APIs.

In summary, related studies are intended to better understand
API evolution and to propose solutions to API migration. None
of them, however, study API evolution in the context of API
deprecation and their replacement messages.

VIII. CONCLUSION

This paper presented a large-scale empirical study about
the adoption of replacement messages of deprecated API
elements. We focused one three questions: (i) the frequency
of deprecated API elements with replacement messages, (ii)
the impact of API evolution on such frequency, and (iii) the
characteristics of systems correctly deprecating API elements.
Our goal was to investigate the need of a recommendation tool
to assist developers in the detection of missing replacement

messages. The study was performed in the context of 661
popular and real-world Java systems. We reiterate the most
interesting conclusions from our experiment results:

• 64% of the API elements are deprecated with replacement
messages per system.

• The proportion of deprecated API elements with replace-
ment messages does not get much better over time.

• Systems that deprecate API elements in a correct way are
smaller and they have proportionally more contributors.
In contrast, system popularity and maturity have no
impact.

• A recommendation tool can be constructed to assist client
developers by automatically inferring missing replace-
ment messages. Replacement messages of deprecated API
elements can be used as an oracle for measuring accuracy
of the tool.

As future work, we plan to extend this research to analyze
systems implemented in other programming languages. We
also plan to categorize the systems under analysis to un-
derstand their differences regarding API deprecation. Finally,
we plan to improve the evolution analysis by taking into
account several releases in the selected case studies to better
characterize the impact software evolution on API deprecation.
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