
Of Change and Software

Doctoral Dissertation submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Romain Robbes

under the supervision of

Michele Lanza

December 2008



Copyright © 2008 by Romain Robbes
All rights reserved.
Available online and in color at: http://doc.rero.ch/record/11184?ln=en



Acknowledgments

As I type this, I have spent four years working in Lugano. Four years is a long time. I was
fortunate to share that time with a number of people who made this part of my life exciting.

First of all, many thanks to Michele Lanza, my advisor, for being there all along, starting
at Lugano’s train station back in October 2004. Waiting for me as I arrived after a long night
in the train showed me how much you cared about your students. During these four years,
you showed it over and over. I wish all the best to you, Marisa and Alessandro.

Many thanks to Mehdi Jazayeri for starting the Faculty of Informatics in Lugano and for
giving me the opportunity to work there. Without you, my life would have been radically
different. Special thanks to Mehdi and the other members of my dissertation committee,
Stéphane Ducasse, Jacky Estublier, Jean-Marc Jézéquel, Mauro Pezzè and Andreas Zeller, for
showing interest and investing a part of your precious time to evaluate my work.

Special thanks to Doru Gîrba for the early discussions that led me toward this subject.
Thanks also to Oscar Nierstrasz, and the rest of the Software Composition Group in Bern, for
hosting me during the summer of 2004. My stay at SCG certainly influenced me to continue
my studies in Switzerland.

Thanks to Damien Pollet, Yuval Sharon and Alejandro Garcia for your collaborations with
me. Thanks Damien for the cool research ideas, Yuval for spending much time in the internals
of Eclipse when building EclipseEye, and Alejandro for making movies of program histories
–I’ll watch one over “The Dark Knight” any day. Thanks to Alejandro, Philippe Marschall, and
the second promotion of USI Informatics students for allowing me to collect the data I much
needed.

Special thanks to the members of REVEAL for being the coolest research group around!
Thanks to Marco D’Ambros, Lile Hattori, Mircea Lungu and Richard Wettel for being both
extremely competent coworkers, and such a great deal of fun to have around. We worked
hard, played hard and had some amazing trips together. Your presence was –as a matter of
fact– motivational.

Many thanks to my former flatmates, Cyrus Hall, Cédric Mesnage, Jeff Rose and Élodie
Salatko. We shared great times in a small office and a gigantic living room. And the french-
american struggle was always entertaining.

Thanks also to the rest of the USI Informatics staff, former and current. Thanks to Laura
Harbaugh, Marisa Clemenz, Cristina Spinedi and Elisa Larghi for making my life much easier

i



ii

on the administrative side. Thanks to all the professors, and especially Amy Murphy and
Cesare Pautasso for the teaching opportunities. Thanks to Jochen Wuttke and Domenico
Bianculli for investing time in the thesis template I am presently using.

Thanks to all the coworkers I generally had fun with, in no particular order (There were
too many fun moments to keep count!): Giovanni, Giovanni, Giovanni, Nicolas, Alessandra,
Alex, Milan, Morgan, Amir, Mostafa, Anna, Paolo, Vaide, Adina, Monica, Marcin, Dmitrijs,
Philippe, Edgar, Navid, Francesco, Francesco, Mark, Avi, Onur, Sasa, Ruben, Lasaro, Alessio,
Aliaksei, Daan, Shane, Matteo, Fred, Tom, Julian. Thanks to Thanassis for the fun in Athens,
even if the timing was not best for you.

Thanks to my friends back in France. You are too numerous to mention, but you know
who you are. Visiting you once every few months was always a refreshment. A special thanks
to the ones who had the courage to visit the dangerous city of Lugano: Hurain Chevallier,
Denis Meron, Cyril Bazin, Céline Bernery and Étienne Ailloud.

Thanks to the other category of people which are too numerous to mention, the ones I
met, had scientific discussions, and had fun with at various conferences. I’m looking forward
to meet you again at the next edition of . . . well, you know.

Thanks to my extended family, which also happens to be too numerous to mention. It is
always a pleasure to see you, even if it is not often.

And most of all, many many thanks to my family: Isabelle, Didier, Mariette and Benjamin
Robbes. Without your unconditional love and support, I could not have concluded this work.

Romain Robbes
October 2008



Abstract

Software changes. Any long-lived software system has maintenance costs dominating its initial
development costs as it is adapted to new or changing requirements. Systems on which such
continuous changes are performed inevitably decay, making maintenance harder. This problem
is not new: The software evolution research community has been tackling it for more than two
decades. However, most approaches have been targeting specific maintenance activities using an
ad-hoc model of software evolution.

Instead of only addressing individual maintenance activities, we propose to take a step back
and address the software evolution problem at its root by treating change as a first-class entity.
We apply the strategy of reification, used with success in other branches of software engineering,
to the changes software systems experience. Our thesis is that a reified change-based represen-
tation of software enables better evolution support for both reverse and forward engineering
activities. To this aim, we present our approach, Change-based Software Evolution, in which
first-class changes to programs are recorded as they happen.

We implemented our approach and recorded the evolution of several systems. We validated
our thesis by providing support for several maintenance activities. We found that:

• Change-based Software Evolution eases the reverse engineering and program comprehen-
sion of systems by providing access to historical information that is lost by other ap-
proaches. The fine-grained change information we record, when summarized in evolu-
tionary measurements, also gives more accurate insights about a system’s evolution.

• Change-based Software Evolution facilitates the evolution of systems by integrating pro-
gram transformations, their definition, comprehension and possible evolution in the over-
all evolution of the system. Further, our approach is a source of fine-grained data useful to
both evaluate and improve the performance of recommender systems that guide developers
as they change a software system.

These results support our view that software evolution is a continuous process, alternating
forward and reverse engineering activities that requires the support of a model of software evo-
lution integrating these activities in a harmonious whole.

iii



iv



Contents

Contents x

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 The Challenges of Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reification to The Rescue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Change-based Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I First-class Changes:
The Why, The What and The How 9

2 Software Evolution Support in Research and Practice 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Change Representation in SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 How SCM Handles Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Interaction Models in SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 The State of the Practice in SCM . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Impact of SCM Practice on the Research of MSR . . . . . . . . . . . . . . . . . . . 18
2.3.1 The shortcomings of SCM for MSR . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 High-level evolution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Full model evolution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Evolution reconstruction approaches . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 IDE monitoring as an Alternative to SCM Archives . . . . . . . . . . . . . 25
2.4.2 Change-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



vi CONTENTS

3 Change-Based Software Evolution 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Principles of Change-based Software Evolution . . . . . . . . . . . . . . . . . . . . 30
3.3 Program Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Abstract Syntax Tree Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Language Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 The Change Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Atomic Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Composite Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Change histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Generating a View of the System . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Recording and Storing Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Uses of Change-based Software Evolution . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.1 Example: Measuring the Evolution of Systems . . . . . . . . . . . . . . . . 45
3.6.2 Validation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.3 What Is Used Where? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II How First-class Changes Support System Understanding 49

4 Assessing System Evolution 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Assessing Systems with The Change Matrix . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Evolution of Project I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 High-level Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Reconstructing Project I’s Evolution . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Impact of Data Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Characterizing and Understanding Development Sessions 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Motivations for Session-based Program Understanding . . . . . . . . . . . . . . . 73
5.3 A Characterization of Development Sessions . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Primary Session Characterization . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Session Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.3 Quantitative Analysis of the Characterization . . . . . . . . . . . . . . . . 77



vii CONTENTS

5.4 Incremental Session Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 A Process for Incremental Session Understanding . . . . . . . . . . . . . . 78
5.4.2 Browsing Sessions with the Session Sparkline . . . . . . . . . . . . . . . . 80
5.4.3 Inspecting and Characterizing Sessions with The Session Inspector . . . 81
5.4.4 Viewing Changes in Context with The Session Explorer . . . . . . . . . . 81
5.4.5 Understanding Individual Changes with The Change Reviewer . . . . . 81

5.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 Decoration Session (Project X) . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.2 Painting Session (Project X) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.3 Masonry & Restoration Session (Project X) . . . . . . . . . . . . . . . . . . 87
5.5.4 Architecture & Restoration Session (SpyWare) . . . . . . . . . . . . . . . . 89

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Measuring Evolution:
The Case of Logical Coupling 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Logical Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Usages of Logical Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Shortcomings of SCM Logical Coupling . . . . . . . . . . . . . . . . . . . . 98
6.2.3 Alternatives to SCM Logical Coupling . . . . . . . . . . . . . . . . . . . . . 98

6.3 SCM Logical Coupling Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.4 Result Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.5 Data Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Logical Coupling Measurements and Results . . . . . . . . . . . . . . . . . . . . . 101
6.4.1 SCM Logical Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.2 Change-based Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.3 Interaction Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.4 Time-based Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.5 Close Time-based Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.6 Combined Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.7 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



viii CONTENTS

III How First-Class Changes Support Software Evolution 111

7 Program Transformation and Evolution 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Change-based Program Transformations . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Variables And Their Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.2 Generic Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.3 Instantiation and Application of Transformations . . . . . . . . . . . . . . 118
7.2.4 Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2.5 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Transforming programs by examples . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.1 The Program Transformation Spectrum . . . . . . . . . . . . . . . . . . . . 121
7.3.2 Example-based Program Transformation in a Nutshell . . . . . . . . . . . 122
7.3.3 Does our approach fulfill the requirements? . . . . . . . . . . . . . . . . . 124
7.3.4 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 The Six-step Program to Transformation Definition . . . . . . . . . . . . . . . . . 126
7.4.1 Recording the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.2 Generalizing the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.3 Editing the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.4 Composing Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.5 Testing the Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4.6 Applying the Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.5.1 Defining informal aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.5.2 Clone Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 Towards Transformation Integration and Evolution . . . . . . . . . . . . . . . . . 137
7.6.1 Transformation Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.6.2 Transformation Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6.3 Transformation Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.7.1 Change-based Program Transformation . . . . . . . . . . . . . . . . . . . . 139
7.7.2 Example-based Program Transformation . . . . . . . . . . . . . . . . . . . 140
7.7.3 Integrating Transformations in The Evolution . . . . . . . . . . . . . . . . 141

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Evaluating Recommendations for Code Completion 143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 The Cost of Human Subject Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3 Current Approaches to Code Completion . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3.1 Code Completion in Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.3.2 Code Completion in VisualWorks . . . . . . . . . . . . . . . . . . . . . . . . 147
8.3.3 Code Completion in Squeak . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



ix CONTENTS

8.3.4 Code Completion in Eclipse with Mylyn . . . . . . . . . . . . . . . . . . . . 149
8.3.5 Optimistic and Pessimistic Code Completion . . . . . . . . . . . . . . . . . 149

8.4 A Benchmark For Code Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.4.4 Result Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.4.5 Data Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5 Code Completion Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5.1 Default Untyped Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5.2 Default Typed Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.5.3 Optimist Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.5.4 Recently Modified Method Names . . . . . . . . . . . . . . . . . . . . . . . 158
8.5.5 Recently Modified Method Bodies . . . . . . . . . . . . . . . . . . . . . . . 159
8.5.6 Recently Inserted Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.5.7 Per-Session Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.5.8 Typed Optimist Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.5.9 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9 Improving Recommendations for Change Prediction 167
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.2 Change Prediction Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.2.1 Historical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.2.2 Impact Analysis Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.2.3 IDE-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.3 A Benchmark for Change Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.3.4 Result Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.3.5 Data Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.4.1 Association Rules Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.2 Enhanced Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . 178
9.4.3 Degree of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.4.4 Coupling-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4.5 Association Rules with Time Coupling . . . . . . . . . . . . . . . . . . . . . 181
9.4.6 HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.4.7 Merging Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.4.8 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



x Contents

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

IV First-class Changes: So What? 189

10 Perspectives 191
10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.1.1 Defining Change-based Software Evolution . . . . . . . . . . . . . . . . . . 192
10.1.2 Change-based Software Evolution in Reverse Engineering . . . . . . . . 192
10.1.3 Change-based Software Evolution in Forward Engineering . . . . . . . . 193
10.1.4 Additional Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.2.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.2.2 Adoption Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.5 Closing Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

V Appendix 203

A Inside the Change-based Repository 205

Bibliography 207



Figures

1.1 Roadmap of our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Simple refactoring scenario leading to evolution information loss. . . . . . . . . 19

3.1 A node of the program’s AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 An example object-oriented program AST . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Metamodel of atomic changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Effects of atomic changes on an AST . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Change and usage history of method foo() . . . . . . . . . . . . . . . . . . . . . . 41
3.6 A partial view importing method foo() . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Architecture of our change-based tools . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 An example Change Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Size evolution of a method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 System size (top) and average method complexity (bottom) of project I . . . . 58
4.4 Change matrix of project I, 27/03 to 31/03 . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Change matrix of project I, 31/03 to 03/04 . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Change matrix zoomed on the class Combat . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Impact of data loss: Original (Top), Commits (Middle), Version Sampling (Bot-

tom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Session exploration and understanding process . . . . . . . . . . . . . . . . . . . . 79
5.2 A session sparkline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Overview of the session explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Decoration Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Painting Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Masonry & Painting Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Session F: Architecture and Restoration . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 A development session involving four entities . . . . . . . . . . . . . . . . . . . . . 98

xi



xii Figures

6.2 Graphs of Precision (X axis) and Recall (Y axis) of Change Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue) . . . . . . . . . . . . . . . . 102

6.3 Graphs of Precision (X axis) and Recall (Y axis) of Interaction Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue) . . . . . . . . . . . . . . . . 103

6.4 Graphs of Precision (X axis) and Recall (Y axis) of Time Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue) . . . . . . . . . . . . . . . . 104

6.5 Graphs of Precision (X axis) and Recall (Y axis) of Close Time Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue) . . . . . . . . . . . . . . . . 105

6.6 Graphs of Precision (X axis) and Recall (Y axis) of Combined Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue) . . . . . . . . . . . . . . . . 106

7.1 Actual vs expected behavior of extract method . . . . . . . . . . . . . . . . . . . . 125
7.2 Recorded changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3 The Change Chooser shows the recent changes to the system. . . . . . . . . . . . 127
7.4 The Change Factory’s main interface, shown editing a deletion change . . . . . 128
7.5 Initial patterns and resulting constraints . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 Two possible generic change designs . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.7 Sample clones in the Change Factory . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1 Code completion in Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2 Code completion in VisualWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



Tables

2.1 Per-author commit frequency in several open-source projects . . . . . . . . . . . 21

3.1 Sample program-level metrics (top) and change-level metrics (bottom) . . . . . 46
3.2 Uses of various parts of the model across chapters of this document . . . . . . . 47

5.1 Session Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Definition of our characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Session Types, for Project X and SpyWare . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Best F-measures for all logical coupling measurements . . . . . . . . . . . . . . . 107

7.1 Advantages and drawbacks of approaches in automated program transformation122
7.2 Refactoring alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 The properties that can be edited for each atomic change. . . . . . . . . . . . . . 129
7.4 Available constraints in AST patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 The supported composite generic changes. . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Number of completion attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2 Results for the default algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3 Results for the default typed completion . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4 Results for optimist structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.5 Results for recent method names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.6 Results for recently modified bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.7 Results for recently inserted code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.8 Results for per-session vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.9 Results for typed optimist completion . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.10 Scores for the untyped algorithms of all projects . . . . . . . . . . . . . . . . . . . 163

9.1 Sample results for an algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2 Development histories in the benchmark. . . . . . . . . . . . . . . . . . . . . . . . 176
9.3 Results for Association Rules Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiii



xiv Tables

9.4 Results for Enhanced Association Rules Mining . . . . . . . . . . . . . . . . . . . . 178
9.5 Results for Degree of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.6 Results for Coupling with PIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.7 Results for Association Rules with Time Coupling . . . . . . . . . . . . . . . . . . 181
9.8 Results for Hits, best hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.9 Results for Hits, best sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.10 Results when merging two prediction approaches . . . . . . . . . . . . . . . . . . 183
9.11 Comprehensive results for each predictor . . . . . . . . . . . . . . . . . . . . . . . 184

A.1 The case studies in our change repository . . . . . . . . . . . . . . . . . . . . . . . 205



Chapter 1

Introduction

Software evolution consists in adapting software to new or updated requirements, and prevent
or fix defects. Software evolution causes problems which have no satisfying solution yet –and
perhaps never will. We argue that reifying change itself, that is, representing changes as explicit,
manipulable entities, gives us more leverage to deal with the problems.

We first describe the problems associated with software evolution. We then motivate why a
change-based model of software evolution would be helpful to support software evolution. The
intuition behind our thesis is that the process of reification has always been a powerful tool to
address software problems, but has not been fully applied to the change process. We present our
thesis and the research questions we use to validate it, before giving a roadmap to the remainder
of this work.

1



2 1.1 The Challenges of Software Evolution

1.1 The Challenges of Software Evolution

Lehman’s laws of software evolution state that as software systems grow and change over
time, each further modification is more difficult [LB85]. In particular, a system must con-
tinuously change to remain useful in a changing environment (law 1). If nothing is done
to prevent it, the system decays: Its complexity increases (law 2) while its quality decreases
(law 7). Since their enunciation in the 1970s, the laws have been corroborated on several
systems [LRW+97], [EGK+01].

Another indicator of the difficulty of changing systems is the cost of maintenance com-
pared to the global cost of software. Estimates vary between 50% and 90% [Erl00], with a
tendency for the most recent estimates to be higher. Erlikh’s 90% estimate is incorporated in
the recent editions of Sommerville’s book on software engineering [Som06].

Software maintenance and evolution is hard because maintainers have to deal with large
code bases. This means that a large part of the time involved in maintenance is spent un-
derstanding the system. Corbi [Cor89] estimates the portion of time invested in program
comprehension to be between 50 and 60 %.

Even with a considerable time spent understanding code, maintenance is not trouble-
free. Purushothaman and Perry found that 40% of bugs are introduced while fixing other
bugs [PP05], because understanding the complete implications of a change in a large code
base is barely possible.

Performing a change is not an easy task either: A simple change can be scattered around
the system because of code duplication or because a changing assumption is widely relied
upon.

In short, change is hard. Maintainers need all the help they can get.

Do they?

In practice, programmers are spending most of their time in static and textual views of
a system. Historical information is available in the form of text-based versioning system
archives, but is rarely used actively when programming. Thus there is a mismatch between
complex evolutionary processes, where software entities are continuously changed, and how
maintainers view and interact with software systems. To address this mismatch, evolving
systems need to be supported by a better model of evolution itself.



3 1.2 Reification to The Rescue

1.2 Reification to The Rescue

Reification is the process of transforming an abstract and immaterial concept, into a concrete
and manipulable one. Reification is a powerful tool in software engineering. It is a standard
practice in object-oriented design: When designing a software system, a good heuristic is to
reify important entities of the problem domain. These entities take a more prominent role in
the overall design and are clearly localized in the system.

Reification has also been used successfully to make programming languages more effec-
tive by reifying programming language constructs. In general, reifying a construct makes it
more expressive, more accessible and altogether more powerful. Some examples are:

• First-class functions passed as arguments to other functions (closures) are used to build
higher-level control structures and domain-specific languages. This concept was first
found in functional languages.

• The reification of the interpreter in reflective systems [Smi84], or of the object system
in an object-oriented language [Mae87], make systems more flexible. Non-functional
behavior such as tracing, distribution or debugging can be added to parts or the whole
of the system without changing its implementation. A reified interpreter provides hooks
to achieve this, while a reflective object-oriented system uses metaclasses.

• Aspect-oriented programming [KLM+97] is a further reification of non-functional con-
cerns as language constructs. Aspects ease the definition and the application of cross-
cutting concerns to large parts of the system.

• Reifying the call stack in Smalltalk environments was used to implement exception
handling and continuations as simple Smalltalk libraries, without modifying the virtual
machine or the language itself.

• Osterweil showed that software processes such as testing should be reified [Ost87].
Processes should be described by process descriptions in order to be manipulated and
modified by programmers.

In this work, we apply the reification principle to the changes performed on a software
system. Our goal is to record and make accessible all the changes performed on a system. We
name our approach Change-based Software Evolution.

We are not the first to consider the evolution of programs as changes. This is a prominent
concept in the fields of Software Configuration Management (SCM) and Mining Software
Repositories (MSR). These change models have been however incomplete: SCM systems
favor versions of text documents for simplicity and genericity. This decision impacts MSR as
SCM archives are their primary data sources.



4 1.3 Change-based Software Evolution

1.3 Change-based Software Evolution

We take a “clean slate” approach to software evolution in order to define a change metamodel
freed from the limitations imposed by external circumstances. The change metamodel we
introduce has the following characteristics:

• Contrary to SCM systems, it trades generality for semantic awareness, i.e., it deals with
the evolution of actual programs and the entities that constitute them, not only lines of
text in files.

• It models changes at several granularity levels, from the finest (changes to individual
statements) up to the coarsest (aggregating all changes performed during a develop-
ment session).

• The changes to a system are recorded from an IDE, instead of being recovered from
arbitrary snapshots of the program’s source code. The recorded history is more accurate
as it does not depend on how often the developer commits or how many versions are
selected for study.

• We designed our change metamodel for flexibility. It supports a variety of uses, from
analyzing the past evolution of a system, to defining and applying program transforma-
tions.

We claim that software evolution can be better supported by reifying the changes pro-
grammers make to the system they work on. In this dissertation, we show that an explicit
representation of the changes performed on a system helps one to better understand it –
reverse engineering– , and then to actually change it –forward engineering.
We formulate our thesis as:

Modeling the evolution of programs with first-class changes improves both
their comprehension and their evolution.

To validate our thesis, we answer the following two research questions:

• How, and how well, can a change-based model of software evolution assist the reverse
engineering of a system?

• How, and how well, can a change-based model of software evolution assist the forward
engineering of a system?

The following section breaks down these research questions in sub-questions, states our
contributions and maps them to the overall structure of the document.



5 1.4 Roadmap

1.4 Roadmap

Figure 1.1 shows how the work was performed in the course of this thesis. Research topics
are placed in the tree according to their similarity. The chapter in which they are described
(if applicable) is indicated. On the right, we indicate the venue in which we published each
topic. This thesis is structured in four parts. The first part is the trunk of our work: Based on
the shortcomings of evolution models in the literature [RL05], we defined a general model of
software evolution emphasizing changes [RL06; RL07a], implemented in a platform named
SpyWare [RL08c]. Each branch of the tree represents an area to which we applied change-
based software evolution. The branches span spectrum from understanding (part 2) to sup-
porting (part 3) software evolution. The branches covers the topics of reverse engineering
and program comprehension [RLL07; Rob07; RL07b], benchmarking for reverse [RPL08]
and forward engineering [RL08b; RLP08], and program transformation [RL08a]. Finally, the
last part of the dissertation ties these branches together in a unified vision of future work
[RL07c].

Part I, First-class Changes: The Why, The What and The How gives the context and ex-
plains the concepts of Change-based Software Evolution.

• Chapter 2, Software Evolution Support in Research and Practice, explores ap-
proaches in the domains related to our thesis: SCM, MSR, and IDE monitoring. In
the course of this review, we point out limitations of current approaches and extract
requirements for our change metamodel.
Contribution: Requirements for a change-based model of software evolution.

• Chapter 3, Change-based Software Evolution, presents our change metamodel and
the principles which led to its construction. We detail the capabilities of our metamodel
and show how it addresses the requirements outlined in Chapter 2.
Contributions: A change-based model of software evolution satisfying the requirements
stated above. An implementation of it for Smalltalk, and a proof of concept for Java.

Part II, How First-class Changes Support System Understanding answers our first research
question: How can Change-based Software Evolution assist the reverse engineering of a sys-
tem? We answer on the levels of reverse engineering, program comprehension and metric
definition.

• Chapter 4, Assessing System Evolution, shows how fine-grained changes can be ab-
stracted to high-level evolutionary facts for the reverse engineering of systems. To
support this we introduce a visualization of the change data called the change matrix.
Using the change matrix, one can easily locate evolution patterns and extract a high-
level evolution scenario of how the system was developed.
Contributions: A technique supported by an interactive visualization to globally assess
the changes performed on parts or the whole of a software system. A catalogue of
visual change patterns to characterize the relationships between entities.



6 1.4 Roadmap

• Chapter 5, Characterizing and Understanding Development Sessions, investigates
the use of session-level metrics and session-level visualizations for incremental under-
standing of sessions. These metrics and visualizations use information which is not
recorded by a conventional SCM system. We show how the application of these tech-
niques on fine-grained development session data eases program understanding.
Contributions: Several metrics and a characterization of development sessions based
on change-based information. A process for the incremental understanding of sessions

• Chapter 6, Measuring Evolution: The Case of Coupling, shows that fine-grained
changes increase the accuracy of evolutionary measurements. Logical coupling recovers
relationships between entities which might be hidden otherwise. Logical coupling is
usually computed at the SCM transaction level. We introduce alternative measures of
logical coupling using fine-grained changes, and compare them with the original.
Contributions: Alternative and more accurate measures of logical coupling, and a
benchmark to compare them.

Part III, How First-class Changes Support Software Evolution answers our second re-
search question: How can Change-based Software Evolution assist the forward engineering
of systems? We applied Change-based Software Evolution to program transformation and
recommender systems.

• Chapter 7, Program Transformation and Evolution, extends Change-based Software
Evolution to support program transformations as change generators. We evaluate how
the extension fits in our model, and present a process called example-based program
transformation, through which one can record a concrete change and generalize it in a
program transformation. Finally, we show that transformations are fully integrated in
the system’s evolution and discuss the consequences of this.
Contributions: An extension of our change model to define program transformations.
A process to convert concrete recorded changes in generic program transformations.

• Chapter 8, Evaluating Recommendations for Code Completion, uses the informa-
tion in our change repository to define a benchmark for a recommender system that is
otherwise hard to evaluate, code completion. Based on this benchmark we also define
several completion ranking algorithms which are a significant improvement over the
state of the art.
Contributions: A benchmark to evaluate code completion tools. Several algorithms
improving completion tools evaluated with the benchmark.

• Chapter 9, Improving Recommendations for Change Prediction, adopts the same
benchmarking strategy for the goal of change prediction. We show that a benchmark
based on Change-based Software Evolution is more realistic than one based on SCM
data. We implement and evaluate several change prediction algorithms with the help
of the benchmark.



7 1.4 Roadmap

Contributions: A benchmark to evaluate change prediction tools. Several algorithms
evaluated with the benchmark.

Part IV, First-class Changes: So What? takes a step back from individual validation strate-
gies by considering our techniques as a whole, and concludes the work.

• Chapter 10, Perspectives, concludes this dissertation by evaluating how well we an-
swered our research questions, discusses our approach and the lessons we learned, and
outlines future research directions.



8 1.4 Roadmap

Part 4: Towards 
Harmonious Evolution?

Part 1: 
Modeling Evolution

Part 2:
Understanding Evolution

Part 3:
Supporting Evolution

10

2

3

4

5

6

7

8

9

[RL05a] IWPSE

[RL06] EVOL

[RL07a] ENTCS

[RL08c] ICSE

[RLL07] FASE

[Rob07] MSR

[RL07b] ICPC

[RL08a] MODELS

[RL08b] ASE

[RPL08a] WCRE

[RPL08b] TechReport 

[RL07c] TechReport 

State of the art 
and its shortcomings

Defining Change-based
Software Evolution

Platform implementation

Assessing the evolution

Refactoring usage

Development sessions

Program transformations

Code completion

Logical coupling

Change prediction

Continuous evolution
with change-aware tools

Figure 1.1: Roadmap of our work



Part I

First-class Changes:
The Why, The What and The How

9





Executive Summary

This part of the thesis introduces our central contribution, Change-based Software Evolution. Our
goal is to support maintenance and evolution of software systems by modeling the phenomenon
of software evolution as it actually happened.

We start in Chapter 2 by reviewing the literature in order to compare existing models of
software evolution and the maintenance tasks they support. From this review, we infer limitations
of each model hindering their support of maintenance tasks. This allows us to draw requirements
for a more comprehensive model of software evolution.

Based on these requirements, we conclude that a unified, clean-slate approach is needed.
Chapter 3 presents our proposal: Change-based Software Evolution models changes as first-
class entities affecting language-specific models of evolving programs. To avoid information loss,
we record the changes instead of recovering them





Chapter 2

Software Evolution Support in
Research and Practice

Many approaches have been proposed to address problems related to software evolution. How
they model the phenomenon of software evolution has a direct influence on how they can sup-
port it. Unfortunately, most approaches model software evolution in an ad-hoc manner. Many
reproduce the software evolution model of the SCM system they use as a data source. However
the SCM model of software evolution is not adapted to maintenance tasks beyond the ones they
directly address, such as versioning and system building.

We review a number of software evolution approaches, and how they model the software
evolution phenomenon. In the process, we identify shortcomings in their change model and
extract requirements to better support software evolution.

13



14 2.1 Introduction

2.1 Introduction

Software evolution has been identified as a source of problems since the 1970s. In nearly 40
years a large amount of research has been performed to ease the changes to evolving systems.
We analyze approaches featuring a model of software evolution and list their strengths and
shortcomings. From these we extract requirements for a more accurate representation of
change in software. The research areas we survey are:

Software Configuration Management (SCM): Although software evolution has only gained
wide interest as a research area since the 90’s, previous work has been done in SCM.
SCM systems had a considerable impact on the practice of software engineering [ELvdH+05].
We review SCM research prototypes and SCM systems used in practice. We outline the
characteristics of successful versioning systems and explain them.

Mining Software Repositories (MSR): The field of MSR uses the information contained in
software repositories (from SCM systems to mail archives and bug repositories) to ana-
lyze their evolution. Applications vary from verifying the laws of software evolution, as-
sisting reverse engineering to building recommender systems. Most approaches based
on SCM data reuse their evolution model. We analyze the impact of SCM systems on
the kind of research performed in MSR, and find that design decisions beneficial for
SCM systems are detrimental to MSR.

Alternatives to SCM and approaches to MSR: More detailed information is available in IDEs,
by monitoring programmers while they are interacting with the IDE. We review these
approaches and investigate whether and how much they include the concept of change
in the data they gather. Finally, we review several approaches which share some of our
goals, and use a primarily change-based representation of their data. Most of these
approaches are very recent and started while we were working on ours. Some were
actually influenced by it. We highlight the differences between these approaches and
Change-based Software Evolution.

2.2 Change Representation in SCM

Software Configuration Management is one of the most successful areas of software engi-
neering. The Impact report of Estublier et al. [ELvdH+05] gives a thorough account of what
characteristics of SCM were successful, or not, and why. In the following we focus on only
a few of the many aspects of SCM systems. The characteristics we are interested in are
how versioning of resources is performed, and how changes are tracked between versions.
Other characteristics such as configuration selection, system building or workspace manage-
ment are out of our scope. We first list and explain the characteristics we are comparing,
before recalling the impact they had on practice, i.e., on the kind of data available for MSR
approaches.



15 2.2 Change Representation in SCM

2.2.1 How SCM Handles Versioning

There is a slew of approaches to versioning. We refer the interested reader to the survey
by Conradi and Westfechtel [CW98] for a comprehensive account of the field. We are more
specifically interested in the following dimensions of versioning:

State-based versus change-based versioning: In the state-based model, the versioning sys-
tem stores the states of the entity, most often in a version tree or graph. Early examples are
Rochkind’s SCCS [Roc75] and Tichy’s RCS [Tic85]. Today, the majority of versioning systems
are state-based. To be space-efficient, only one version of a resource (initial of final) can be
stored, the other versions being then computed from deltas. In change-based versioning, the
changes are stored and the versions are computed from them. Examples are COV by Gulla
et al. [GKY91] and PIE by Bobrow et al. [GB80]. The advantage of change-based version-
ing is that it allows to easily express change sets, i.e., changes which span more than one
resource. Change sets usually have a logical meaning, such as fixing a bug, or implementing
a given feature. Although easier to have in a change-based versioning system, change sets
are also found in advanced state-based versioning systems. Some systems support both kinds
of versioning, such as ICE by Zeller and Snelting [ZS95].

Extensional versus intensional versioning: Using an SCM which features extensional ver-
sioning allows one to retrieve any version of the system which was previously committed to
the versioning system. Intensional versioning on the other hand allows one to specify and
build a version based on a query or configuration rule. A query may also compute on demand
a configuration which was not committed to the repository. Intensional versioning is usually
implemented in systems based on change sets (the program is composed of a baseline and
a combination of change sets), while extensional versioning is the realm of state-based ver-
sioning systems, although exceptions do occur. An example is the Adele by Estublier, which
supports intensional versioning even if it is state-based [Est95].

General versus domain-specific versioning: A general versioning system is able to version
any kind of resource as it does not assume any knowledge about it. In most cases, resources
are text files, or binary files. A domain-specific versioning system –such as a programming
language aware versioning system– uses the knowledge it has about the domain to handle
it with a greater precision. In particular, merging two versions of a resource is much more
predictable if the syntax (or even the semantics) of the domain is known. On the other hand,
a domain-specific versioning system can only handle its specific domain, and needs to be
adapted to be used in another domain. Examples of domain-specific versioning can be found
in Perry’s Inscape [Per87] and Gandalf by Habermann and Notkin [HN86].



16 2.2 Change Representation in SCM

2.2.2 Interaction Models in SCM

Beyond versioning, how people interact with the versioning system is critical. There are
several models of interaction with a versioning system:

Checkout/checkin: The checkout/checkin model is the most common interaction model. A
developer typically checks out a copy of the files he wants to modify, performs the needed
changes, and then checks the files back in. Only then will the versioning system compute the
changes or the deltas with respect to the previous version and store them in the repository.
Nearly all versioning systems use this model or one of its variants explained below.

Pessimist versus optimist version control: Pessimist and optimist version control are the
two main variants of the checkout/checkin model dealing with concurrency issues. Pessimist
version control uses locking to prevent more than one user to access a file at the same time.
This eliminates conflicts, at the cost of a potentially slower development pace. Optimist
version control posits that conflicts are infrequent, and does not restrict the number of people
who can access a given file. However, merging algorithms must be implemented to support
the occasions in which a conflict actually occurs.

Advanced process support: Advanced SCM systems support other policies beyond optimist
and pessimist version control to incorporate changes. For example, the Celine system by
Estublier and Garcia [EG06] has flexible policies. One policy is to broadcast changes first to
members of the same team, and have a team leader broadcast the changes to the rest of the
organization when it is necessary.

Distributed versioning systems: Distributed versioning systems do not rely on a central
repository. Getting a snapshot of the source code also involves getting a local copy of the
repository which subsequent commits will be stored into. This makes branching easy. When
branches are merged in a central repository, the history can be brought back as well if needed.
Distributed versioning is quickly gaining supporters among open-source projects. Example
systems are git 1, darcs 2 and mercurial 3.

Operation recording: All of the interaction models described so far are variants of the
checkout/checkin model. Few approaches really diverge from it. The alternative is to record
the changes performed in an environment, rather than inferring them at commit time. Such
an approach was employed in the CAMERA system by Lippe and van Oosterom, which
recorded operations to implement an advanced merging algorithm producing better results
[LvO92].

1http://git.or.cz
2http://darcs.net
3http://www.selenic.com/mercurial



17 2.2 Change Representation in SCM

2.2.3 The State of the Practice in SCM

So what makes an SCM system successful? The Impact report on SCM states it plainly:

“Of note is that virtually every SCM system is carefully designed to be indepen-
dent from any programming language or application semantics. [...] We believe
this is a strong contributor to the success of SCM systems.”[ELvdH+05]

The majority of SCM systems in use today are general-purpose, file-based SCM systems
relying on the optimist checkout/checkin interaction model. The most advanced versioning
systems have a degree of changeset support built on top of state-based versioning, but do not
fully use change-based versioning.

This is not surprising: A typical project needs to version a large number of entities of
different types, from source code files to documentation in various formats (web pages, PDF
manuals, READMEs), build files (Makefiles), or binary data (images, etc.). A project may
be implemented in several languages. This renders language-specific versioning not really
usable for most projects. One could conceive using two versioning systems, but this incurs
too much overhead.

In practice, people are willing to compromise on merging capabilities in order to keep us-
ing a generic versioning system. This is also a reason why checkout/checkin systems are still
used: If operation recording offers only advantages when merging, it is not worth switching
versioning systems and giving up the support for other file types.

Inertia is another factor. Changing from a versioning system to another implies learning a
new tool, so the benefit needs to be substantial. Switching during the life of a project is even
riskier, as the data in the old repository is valuable. If no repository conversion tool exists,
the data risks being lost or forgotten.

If we analyze the versioning systems used in the open-source world, we see these forces
in action. A few years ago, CVS was the dominant versioning system, with barely any com-
petition. In a survey of versioning systems [RL05] we predicted that open-source software
developers would switch to Subversion. Today, Subversion is the dominant open-source ver-
sioning system for several reasons. It is a significant improvement over CVS: It versions both
files and directories, whereas CVS versions only files, and features some support for change-
sets as it has transactions. Yet, it remains very close to CVS, as the commands are very similar.
Its stated goal was to be an incremental improvement over CVS. Finally, automated support
exist to convert a CVS repository to a Subversion repository.

Distributed versioning systems are increasingly popular: Git hosts Linux (which is not sur-
prising since the same person is behind both projects). Distributed versioning is a significant
improvement as it makes branching a system much easier, which is a key point for open-
source software. However, these versioning systems still keep their language-independent
design and follow the checkout/checkin model.



18 2.3 Impact of SCM Practice on the Research of MSR

2.3 Impact of SCM Practice on the Research of MSR

The Impact report on SCM states that:

“A side effect of the popularity and long-term use of SCM systems has been the
recent discovery that they serve as an excellent source of data [...]. A new field,
mining software repositories, has sprung up [...]. Without SCM systems, this
entire field would not be in existence today.” [ELvdH+05]

SCM has indeed caused the existence of the MSR field. Their goals are however not the
same. As a consequence, the design decisions taken by SCM systems which contributed to
their success are obstacles for MSR research. Since no other information source is available,
MSR research must adapt to the versioning systems which are widely used in practice. Today,
these are CVS and Subversion.

Two particular SCM design decisions, language-independence and the checkout/checkin
model, cause a significant part of MSR research to be either focused on reconstructing the
evolution of software, or on making high-level observations about it. Gîrba’s metamodel
Hismo [Gîr05] is the most advanced formalization of version-based evolution models. It
addresses the first shortcoming to some extent, but not the second, and is still sensible to
their interplay.

2.3.1 The shortcomings of SCM for MSR

Versioning files increases data processing Being language-independent makes SCM sys-
tems versatile: They can version any kind of file, even binaries. This automatically makes any
detailed analysis of a software system version much harder, as each system version must be
parsed, which is an expensive process. Without parsing the system, only high-level analyses
such as the evolution of the number of lines of code or the number of files in the system are
possible.

Since several versions of the system must be considered, the problem of traceability arises.
Entities must be matched across multiple versions of the system. The usual heuristic to con-
sider that entities with the same name are the same, does not cover all the cases. Each
entity could have been renamed, or could have moved from one place in the system to an-
other. Without a good matching algorithm, spurious additions and deletions of entities will be
recorded. Careful and costly examination of two successive versions of the system is needed
to map an entity to its sibling in the next version: Multi-version entity matching, or origin
analysis, is still an active research area.

Parsing and multi-version matching may be costly, but they allow one to analyze the
evolution of systems with more precision than by using only files and lines. For instance,
Gîrba et al. examined the evolution of class hierarchies [GLD05]. Zimmermann et al. used
lightweight parsing of the entities added or deleted in a transaction for change prediction
[ZWDZ04], while Dagenais et al. used it to recommend changes when a framework evolves
[DR08].



19 2.3 Impact of SCM Practice on the Research of MSR

Taking snapshots loses data The second problem lies with the interaction model of major
SCM systems, the checkout/checkin or any of its variants. In this model, a developer interacts
with the SCM system only when he wants to update his working copy or when he commits
his changes to the repository. This is the only time in which the SCM system can determine
the changes the developer made to the system.

However, there are no guarantees of how often developers commit. An arbitrary amount
of change can have taken place before a commit. If only a few changes are committed at the
same time, it is still easy to differentiate between them. On the other hand, if more changes
are committed at the same time, then inferring what each change does becomes a problem.
While the design choice of being language-independent is merely an inconvenience incurring
extra preprocessing of the data, the checkout/checkin model makes SCM systems actually
lose information.

In addition the checkout/checkin model does not record the exact sequence of changes
performed in a commit. All changes in a transaction will have the same time-stamp. Their
order can not be inferred.

class Foo {
    public int x;
    public int y;

    public doFoo() {
         blah.blah(blah);
         z = x + y;
         blu = blu * 2;
         t = blurg(z);
         bli[t] = blu;
         return t;
    }

    public quux() {
        return y + 4;
    }

    public asdf() {
        return x * 8 + y;
    }
}

  f = new Foo();
  f.doFoo();
  print f.x + f.y;

class Foo {
    private int x;
    private int y;

    public getX()  { return x; }
    public setX(newX) { x = newX; }

    public getY() { return y; }
    public setY(newY) { y = newY; }

    public baz() {
         blah.blah(blah);
         z = getX() + getY();
         return bar();
    }

       public quux() {
        return getY() + 4;
    }

    public asdf() {
        return getX() * 8 + getY();
    }

     private bar(z) {
         blu = blu * 2;
         t = blurg(z);
         bli[t] = blu;
         return t;
    }
}

  f = new Foo();
  f.baz();
  print f.getX() + f.getY();

class Foo {
    public int x;
    public int y;

    public doFoo() {
         blah.blah(blah);
         z = x + y;
         return bar(z);
    }

    public quux() {
        return y + 4;
    }

    public asdf() {
        return x * 8 + y;
    }

    private bar(z) {
       blu = blu * 2;
       t = blurg(z);
       bli[t] = blu;
       return t;
    }
}

  f = new Foo();
  f.doFoo();
  print f.x + f.y;

class Foo {
    public int x;
    public int y;

    public baz() {
         blah.blah(blah);
         z = x + y;
         return bar(z);
    }

    public quux() {
        return y + 4;
    }

    public asdf() {
        return x * 8 + y;
    }

    private bar(z) {
       blu = blu * 2;
       t = blurg(z);
       bli[t] = blu;
       return t;
    }
}

  f = new Foo();
  f.baz();
  print f.x + f.y;

gray background
bold italic ?

Extract Method Rename Method Create Accessors

lines changed between commits
changes caused by refactorings

Figure 2.1: Simple refactoring scenario leading to evolution information loss.



20 2.3 Impact of SCM Practice on the Research of MSR

Example: Meet Alice One might think these two shortcomings are not too much a problem,
especially since only one of them involves information loss. Figure 2.1 shows how this loss of
information can significantly degrade the knowledge inferred about a system. In this simple
scenario, Alice, a developer, starts a short refactoring session, in which she refactors the
method doFoo. She:

• applies the “Extract Method” refactoring to doFoo: This extracts a block of statements
she selects in a new method bar;

• applies “Create Accessors” to attributes x and y. The refactoring replaces direct accesses
to instance variables x and y with accessors throughout the entire system;

• applies “Rename Method” to doFoo. doFoo is renamed to baz, replacing all references
to doFoo in the code base.

Alice then commits these changes. This is a very small commit, less than a minute of
work, since all these refactoring operations can be semi-automated: In current IDEs, they are
only a right-click away. According to the information gathered from the versioning system,
the following physical changes happened:

• The method doFoo changed name and is now significantly shorter. This makes it hard
to detect if the new method baz is really the same entity that doFoo was. A simple
analysis could conclude that method doFoo disappeared.

• There are several new methods: bar, baz, and accessor methods getX, getY, setX,
setY.

• Several methods had their implementation modified because of the renaming of doFoo
and the introduction of accessors, possibly scattered among several files of the entire
codebase.

In this example, only refactorings –by definition behavior-preserving[Fow02]– have been
performed. There were no logical changes to the system, yet this commit caused many phys-
ical changes: Its importance measured in lines of code is overestimated. CVS would report
that 11 lines were removed, and 18 lines were added. Extra processing is needed to make
that figure accurate.

The simple scenario depicted above assumes that a developer commits after every couple
of minutes of work. Table 2.1 presents statistics gathered on 16 open-source projects using
the Subversion version control system. All the commits were grouped by author and by date.
The next to last column shows that an average developer will perform more than one commit
per day barely 15% of the time. A developer such as Alice would on the other hand perform
dozens of commits daily. When two or more commits are performed on the same day, the
average distance between them is nearly four hours, far more than the five minutes taken
above (We used a sliding time window of 8 hours to determine whether two commits took
place on the same day). Finally, a quick look at the distribution of commits by size shows that



21 2.3 Impact of SCM Practice on the Research of MSR

Project Number of % 1 % 2-4 % 5-9 % 10+ % days with interval
name commits file files files files 2+ commits (minutes)
Ant 14,078 96.25 3.35 0.27 0.13 17.35 227
Django 4,812 87.43 12.57 0 0 10.83 232
Gcc 87,900 47.26 40.64 6.64 5.46 24.72 209
Gimp 23,215 91.68 7.85 0.33 0.13 21.39 235
Glib 5,684 88.79 10.66 0.44 0.11 32.12 181
Gnome-desktop 4,195 89.92 9.58 0.38 0.12 41.12 178
Gnome-utils 6,611 80.34 19.32 0.33 0.02 29.53 183
Httpd 39,801 56.17 40.76 2.89 0.17 19.96 209
Inkscape 14,519 90.92 8.83 0.22 0.03 17.65 228
Jakarta 70,654 77.43 20.74 1.64 0.18 17.04 217
Jboss 5,962 95.67 4.29 0.03 0 19.52 220
KDE 817,795 78.48 20.59 0.83 0.10 13.05 231
Lucene 14,078 80.52 18.45 0.93 0.10 17.35 227
Ruby on Rails 9,251 96.25 3.35 0.27 0.13 12.88 240
Spamassassin 10,270 91.17 8.26 0.50 0.08 17.58 222
Subversion 21,729 50.26 47.83 1.70 0.21 25.70 222
Total 1,158,824 75.69 22.41 1.38 0.52 15.16 226

Table 2.1: Per-author commit frequency in several open-source projects

if 75% of them change a single file, 25% change a larger number of files. This is particularly
problematic for the 2% of commits which span changes across more than 5 files, indicating
either large changes or crosscutting.

Another factor at play when analyzing open-source repositories is the patch practice. A
core group of developers are free to commit to the central repository, but most people do
not have access to it. If they want to submit a change to the system, they will submit a
patch file (essentially a delta between their version and the standard version). The patch
will be reviewed by some of the core committers, and if deemed satisfactory, committed to
the central repository. This means that features are proposed to the core team when they
are stable: The evolution which led to the feature implementation happened outside of the
repository and is hence lost.

When 1 + 1 = 3 Finally, the conjunction of both shortcomings yields further problems. To
dampen the checkout/checkin problem, one would want to have as many SCM commits as
possible, in order to get a more accurate vision of the evolution of the system. In essence, one
would want to analyze as many versions as possible to get the smallest differences between
each version.

This however directly conflicts with the first shortcoming. Since fully parsing an entire
system is an expensive operation, parsing 10,000 versions of one system is even more so. This
is why most software evolution analyses use sampling, and select only a few versions of the



22 2.3 Impact of SCM Practice on the Research of MSR

system they study, typically under a dozen. Sampling is so common, that Kenyon by Bevan et
al. [BEJWKG05], a tool platform aimed at easing software evolution analyses by automating
common tasks, listed sampling as a requirement for the tool.

In short, even if the developers of the system are disciplined enough to commit early
and often to the SCM system in order to minimize differences between versions, the sheer
number of versions forces evolution researchers to only select a few of them. The farther
apart two versions are, the more changes between them, and the more difficult it becomes
to tell individual changes apart. Selecting 10 versions out of five years of history leaves one
version every six months, a far cry from the two minutes scenario we used as an example.
Entire parts of the system seem to appear at once with no history whatsoever, essentially
defeating the purpose of evolution analysis. How can one pinpoints shortcomings of a system
based on its history if there is no history to be found?

Conclusion Given the shortcomings of SCMs as an accurate evolutionary source and the
considerable data loss they incur, it is not surprising that among the currents of MSR research,
two of the main ones are high-level analysis, and evolution reconstruction. In the following
sections, we review high-level approaches, contrast them with full-model approaches, and
then review evolution reconstruction solutions.

2.3.2 High-level evolution analysis

High-level analysis considers that it is too costly to parse the system and hence uses infor-
mation which is more easily accessible such as commit logs, number of lines of code and the
number of files in a system. A commit log stores for each commit its author, its date, and the
files modified during the commit. Transactions have to be reconstructed with CVS. SVN does
not mention in the commit log the number of lines added and deleted for each file.

Logical coupling introduced by Gall et al. is a high-level solution to the coupling problem
[GHJ98]. Instead of detecting which entity depends on which other by analyzing method
calls between them, logical coupling counts the number of times two entities changed to-
gether.

Robles, Herraiz et al. showed that simply counting the number of lines of code of mod-
ules evolving over time can give some insights about the evolution of systems [RAGBH05],
[HGBR08]. Godfrey and Tu found that some open-source systems such as Linux have a su-
perlinear growth [GT00], instead of the expected linear one. A finer analysis can consider,
beyond lines of code, the physical structure of the system as files and directories, as done by
Capiluppi et al. [CMR04].

Authorship patterns in evolutionary files has been analyzed through the ownership maps
of systems by Gîrba et al. [GKSD05] and fractal figures by D’Ambros [DLG05]. The former
emphasizes the time dimension, the latter the structure of the system. Other sources of data
are considered. Fischer et al. linked version control and bug tracking information [FPG03],
which was visualized by D’Ambros and Lanza [DL06b]. Recently, Bird et al. analyzed mailing
list archives [BGD+06].



23 2.3 Impact of SCM Practice on the Research of MSR

Conclusion If a large number of versions can be considered when performing high-level
analysis, its insights are limited. In addition, their accuracy has been questioned by Chen et
al. [CSY+04] who expressed doubts about the accuracy of commit logs, when they compared
them with the actual changes found in the files.

2.3.3 Full model evolution analysis

Full model evolution analysis is more coarse-grained in terms of number of versions, but
yields more precise results. Analyzing the evolution of more complete program models,
researchers were able to identify more precise characteristics or shortcomings of systems.
Among the numerous approaches that have been tried, we mention a few.

Holt and Pak visualized the evolution of the architecture of a system across two versions
[HP96]. Xing and Stroulia [XS05] focus on detecting evolutionary phases of classes, such as
rapidly developing, intense evolution, slowly developing, steady-state, and restructuring.

Gîrba formalized the evolution of systems for which the SCM data is available in his
Hismo metamodel [Gîr05]. Based on Hismo, Gîrba et al. analyzed the evolution of entire
class hierarchies [GLD05], while Lungu et al. analyzed the relationships between packages
[LLG06], and subsequently the evolution of their relationships [LL07]. Wettel and Lanza
analyzed the evolution of systems at the system level, while also taking into account the
evolution of classes and methods [WL08]. Ra̧tiu et al. defined and evaluated the concept of
history-based detection strategies, which differentiates between stable and unstable defects
[RDGM04].

Conclusion Fuller analyses permit deeper insights about the evolution of language-level en-
tities in the system. However the number of versions analyzed is usually limited. For instance,
Holt and Pak [HP96] considers two versions at a time. Xing and Stroulia [XS05] analyses 31
versions in 4 years, which amounts to less than 1 per month. Ra̧tiu et al. [RDGM04] analyses
40 versions out of the 600 available on a 10 year period. This means that the history available
is significantly reduced, in turn reducing the accuracy of the approaches.

2.3.4 Evolution reconstruction approaches

Evolution reconstruction tries to make up for the lost information by inferring the changes
that happened during the evolution.

Refactoring detection According to Dig and Johnson, refactorings are a significant portion
(80%) of API-breaking changes [DJ05]. It is possible to automatically update code which
was broken by a refactoring, as demonstrated by Henkel and Diwan [HD05] or by Savga et
al. [SRG08], provided they are recorded (from the IDE) or detected (from MSR archives).

Weißgerber and Diehl present an approach to detect refactorings which were performed
between two versions of a system [WD06]. So do Dig et al. [DCMJ06] and Taneja et al.



24 2.3 Impact of SCM Practice on the Research of MSR

[TDX07]. Earlier, Demeyer et al. used metrics [DDN00]. These approaches however detect
only a subset of refactorings, mainly “Rename” and “Move” refactorings.

Version matching Matching entities across versions is a well-known problem, since entities
can be renamed or moved between two versions. It is however essential if one wants to
analyze the entire history of a given entity. Without it, the entity’s history will be split, with
one entity disappearing while the other appears.

Tu and Godfrey [TG02] use origin analysis to determine if an entity is effectively the same
in several versions of a system. The approach was refined in [GZ05], to detect entities being
merged or split with another. The problem of renamed functions was also tackled by Kim, Pan
and Whitehead [KPEJW05]. Kim, Notkin and Grossman propose another approach [KNG07]
using change rules and an inference algorithm.

Clone detection Detecting duplicated code and showing how it evolves is a relevant prob-
lem. Duplicated code poses a maintenance problem, since a change to one clone usually
implies changing all the other clones to avoid bugs. Detecting clones across versions allows
one to see which clone instance is the originator, and see the evolution of a clone group across
time, as shown by Adar and Kim [AK07]. Since clone detection is resource intensive, a small
amount of work has been performed in this area.

Contradictory claims have been made about the harmfulness of clones. The conventional
wisdom is that clones should be avoided: When a clone group is found, it should be refactored
to remove the duplication by abstracting away the common behavior. However, recent work
by Kim et al. [KSNM05], or Kapser and Godfrey [KG06] suggest that this is not always the
best course of action. Some clones are better left alone, as they are too hard to refactor, or are
going to evolve differently. To handle that situation, Toomin et al. proposed linked editing
[TBG04], while Duala-Ekoko and Robillard presented a clone tracking tool [DER07]

Line-based evolution At an even lower level, an approach by Canfora et al. is dedicated to
differentiate between lines added, deleted and simply changed in a CVS commit [CCP07].
By itself, the only information CVS gives is the number of lines added and deleted. Even a
single character change would be interpreted as the addition of one line and the removal of
another. Of note, Subversion does not provide any estimation of the number of lines added
and deleted in a transaction: This has to be computed separately.

Conclusion A lot of approaches exist to recover a system’s evolution with more accuracy.
All of them are limited by the change amount between versions. They are all time-consuming,
strengthening the problem of limited versions. To date, these techniques have been used in
isolation rather than being combined.



25 2.4 Alternative Approaches

2.4 Alternative Approaches

2.4.1 IDE monitoring as an Alternative to SCM Archives

In recent years, a sizable proportion of programmers have begun to use Integrated Develop-
ment Environments (IDEs)[LW07]. Modern IDEs are also very flexible and feature a plug-in
architecture third-parties can build on.

For these reasons, Eclipse, the most used Java IDE, is frequently adopted by the research
community as a platform to implement research prototypes. A review of these shows that
by using IDEs, one can get around the limitations of SCMs, by getting some development
information during the time where the SCM is not solicited. This is possible since an IDE such
as Eclipse features an event notification mechanism to which interested parties can suscribe.

Context-building tools Mylyn (formerly Mylar) by Kersten and Murphy [KM05; KM06] de-
termines what entities are interesting to a developer based on his recent interactions. It uses
a degree-of-interest (DOI) model in which entities which are browsed or edited see their de-
gree of interest increased, while it otherwise slowly fades with time. Mylyn tracks navigation
and editions in the IDE at a shallow level: It tracks which entity was changed, but not how
or to what extent.

NavTracks by Singer et al. employs a similar approach [SES05], but focuses on the navi-
gation in files, proposing files which are likely to be navigated to next. TeamTracks by DeLine
et al. [DCR05] features a similar name and approach: It displays a filtered view of entities
based on the entity in focus. Finally, Parnin and Görg propose another similar approach were
they reify usage contexts [PG06].

Interaction Coupling Zou et al. propose an alternative to logical coupling, called interaction
coupling, which takes into account both the changes to the program and the navigation
[ZGH07]. In particular, it needs less data (i.e., a shorter history) than SCM-based logical
coupling before returning results.

Awareness Awareness tools, which tell developers when they are working on the same
part of the system, can be implemented using a finer-grained IDE monitoring, as shown
by Schümmer and Haake [SH01] (at the method level), instead of the more widespread
monitoring of files taken by Estublier and Garcia [EG05] or Sarma et al. [SNvdH03].

Conclusion If these approaches use a finer type of information, none so far feature a deep
analysis of the entities they monitor, such as detecting the kind of change that was applied
to it. Parnin et al. proposed to combine traditional MSR with IDE data [PGR06], so that
interactions are also considered. However, this does not help in finding more precise changes.



26 2.4 Alternative Approaches

2.4.2 Change-based approaches

The approaches we saw above have some kind of change representation which is either based
on version in the case of SCM and MSR, or very shallow in the case of IDE monitoring
(presence or absence of changes). Here we review more complete change representations
which are similar to ours.

Change-based and refactoring-aware versioning systems Smalltalk has featured a change
model for some time, in the form of change sets. This model however is limited since only
changes to methods and classes are described. This model has been extended to build a fuller
SCM system named PIE by Goldstein and Bobrow [GB80], in which features of the system are
each represented as a distinct layer. The closest approach to ours is operation-based merg-
ing by Lippe and van Oosterom as used in the CAMERA system [LvO92], where operations
are recorded and manipulated to perform the merging of conflicting edits. However, the op-
erations are not explicitly specified as the paper describes operation-based merging from a
generic standpoint. Operation-based merging focuses only on the merging problem, as part of
collaborative development [Lip92]. The approach has been extended by Freese [Fre07], with
the objective to also include refactoring-aware versioning. However the approach considers
only the merging problem. Another similar approach is taken by Kögel [K0̈8]. First-class
changes are used to version UML models. This representation is natural since UML models
are not text-based. Kögel employs a change hierarchy similar to ours at the lowest levels, but
is interested mainly in versioning.

Several versioning systems are change-based, but still remain language-independent, and
as such keep much of the same problems: Translating first-class changes to lines in AST-
level changes is not trivial. These systems are also snapshot-based systems. Those are too
numerous to list here. A recent and interesting system is the patch-based Darcs4, where
every change is stored as a patch, and a theory of patches and the operation they support is
provided.

Several versioning systems support explicit refactoring as a kind of change. Ekman and
Asklund’s system [EA04] stores ASTs of entities, and separates edit operations from refactor-
ings. Dig et al. present a system [DMJN07] based on Molhado [NMBT05], a flexible SCM
infrastructure by N’Guyen et al. MolhadoRef separates edits which are versioned normally,
from refactorings, which are stored separately.

Accurate evolution reconstruction A few approaches use versioning system archives to
build a detailed change representation.

ChangeDistilling by Fluri et al. [FWPG07] parses source code files and uses AST differ-
encing to build a more accurate change representation. The AST they use goes down to
the control flow level: Instructions such as iterations and loops are modeled, but individual

4http://en.wikibooks.org/wiki/Understanding_darcs/Patch_theory

http://en.wikibooks.org/wiki/Understanding_darcs/Patch_theory


27 2.5 Summary

statements are strings only. Change Distilling has been used for software evolution analysis,
including a change classification [FG06] by their significance.

Schneider et al. mined the local edit history they recorded [SGPP04]. Their tool, Pro-
jectWatcher, uses a “shadow repository” where they commit changes automatically, thus not
relying on the developer to commit. A fact extractor is then used to infer relations between
entities in Java, such as classes, packages, methods and calls. Not everything is parsed. The
system was primarily used for awareness visualization.

Change-based models Finally, several models feature change representations similar to
ours, or similar tactics to record them.

Blanc et al. [BMMM08] encode models as a sequence of construction operation (changes)
to detect inconsistencies in them. They however do not record or use any history.

Changeboxes by Zumkher et al. [Zum07; DGL+07] model changes as a first-class entity
with the goal to make several versions of a system coexist at runtime. It also features basic
SCM capabilities, such as merging. The change representation models entities up to the
method level, but not below it.

Cheops [EVC+07] is another model of first-class changes aimed at run-time evolution of
systems. The authors took an early version of our change model as an example and extended
it. They also use the FAMIX model as their program model [TDD00], while we use our own
program model which is simpler.

Omori and Maruyama implemented a tool named OperationRecorder for Eclipse [OM08].
Their approach is directly inspired by ours, but features a different change recording ap-
proach.

Chan et al. also record changes as they happen from Eclipse [CCB07]. However they
adopted a language-independent approach, trading accuracy in analyses for genericity. They
propose several visualizations of the change data.

Conclusion. Over time, several approaches explicitly modeling software change have been
proposed; their number have increased recently. The domains of application are quite spe-
cific and vary from versioning systems (targeting merging, collaboration and domain-specific
areas such as MDE), to evolution reconstruction approaches aiming for accuracy, and runtime
evolution of systems.

2.5 Summary

Versioning systems have to cover a variety of tasks, such as workspace management, poli-
cies, system configuration and building, beyond mere versioning. So far, successful versioning
systems have been language-independent and non-intrusive. This led them to version files
according to the checkout/checkin version model.



28 2.5 Summary

MSR approaches depend on the versioning system to gather evolutionary data. They hence
rely on general change models which do not provide many insights about the evolution of
systems, beyond high level observations. Post-processing of the data is possible to parse
successive versions of the system, but is expensive. There is thus a trade-off between the
number of versions considered i.e., the accuracy of the history, and the accuracy of the sys-
tem’s model. The more precise the system model is, the larger the time periods between two
successive versions.

IDE monitoring tools bypass or complement the information found in SCM repositories
with IDE usage information obtained by tracking what the programmer is doing. So far, the
change models used in IDE monitoring (when one was used), have been shallow: One knows
that a program entity was changed, but now how or by how much. Other approaches only
use the navigation information, where by definition there is no change model whatsoever.

Change-based approaches are few and recent for the most part. Several models have been
proposed. Some only model refactorings, and use classical versioning for other edits. Some
infer changes from CVS archives, while other record them. The granularity varies: Some stay
language independent, other model several kinds of entities. Some of them model entire
ASTs, others parts of it, and others stop at the method level. None model all changes while
also adapting to the language and recording the changes from the IDE.

Conclusions From our literature review, we extract the following conclusions:

• SCM systems are an inadequate source of information if one wants to build an accurate
model of software evolution.

• MSR has found a variety of uses, from reverse engineering to change prediction, to
analyzing clone evolution and refactoring detection. Our change-based model of soft-
ware evolution should support a variety of activities, from high-level ones to lower-level
ones.

• Precise approaches such as refactoring detection, change prediction, generally rely on
at least some knowledge of the language being used, while reverse engineering rely on
a fuller knowledge of it. Hence supporting language-level entities is critical.

• IDEs allow one to gather very precise information about the way programmers use the
IDE. The open architecture of IDEs allows one to be notified of what developers do
fairly easily. So far, the use of this information has been limited. We believe much more
can be achieved with more detailed IDE monitoring.



Chapter 3

Change-Based Software Evolution

At the heart of the software life cycle is change. We established that to better support change,
we need an accurate model of it. We present our change-based model of software evolution and
explain how it addresses some of the shortcomings of other approaches. Our model is based on
the following principles:

• Programs need to be represented accurately: A program state is represented by an Abstract
Syntax Tree of the entities composing it.

• Changes need to be represented accurately: A program’s history is a sequence of changes.
Each change, when executed, produces a program state in the form of an AST. Changes can
be composed to form higher-level changes.

• Changes should be recorded, not recovered: To achieve a greater accuracy, changes are
recorded in an IDE as they happen, rather than being recovered from versioning system
archives.

29



30 3.1 Introduction

3.1 Introduction

This chapter details our model of change-based software evolution. From our literature re-
view we identified strengths and shortcomings of state of the art approaches. From these
we extracted high-level guidelines, or principles, that support our approach. We first list and
justify each of the principles behind our approach, before describing our change meta-model,
our program model and our change recording strategies. Finally, we outline the validation
steps we took.

3.2 Principles of Change-based Software Evolution

Principle 1: Programs instead of Text

Systems use the finest possible representation, abstract syntax trees.

If we wish to model and analyze evolution accurately, we need to adopt the most accurate
data representation we can. The state of a program is most accurately described as an Ab-
stract Syntax Tree (AST). We model the structure of the system as a tree of entities (at both
coarse and fine levels), and the references between entities such as accesses to variables, calls
to methods, etc.

Pros:

• We build an accurate representation from the ground up: We have seen that multi-
ple analyses are performed to assist both reverse and forward engineering. If some
are lightweight (like file-level change coupling), others require either shallow parsing
(method level change prediction and coupling), or full parsing (class hierarchy evolu-
tion analysis). According to the saying, if one can do the most, he can also do the least:
A fully parsed solution contains the information needed for less detailed analyses. For
instance, it is always possible to generate source code if counting the lines of code is
needed.

• To perform accurate analyses, an accurate representation is needed. We also know that
parsing and matching entities is expensive. It seems more economical to perform it
only once and have a direct representation that can be accessed from then on.

• ASTs are insensible to layout modifications. A class of low-significance changes can be
filtered out without needing a special analysis. Other kinds of changes are detected
more easily.



31 3.2 Principles of Change-based Software Evolution

Cons:

• Lightweight representations would be less memory intensive. Maintaining a full system
AST occupies more memory than a simpler model encoding only file names and num-
ber of lines. The scalability of our approach could be an issue for large systems. We
think however that the amount of memory available in today’s –and tomorrow’s– ma-
chines makes it usable. As we show with the second principle, we do not maintain AST
representations of every versions of the system at every time: The ASTs are computed
on demand.

• Parsing is language dependent. We need at least a parser for the given language: If
none is available, a substantial effort will be needed to build one. However, without
such a parser, no advanced analysis would be possible anyways.

Principle 2: Changes instead of versions

Changes are represented as first-class entities –as executable AST operations supporting compo-
sition.

We want to model the phenomenon of change itself. If our base representation is the
AST of a program, it follows that changes are AST operations, hence simple tree operations.
We also need a composition mechanism to support higher-level changes, such as changes
touching several parts of the tree. An example is refactoring [Fow02]: A refactoring such as
“Rename Method” actually changes several methods since it has to update all the references to
the renamed method. Since there are many types of changes that can occur in a system, each
with different mechanisms, our change model needs to be flexible enough to accommodate
them all.

If changes at the low level are simple tree operations, they can be made executable and
can then produce ASTs. If a mapping exists between a change and its opposite, each change
can be undone. These two properties can also be transmitted to higher-level changes.

Pros:

• First-class changes are more accurate than versions. The only way to encode that a
refactoring occurred between two versions is to state it outside of the version model.
First-class changes do just that, except that they model every change that happened
between two arbitrary versions of the system.

• First-class changes are a superset of versions. Since they can be executed and undone,
they can produce a version of the system as an AST if this is needed. One can see
first-class changes as deltas used behind the scenes by most versioning systems, with
the difference that deltas must work with every kind of file, and are as such either
text-based, or binary.



32 3.2 Principles of Change-based Software Evolution

• Changes use less memory than versions. Accurate approaches to evolution analysis
model a system as successive versions. The default approach is to have a copy of each
entity for each version, even if it has not changed between these two versions. A more
space-efficient scheme could of course be implemented (such as deltas in SCM), but a
change-based implementation provides it “for free”. One could add that the more space-
efficient this encoding scheme is, the more similar to an accurate change representation
it becomes.

Cons:

• One could argue that executing changes to produce versions may not be scalable. Be-
yond a certain size, it would become intractable. Initial evidence for medium-sized
projects –such as our own prototype, which ranges in the tens of thousands of lines of
code during the course of 3 implementation years– shows that we have not reached
that point yet. Replaying the entire history of a system is in the order of minutes. Op-
timizations are of course possible: Storing snapshots of the system at several points
in time to have a hybrid between changes and versions is an approach we have not
investigated yet. We have on the other hand experimented with a scheme to access
quickly given entities by selecting only necessary changes (Section 3.4.4). This makes
accessing the state of any entity at any time a matter of seconds.

Principle 3: Record instead of recover

Changes are recorded from the IDE –instead of being reconstructed from SCM archives.

Our review of the evolution reconstruction research in MSR convinced us to look for
another approach. We want to avoid the trade-off between the number of versions one can
consider and the depth of the analysis one can perform on them. IDE monitoring gives
access to a large amount of information that the checkout/checkin interaction model of SCM
system loses. Therefore, we decided to record changes as they happen in the IDE, rather than
recovering them.

Pros:

• Recording is simpler than reconstructing. Whenever our system is informed of a change,
it can query the IDE for more information about it, in order to build our change rep-
resentation. This amounts to perform a difference between two versions of a program,
but with two advantages: (1) the difference is as small as possible since we are notified
of changes immediately (2) we know which part of the system just changed, so the
differencing algorithm is used on less data, and entity matching is simplified.

• Recording gives us more information. When we are notified of a change, one of the
simplest query we can make is to ask for the time stamp. This allows us to give a



33 3.3 Program Representation

timestamp to each change with a precision up to the second. In essence, we can record
the entire working session which resulted in a commit, rather than only reconstructing
its outcome.

• IDE integration is anyway necessary. Tool implementation are more and more released
as IDE extensions. If we want to produce tools that assist a programmer, it is only
natural to also use the IDE to record the changes. In the last two Future of Software
Engineering conferences (co-located with ICSE), invited papers in reverse engineering
by Müller et al., and by Canfora and Di Penta, evoked the vision of “continuous reverse
engineering”, where developers themselves interleave forward and reverse engineering
in their day-to-day activities [MJS+00; CP07]. Continuous reverse engineering requires
easy access to the reverse engineering tools while programming.

Cons:

• Our approach requires the programmer to use an IDE. Programmers using a classical
text editor are left in the cold. However, we believe that in a few years the overwhelm-
ing majority of programmers will be using IDEs for all their daily tasks. Most students
today learn to program using IDEs and prefer them over classical text editors [LW07].

• Our approach is IDE-specific. Since we rely on IDE monitoring, at least one part of
our approach has to be reimplemented every time we adapt it to a new IDE. However,
the problem would be still be valid since we would need to build tools as IDE plugins
anyway.

• What if some changes are performed outside of the IDE? Sometimes, programmers
do quick changes outside of the IDE, which would not be recorded. These cases are
however a small minority of all edits: Any long programming task is much more com-
fortable if done in an IDE. In such cases, evolution reconstruction approaches such as
ChangeDistilling by Fluri et al. [FWPG07] could be employed to import those changes
in the model. Of course, those would appear as a “clump” of changes –as they would
not have a precise timestamp–, but this still would give us a reasonable approximation
of the evolution, under the assumption that these changes are small.

3.3 Program Representation

Our first principle is that we should adopt a domain-specific representation of programs. It
should however be easy to define a new problem domain and adapt our approach to it. This
section describes our program representation and how it adapts to particular programming
languages.



34 3.3 Program Representation

3.3.1 Abstract Syntax Tree Format

Generic AST representation First-class changes are applied to programs. Our first task is to
define an adequate representation of a program in our model. Our program representation
has the following goals:

Simplicity: The program representation is not the primary focus of interest – the changes
are.

Genericity: Our program representation will contain language-dependent data. It should
however be as language-independent as possible. The program model should be adapt-
able with minimal effort to other languages, and support a variety of analyses.

Flexibility: If an extension is needed for a programming language or a new kind of analysis,
then it should require minimal effort to add it.

Fine-grained: For maximum accuracy, we want to model entities up to the statement level.

With these constraints at hand, we decided to define our own program model instead of
adopting a program model which was already defined. FAMIX, by Tichelaar et al. [TDD00]
was considered. FAMIX does however not model the entire AST of a method, only the invo-
cation of messages and accesses to variables in it, a decision reasonable for a model geared
towards reverse engineering. The author of FAMIX furthermore stated that UML is not ade-
quate for reverse engineering without extensions, and chose to use FAMIX rather than extend
UML [DDT99]. Both models would also require extensive effort to be implemented, failing
the simplicity constraint.

Since our system needs to support several types of analysis, we opted for the simplest
AST representation possible. Each of our AST nodes can be described by Figure 3.1. The
attributes of the AST nodes are detailed below:

0..1

*
id
properties

EntityState

children

parent

Figure 3.1: A node of the program’s AST



35 3.3 Program Representation

id: Each AST node has a unique identifier to unequivocally identify it.

parent: The parent of an entity is another entity. Each node keeps a link to its parent to ease
navigation. The only entities who do not have a parent are (1) the root of the AST, a
special-purpose entity at the top of the tree, and (2) entities which are not part of the
system’s AST, because they either are not added to the tree yet, or were removed from
it.

children: The collection of children of an entity. Leaves of the tree have no children. The
model does not impose any restriction on the number of children.

properties: All other properties of a node are domain-specific; they are not specified in the
generic model. Each node has a dictionary of key-value pairs for these properties,
allowing the model to accommodate any type of property. In particular, the name of an
entity is a property, independent from its identity.

Specific types of nodes are defined when adapting the model to a specific language.

3.3.2 Language Independence

We want to support several programming languages. Our model is hence generic, but spe-
cialized for the language needed. We applied our approach to Smalltalk and Java, two object-
oriented languages. To support the discussion, we show an object-oriented AST in Figure 3.2,
in which packages, classes, variables, methods and statements are represented.

Application to Smalltalk Smalltalk is an object-oriented, dynamically typed programming
language supporting single inheritance. From the coarsest to the finest, the various types of
entities we model are:

Packages: A package is the coarsest unit in a Smalltalk program. The parent of a package is
the root.

Classes: Each package can contain any number of classes. In Smalltalk, each class has a
superclass. The superclass is one of the properties of the class since its parent is a
package.

Attributes: Each class can contain any number of attributes. Attributes are leaves of the AST:
They have no children. The attributes are ordered.

Methods: Each class can have any number of methods. There is no particular order for
methods in a class. Methods contain statements.

Statements: There are several kinds of statements. The most common ones are variable ref-
erences (referring to a local variable, argument, instance variable or global variable),



36 3.3 Program Representation

System

Package A Package B Package C

... ...Class E Class F

public void foo(int y) ...private int x

return

+

y x

Figure 3.2: An example object-oriented program AST

variable declarations, variable assignments, message sends (i.e., method calls) and re-
turn statements. Statements can either be leaves or have other statements as children.
The parent of a statement is either a method or another statement.

The kind of each node (package, class, etc.) is a property, as well as the name. Classes
have their superclasses as a property as well. Smalltalk also features method protocols, which
are classifications of methods for documentation purposes. These are also defined as proper-
ties.

Application to Java The Java model is very similar to Smalltalk, with the following changes:

• Packages can be nested. A package can have both classes and packages as children.
The parent of a package is either another package or the root.

• The interfaces a class implements are encoded as properties.

• The access modifiers for classes, methods, attributes, such as public, protected, private,
static, final etc. are also encoded as properties.

• Finally, the type declarations (void, primitive types, classes and interfaces) are also
encoded as properties.

Our implementation as a proof of concept does not model statements yet. This would
require a full Java parser. Hence the body of a method is represented by lines.



37 3.4 The Change Metamodel

3.3.3 Limitations

Genericity Our model is very generic; it can not easily enforce constraints on certain kinds
of nodes (for example that a node can only have a limited number of children). Such con-
straints are implemented during the adaptation of our model to a given language.

Tree Representation Sometimes the parent/children relation is not enough to describe ev-
erything. For example, in the case of object-oriented languages we use containment for the
parent/children relation. Inheritance relationships have to be encoded in an alternative way;
we use properties. With languages featuring multiple inheritance, the problem would be even
more prevalent.

Ordering In an object-oriented language, the classes contained in a package are not or-
dered, while the statements in a method certainly are. Specifying which parts are and are not
ordered is one of the specialization steps.

3.4 The Change Metamodel

Our change metamodel embodies the second principle of change-based software evolution:
Changes should be first-class citizens. Before diving into details and describing the changes
in order of increasing granularity, we briefly list the key properties of our change model:

• Changes are transitions from one state (i.e., one AST) to the next. Each change can be
seen as a function taking one program state and returning a program state in which the
change is applied. Our changes are thus executable.

• Changes also have an opposite change, whose effect when executed on an AST is to
cancel out the original change. Our changes can hence be undone.

• At the lowest level, changes operate on a program state, that we defined as a tree:
Atomic changes –as we call them– are tree operations.

• Nevertheless our change model supports composition in order to group low-level changes
in higher-level changes. Composite changes keep the same execute and undo proper-
ties.

• Any number of AST states can coexist (created by the execution of different changes)
independently of each other. Applying changes to one will not change the others.



38 3.4 The Change Metamodel

- parent
Addition

- kind
Creation

- property
- value

PropertyChange

- entity
AtomicChange

- parent
Removal

- parent
- location

Insertion
- parent
-location

Deletion

- kind
Destruction

Figure 3.3: Metamodel of atomic changes

3.4.1 Atomic Changes

Atomic changes are the lowest level of changes in our model (Figure 3.3). Atomic changes
are tree operations performed on the system AST. Each atomic change refers to at least the
id of the entity it primarily affects, and keeps a link to its parent change (next section). The
following tree operations are sufficient to describe any AST change (Figure 3.4):

Creation: Create and initialize a new node with id n of type t. The node is created, but is
not added to the AST yet. The opposite of a creation change is a Destruction.

Destruction: Remove node n from the system. Destructions only occurs as undos of Cre-
ations, never otherwise (removed nodes are kept as they could be moving to a new
branch).

Addition: Add a node n as the last child of parent node p. This is the addition operation for
unordered parts of the tree. The opposite of an addition is a Removal.

Removal: Remove node n from parent node p. The opposite of the Addition change.

Insertion: Insert node n as a child of node p, at position m (m is the node just before n, after
n is inserted). Contrary to an addition, an insertion addresses the edition of ordered
parts of the tree. The opposite change is a Deletion.

Deletion: Delete node n from parent p at location m. The opposite of Insertion.

Change Property: Change the value of property p of node n, from v to w. The opposite
operation is a property change from value w to value v. The property can be any
property of the AST node, and as such depends on the properties defined in the model.



39 3.4 The Change Metamodel

C

X

P

P

A

R

I

D

Class 
Foo

Class 
Foo

Method
bar()

Method
bar()

Method
bar()

Method
bar()

return foo return foobaz() baz()

Create 42 as a class 

Change property name 
of 42  from Foo to Bar
Change property name 
of 42 from Bar to Foo

Destroy 42 

Add 43 to 42

Remove 43 from 42

42 42

43 43

43 43

52 5244 45 44 45

Add 52 to 43 
before 44

Remove 52 from 43 
before 44

Class 
Foo42

Class 
Foo42

Class 
Bar42

Description
Opposite Description

Change execution
Change undo

Figure 3.4: Effects of atomic changes on an AST

3.4.2 Composite Changes

Changes can be composed into higher-level changes, which keep the same execute and undo
properties. Our model features several levels of composite changes.

Developer-level actions are composed of atomic changes. They represent an individual
change to the system by a developer. Developer-level actions have a timestamp, and an
author. Examples for the Smalltalk language are:

Create package: Contains 3 atomic changes: The creation of the package, the addition of it
to the root, and the change of the package’s name property.

Create class: Contains 4 or more atomic changes: class creation, addition of the class to a
package, initialization of the class’s name, and initialization of the class’s superclass.
For each instance variable added to the class, 3 atomic changes (creation, insertion,
property) would also be included.



40 3.4 The Change Metamodel

Modify class: Changes the definition of the class. It could be any subset of “Create class”,
excluding the change actually creating the class. It could also include the deletion of
some instance variables.

Create method: Contains 3 changes for the method’s creation, and any number of changes
for the addition of statements in the method.

Modify method: The same as “Modify class”, but for methods.

Refactorings Refactoring are behavior-preserving program transformations [Fow02]. Most
are automated in IDEs nowadays. Refactorings may potentially change several places in
the program, for instance if all the references to an entity are systematically updated. In
our model, refactorings are composed of one or more developer-level actions. Example of
refactorings in our model are:

Rename Method: Features one method modification for the method which is renamed, and
one method change for each reference to the renamed method in any other method.

Extract Method: Features one method addition for the newly extracted method, and one
method modification to replace the extracted code with a call to the new method in the
original method.

Development Sessions A development session groups all the developer-level actions and
refactorings that happened in one coding session in the IDE. We use the following heuristic
to split the development history in sessions: If the difference between the timestamps of
successive changes (by the same author) is more than one hour, we consider that there has
been a hiatus in the development large enough to warrant starting a new session. This is the
closest equivalent in our model to an SCM commit, if one assumes that developers commit at
the end of each working session. We use that assumption in the following chapters.

Other possible divisions Beyond behavior-preserving transformations, our model supports
more general, non-behavior preserving program transformations, as described in Chapter 7.
Each transformation application results in a sequence of changes referencing the transforma-
tion they originate from.

A change may belong to several logical groups of changes. It may be part of a given
development session, but also of bug fix number 12345, and of feature X. Bug fixes and
features are concerns that need to have their evolution monitored as well as any program-
level entities such as classes.

Thus changes can be grouped in any arbitrary way which does not match the decomposi-
tion in sessions, refactorings and development-level actions: The implementation of a feature
may span several sessions, and not include every single change in it. A further example of
these groupings would be a crosscutting concern.



41 3.4 The Change Metamodel

In these cases changes can be grouped manually in a special purpose composite change,
and annotated for documentation purposes. The possibilities offered by grouping arbitrary
changes in this fashion are still to be explored.

3.4.3 Change histories

Our model features three kinds of change histories. Given our change description, our model
of the evolution of a system is simply a list of changes. The global change history contains all
the changes performed on the system.

For convenience, each program entity (represented by its ID) also has a per-entity change
history, which contains all the atomic changes concerning each entity. From this per-entity
change history, it is easy to recover the composite changes in which an entity was involved,
such as all the development sessions in which it was modified.

C A

Create foo() Add foo() to Bar

I

insert return 
in foo()

I

insert baz()
call in foo()

D

delete baz()
call in foo()

I

insert bad()
call in foo()

remove foo()
from Bar

R

I D

insert foo()
call in asdf()

delete foo()
call in asdf()

I

insert foo()
call in qwer()

I

insert foo()
call in foo()

D

delete foo()
call in foo()

D

delete foo()
call in qwer

insert foo()
call in qwer()

I

foo() change history:

foo() usage history:

Figure 3.5: Change and usage history of method foo()

Finally, the usage history of an entity refers to all the changes which increased or decreased
the usage of the entity in the whole system. For example, a variable has an increased usage
when a statement referencing it is inserted in the system, while a message has a decreased
usage when a statement sending it is removed from the body of a method. Figure 3.5 shows
the difference between entity and usage histories.

If we want to focus on a subset of the entities of the system, we can extract a partial
history of all the changes concerning these entities. This can be easily built from the per-
entity change histories of the entities in question. Some changes of other entities may be
needed, such as the changes creating entities referenced by one of the entity in focus (but not
all of their histories). For instance, if entity A (in focus) is added to entity B, we need several
changes from B’s history such as its creation and its addition to the model.



42 3.4 The Change Metamodel

3.4.4 Generating a View of the System

Generating a view corresponds to executing part or the whole of the system’s change history.
This creates a system AST (or view) corresponding to the application of all the changes which
were executed.

Complete view Given our change description, generating a view of a system at any date d
is simple: One simply needs to execute all the developer-level actions prior to d. As stated in
the previous section, several views of the system at different times can coexist without any
problem.

Partial view Building a complete view can be quite costly if the history of the system is long.
When the state of only a few entities is needed, it is possible to generate a view containing
only these entities, which is much less costly. To do so, one extracts from the model the
partial history needed to build the entities at a given date. Accessing the state of an entity
using a partial view is much faster than if one is using a global view. Figure 3.6 shows the
entities which are imported for the partial view of a method of the system. Of course, all of
its statements are imported, but its parents are partially imported as well.

System

Package A Package B Package C

... ...Class E Class F

public void foo(int y) ...private int x

return

+

y x
partially imported

imported

not imported

Figure 3.6: A partial view importing method foo()

Lazy view A lazy view is a complete view of the system whose elements are computed on
request only. When an element is requested, the lazy view dynamically creates a partial view
containing it, and imports it in its cache. A lazy view can also dynamically change the date in
the history of the system it is viewing. This involves purging the cache, so that it can query
the same entities with a new timestamp.



43 3.5 Recording and Storing Changes

3.5 Recording and Storing Changes

Our third principle states that instead of being recovered from version archives, first-class
changes should be recorded from the IDE when possible. This is the only way one can capture
the actual changes performed on the system, and not merely reconstruct an approximation of
them. We show the general architecture of our platform in Figure 3.7. A notifier informs our
plugin of developer events. It uses the IDE’s API to query relevant metadata which is added
to the events. The events are either stored on disk, or directly converted to changes. These
changes are then stored in a repository, from which they can be loaded and manipulated by
change-aware tools extending the functionality of the IDE.

Filter

Change 
repository

model loader
Integrated

Tools

IDE

Notifier

Notifications

Metadata (date, location ...)

Events

Event 
converter Event 

repository Change 
construction

Changes

Events

Changes

Eclipse Only Squeak Only Both IDEs

Models and Views

Figure 3.7: Architecture of our change-based tools

Requirements for the IDEs To monitor the changes we need to build a plugin for an IDE
which is open enough for us to get the information we need. In particular, we need an IDE
that provides the following:

An event notification system: The IDE should notify our plugin of events of interest, which
are first and foremost where and what kind of change occurred in the system, but also
when a refactoring is being performed. Knowing where, i.e., on which entity a change
was performed is critical as we avoid an exhaustive iteration of the entities in the
system to detect which one has changed. The matching problem is greatly simplified as
changing entities are known and the changes are minimal.



44 3.5 Recording and Storing Changes

Access to the program representation: The IDE should answer queries about its model of
the program it is editing, such as the source code of its classes and methods.

Access to various metadata: The IDE should also answer queries about who is performing
the change, and at what time the change did occur.

Squeak Smalltalk Plugin The plugin we implemented in Squeak provides all of the infor-
mation mentioned above, and some additional information recorded for future use: User
navigation in the system, execution of code, errors and exceptions occurring during code
execution, and usage of Squeak’s SCM system, Monticello.

Smalltalk is peculiar since changes methods or classes must be individually accepted, i.e.,
compilation of classes and methods is requested on an individual basis. The event handling
mechanisms therefore issues high-level events such as “method compiled” or “class modified”.
This proved to be a sweet spot, as it is accurate enough, yet does not run the risk of having
changes which make the system unparsable.

Eclipse Java Plugin Our current implementation of our plugin for Java is more of a feasibil-
ity study: as such, it records the information stated above, and nothing more [Sha07].

Change notification is also a bit trickier in Java. We could be notified of files being saved,
but this is too coarse-grained. We chose to use keystroke notifications instead, making the
Eclipse plugin notified much more often than the Smalltalk version of our plugin. We thus had
to implement a filtering mechanism which groups all the successive notifications when they
concern the same entity, which raised the notification frequency to the level of the Smalltalk
implementation.

Model construction Constructing the model of the program’s evolution based on the noti-
fications can be performed either online or offline. When performed online, the plugin reacts
to IDE notifications, queries the IDE and build the changes corresponding to the action the
developer just did. It maintains a change model and an AST view at all times. When offline,
the plugin queries the IDE for the necessary information and stores it in a file. That file can
be read later on to build the change model.



45 3.6 Uses of Change-based Software Evolution

3.6 Uses of Change-based Software Evolution

This section illustrates several usages of our model and illustrates how its various features
interact. We also describe the strategies we took in order to validate our model, and outline
which chapter uses which particularity of our model.

3.6.1 Example: Measuring the Evolution of Systems

We can compute two kinds of metrics: Program-level metrics, which are metrics on the AST
of the system, and change-level metrics, which are metrics on the change themselves.

Program-level metrics are evolutionary metrics, which can be computed after each change
in the system. Algorithm 1 shows how a metric is computed.

Input: Change History M
Output: Values of the metric

view = newView(M);
metricValues = Dictionary();
foreach Change ch in M do

view = execute(ch,view);
insert(metricValues, date(ch), computeMetric(view));

end
Algorithm 1: Algorithm to compute a metric’s evolution

The evolution of the metric varies with the level of change considered. One can compute
it for every developer-level action, or for every development session. Higher-level groupings
are also possible, such as grouping the changes by month or by year. Each metric can also be
computed on subsystems (using partial histories) to get a finer view of its evolution.

Since our program representation is rich, we can compute a variety of metrics using it.
Examples of program-level metrics are shown in Table 3.1, on top.

Change-level metrics are not computed on the AST of the system, but directly on the
changes themselves. No AST view needs to be built and modified for each change as done
above. These metrics are also applicable on any subsequence of changes, like on a set of
sessions. Some of these are shown in Table 3.1, at the bottom. Furthermore, some of the
program-level metrics can be computed more efficiently in this way. For instance, the num-
ber of classes can be computed not by counting the number of class nodes in the tree after
each change, but with an accumulator which is incremented when the current change is a
class addition, and decremented when it is a class removal.



46 3.6 Uses of Change-based Software Evolution

Metric Description
NOC Number of classes
NOM Number of methods
NOS Number of statements
AMSS Average method size (in statements)
AMSS2 Average method size (in statements, excluding accessors)
NORE Number of references to an entity
NOAX Number of added entities.

Entities can be packages (NOAP), class (NOAC), method (NOAM) etc.
NOMX Number of modified entities
NORX Number of removed entities
ANCC Average number of changes per children

Table 3.1: Sample program-level metrics (top) and change-level metrics (bottom)

3.6.2 Validation Strategies

The general strategy we undertook to validate our model’s usefulness for both forward and
reverse engineering is to define use cases in which our evolutionary information is intuitively
useful, and test this hypothesis either through proof-of-concept tools or benchmarks. In all
case, we use the change histories of the systems we monitored. See Appendix A for details.

Case studies We defined two reverse engineering approaches and one program transfor-
mation approach, all supported by tool implementations. Chapter 4 and Chapter 5 use
visualization, and Chapter 5 also uses metrics. Chapter 7 presents an approach aimed at
defining program transformations.

Such approaches, especially in a reverse engineering context, are hard to validate formally
as they rely a lot on human judgment. Since these approaches also rely on a novel source
of data, there are too many variables and not enough data points to perform a controlled
experiment or a comparative study. Our evaluation was performed with case studies based
on the histories of monitored programs. We plan to do comparative studies in the future
when we have more data at our disposition.

When possible, we performed comparisons with SCM equivalent data, in Chapter 4. The
other approaches rely explicitly on changes and their ordering, hence a comparison with SCM
data was not possible.

Prediction Benchmarks Some problems lend themselves better to numerical validations.
When the occasion showed itself, we took this strategy preferably. We found that recording a
very detailed development history allowed us to easily define benchmarks in certain contexts,
where we were able to assess the predictive power of our model. The general structure of
such a benchmark is shown in algorithm 2.



47 3.6 Uses of Change-based Software Evolution

Input: Change history M , predictor P
Output: Benchmark results

view = newView(M);
foreach Change ch in Change history do

predic t ion = predict(P);
compareOracle(predic t ion, M , view);
process(P,ch);

end
Algorithm 2: The benchmark’s main algorithm

Of course, such a benchmark has limitations: We can only run it on the systems for
which we have a recorded change history, which are not numerous, thus the result are not
generalizable to every system. On the other hand, our detailed history allows us to test
each system in great depth. We adopted a benchmark strategy to validate our approaches in
Chapter 6, Chapter 8 and Chapter 9.

3.6.3 What Is Used Where?

Our model was designed to support several development and maintenance tasks, so it intro-
duces several new concepts at once. Table 3.2 shows which part of our model is used in which
chapter of this dissertation. The first part displays the granularity of changes considered in
each validation technique. The second part tells if they use our model extension for generic
changes. The third part tells if they consider usage histories of entities. The fourth part of the
table tells if the techniques used views of the state of the model, or only the change informa-
tion itself. If they use views, it tells which kind of views they use. Finally, we recall the type
of validation we undertook for each chapter.

Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9
Change matrix Sessions Coupling Transformations Completion Prediction

Atomic changes Ø Ø Ø Ø
Developer actions Ø Ø Ø Ø Ø Ø
Refactorings Ø Ø Ø
Sessions Ø Ø
Generic changes Ø
References Ø Ø
System view Ø Ø Ø
Partial view Ø
Lazy view Ø
Validation cases cases benchmark cases benchmark benchmark

Table 3.2: Uses of various parts of the model across chapters of this document



48 3.7 Summary

3.7 Summary

In this chapter we described our model of change-based software evolution, aimed at sup-
porting a wide array of maintenance tasks. We explained the principles behind the choices
we took, described in details the features and concepts behind our model, and illustrated its
usage on selected examples. We also outlined the validation steps we undertook.

In the next two parts, we will evaluate how comprehensive our approach really is by
applying it to several problems across the reverse and forward engineering spectrum. Part II
describes how our approach supports the reverse engineering of systems, i.e., understanding
their evolution, while Part III shows how our approach can be used to support the evolution
of systems.



Part II

How First-class Changes Support
System Understanding

49





Executive Summary

This part of the dissertation demonstrates how one can use the information gathered by Change-
based Software Evolution (CBSE) in a reverse engineering context. We show that:

CBSE is useful at all levels of analysis. In Chapter 4 we showed how CBSE assists the
reverse engineering of a system through visual change pattern detection and evolution scenario
reconstruction. In Chapter 5 we introduce a top-down process for development session compre-
hension. It starts with the entire history and ends with program comprehension at the individual
change level.

CBSE measures evolutionary characteristics with more accuracy. In Chapter 5 we
define change-based metrics to characterize sessions based on their individual changes. Our
approach is the only one that can measure these metrics. In Chapter 6 we measure logical
coupling with a shorter history than needed by other approaches.

The fundamental reason behind these results is that CBSE frees us from the usual evolutionary
trade-offs. Our approach tracks fine-grained entities (up to individual statements) and their
individual changes. When classic views of software evolution wish to be fine-grained, they usually
need to limit the number of versions they analyze. The alternative is to analyze all versions from
a high level. By recording fine-grained changes instead of recovering them, we sidestep this
problem.





Chapter 4

Assessing System Evolution

When dealing with an unknown system, one first needs to acquire a high-level understanding of
it. Typical questions asked during that process are:

• What are the most complex entities?

• What are the most changing entities?

• How did the system evolve to its current state?

We present and evaluate an evolutionary visualization, the Change Matrix, which uses our
fine-grained change representation to answer these questions. The Change Matrix displays evolv-
ing entities by giving precedence to the changes happening to them, rather than the successive
versions of the system. The user can easily spot how the system changes and reconstruct a sce-
nario of how the system evolved. Interactive system exploration is available: Any set of entities
or time period can be explored further.

53



54 4.1 Introduction

4.1 Introduction

During the first contact with a system, or when attempting to understand a rapidly evolving
system, the first questions that arise are reverse engineering questions: One first uncovers
high-level relationships between entities in the large amount of data available. Based on the
answers to these questions, a more detailed exploration of parts of the system relevant to the
task at hand is possible, i.e., reverse engineering of a smaller subsystem, or actual program
comprehension if the set of entities of interest has been restricted enough.

Some of these questions are best answered by analyzing the evolution of the system,
rather than only its actual state. The following categories of questions are examples:

• Complexity. Which entities are complex? What are the important entities in the system,
whose comprehension is crucial to understand the system as a whole?

• Activity. Which parts of the system have changed recently? Conversely, which parts of
the system are stable or dead code? Are some parts of the system constantly active?

• Crosscutting concerns. Which changes are implemented as crosscutting concerns over
several entities? Are these entities often changing together? Can one link a given
functionality to one or more entities?

• Overall evolution. Can one outline periods in the project’s evolution? Based on func-
tionalities and periods, can one reconstruct a high-level evolution narrative of the sys-
tem?

In this chapter, we investigate how much the fine-grained evolutionary history provided
by Change-based Software Evolution helps in answering these questions. To that aim, we
summarized our change data in a comprehensive visualization, called the Change Matrix.
The change matrix displays change data according to its location, timestamp, and type. We
used the change matrix on several case studies to determine how well it supports answering
evolutionary questions. Further, we investigated the effect of data degradation on the answers
to these questions, i.e., if and how much the use of coarser-grained data as is conventionally
used makes answering these questions more difficult.

Contributions. In this chapter we make the following contributions:

• The Change Matrix, a comprehensive, high-level and interactive visualization of fine-
grained change data.

• A catalogue of visual change patterns based on fine-grained changes supporting the
answer to the questions above.

• An evaluation of the approach on a case study.

• An estimation of the impact of fine-grained data on the quality of the answers to these
questions.



55 4.2 Assessing Systems with The Change Matrix

Structure of the chapter. Section 4.2 presents the principles of the change matrix visual-
ization and explains how it can answer the questions raised in the introduction. Section 4.3
presents the results we obtained from applying the visualization to one case study. Sec-
tion 4.4 evaluates the impact of fine-grained data on the results, while Section 4.5 discusses
our visualization and compares it with related work and Section 4.6 concludes the chapter.

4.2 Assessing Systems with The Change Matrix

4.2.1 Principles

The change matrix is a simple visualization of change information which emphasizes their
type, their location in the system and their date. Additional information about the size of the
changes is available interactively. The change matrix can be used to assess the evolution of a
system in a given period.

Figure 4.1 shows an example of a change matrix, focused on classes and methods (a
coarser-grained version focused on packages and classes is also available). The change matrix
focuses on a period of the system’s evolution, which is split into intervals. Intervals can be
either of the same size (to emphasize periods of time), or time-warped to adapt to higher
change density. The entities displayed in the visualization are classes, methods, and changes.

Class A

Class B

Class C

Class D

D1 D2 D3 D4

Creation

Modification

Removal

Class separator

Method life lines

Figure 4.1: An example Change Matrix



56 4.2 Assessing Systems with The Change Matrix

Classes are laid out in their order of appearance, bordered by class separators featuring the
name of the class.

Methods in each class are also laid out in chronological order, using a life-line figure starting
at their creation and ending either when they are removed or at the end of the observed
period.

Changes are displayed on the life-lines of entities. Each change is displayed as a block over
the time interval during which it happened. The three main change kinds at the method
level are displayed: Additions, Modifications and Removals.

The class separators can encode additional information. They can display the intensity of
the changes during the interval, or the time of day they represent as a gradient of yellow and
black (provided the resolution of the interval is fine enough).

When clicking on an individual change, an extra figure is created for each change in the
method’s history. The figure displays a finer-grained level of detail, showing the evolution
of the size of the method before and after each change (Figure 4.2). The initial size of the
method (in number of AST nodes) is shown on the left of each figure, and its final size on the
right. If some statements are replaced by newer ones, the slope of the figure first decreases
before increasing again. Clicking again reveals the actual state of the method and shows its
source code before and after the change.

Class A

} Removed
Statements

} Added
Statements

} Replaced
Statements

Figure 4.2: Size evolution of a method

4.2.2 Patterns

We identified several patterns which help us reply to the reverse engineering questions we
formulated in the introduction. We show the patterns and explain how they can indicate
the characteristics we are looking for. When possible, examples are illustrated on Figure 4.1,
mentioning the classes and the date concerned. The dates of interest, D1 to D4, are high-
lighted with dashed lines. When method numbers are mentioned, the numbering starts at
the top of the class.

Locating activity in the system. Locating activity is simple, as activity is directly denoted
by the presence or absence of changes. During the initial phases of the development of the
system pictured in Figure 4.1 (at date D1), classes A and B were active, whereas towards the
end (date D4), classes A, C and D were active, while B was inactive.



57 4.2 Assessing Systems with The Change Matrix

Locating complex classes and methods. Considering the activity at a class level allows one
to quickly characterize classes and methods in the system. Several patterns arise:

• Data class. A data class is usually small. Its method are created and are almost never
–or never– changed afterwards. This is the case of class B.

• Stable or dead class. A class which has no or few recent activity. Further inspection is
needed to see which of the case it is.

• God class. A class with a large number of methods and which has a sustained activity.
Whenever the system needs to change, this class will be probably modified [Rie96]. It
is critical to understand such a class to break it down into smaller, more manageable
components. Class A fits the activity requirements, but is too small to be a God Class.

• Brain method. The equivalent of a God Class at the method level. It is a method which
has been modified continuously. Further examination by analyzing the evolution of the
size of the method is necessary to confirm the diagnostic (i.e., if the method is large).
A candidate would be the first method of class C.

Locating crosscutting changes. Crosscutting changes are changes that span several entities
in the system. Such changes manifest themselves as vertical lines in the visualization, i.e.,
they affect several entities in a limited period of time. They indicate functionality which is
not properly compartmentalized and may be a maintenance problem [EZS+08]. An example
is found at date D4, when three classes (A, C and D) are modified during two time intervals.

A variant is the moving functionality pattern, in which some entities are deleted, while
others are created in another spot of the system. This denotes some refactoring efforts. Some
functionality may have moved around date D3.

Finally, another pattern is co-changing entities denoting entities that tend to change to-
gether [GJKT97]. This happens when several entities change closely together repeatedly.
The fourth method of class A and the first method of class C follow this pattern.

Locating periods in the system. We can visually identify development sessions as clumps
of activity separated by periods of inactivity. We can easily see four sessions in Figure 4.1,
one around each of the highlighted dates. For each session, it is easy to see at a glance which
classes were concerned and to which extent.

• Session D1 seems to be a definition session, where a few methods are created but none
are further modified. Further examination of their size and complexity may confirm
the hypothesis.

• Session D2 is longer and contains many more feature additions.

• Session D3 is also long and features some cleanup towards the end. The first method
of class C is constantly changed and seems central.

• Finally, session D4 seems to revolve entirely around a crosscutting change.



58 4.3 Evolution of Project I

4.3 Evolution of Project I

We applied the Change Matrix to several of the histories we gathered. In the following,
we only have space for one detailed report on a project’s evolution. We chose project I
for a detailed study, because it had the most classes in it, and was the second largest in
statements. Project I is a role-playing game in which a player has to choose a character,
explore a dungeon and fight the creatures he finds in it. In the process, he can find items to
improve his capabilities, as well as gaining experience.

4.3.1 High-level Facts

30

10

20

0

0

8K

6K

4K

2K

12:00

27/03 28/03 29/03 30/03
31/03 01/04 02/04 03/04

Figure 4.3: System size (top) and average method complexity (bottom) of project I

Figure 4.3 shows the evolution of two system-level metrics throughout the lifetime of the
project. The unit of measure we used to evaluate project size is the number of AST nodes in
the system. The projects grows regularly, with two activity spikes on the first and the third
of April. On the other hand, the average complexity of the methods stays rather constant at
around 30 AST nodes per method, after the evening of the 31st. This trend stays the same
even towards the end of the project, where the system grows by 20 to 25% in the last hours
before the deadline, reaching 8 thousand AST nodes. The slope of the system size curve is
very high, only slowing down for the last 30 minutes. The constant complexity seems to
indicate the project was in control until its end. Some other projects exhibited a continuously
increasing complexity rate with no stabilization period.

Figure 4.4 and Figure 4.5 are the two parts of project I’s change matrix. In it, intervals
last 15 minutes. The first activity we perform with the matrix is to visually delimit major
periods of activity in the system. To ease comprehension, these sessions are delimited by
rectangles with dashed borders in both parts of the matrix. Figure 4.6 illustrates the zooming
capabilities of the visualization: It displays the Change Matrix of project I focused on the



59 4.3 Evolution of Project I

class Combat. Since its lifespan is shorter, we can increase the resolution to five minutes per
interval.

Considering the classes and their order of creation, we can see that the first parcels of
functionality were, in order: The characters; the weapons; the enemies; the combat algo-
rithm; the healing potions and finally the dungeon itself, defined in terms of rooms.

4.3.2 Reconstructing Project I’s Evolution

After seeing these high-level facts about the evolution of the system, we can examine it session
by session. Each session has been identified visually and numbered as shown in Figure 4.4
and Figure 4.5.

To help infer the roles of entities in the evolution, several patterns can be detected: Hero,
RPG and Combat are god classes. Items, Race, Attack, Minor, Medium and Greater are data
classes. Mage and Warrior, two character classes, experience co-change. Co-change also char-
acterizes Ranged and Melee, two weapon classes, and Lightning and Ice, two spell classes.
In this project, co-change seems to happen mainly on sibling classes, which is not as alarm-
ing as coupling between unrelated classes. Sessions 6,7,8 and 10 seem to be particularly
crosscutting. We now explain the evolution of the project session by session.

Session 1
Date: March 27, afternoon
Goal: Data definitions
Key classes: Hero, Spell

The project starts by laying out the foundations of the main class of the game, Hero. As we
see on the change matrix, it evolves continually throughout the life of the project, reflecting
its central role. At the same time, a very simple test class is created (HeroTest), and the class
Spells is defined.

Session 2
Date: March 28, evening
Goal: Data definitions: Professions and Weapons
Key classes: Mage, Warrior, Weapons

This session sees the definition of the core of the character functionality: Classes Hero and
Spells are changed, and classes Items, Mage, Race and Warrior are introduced, in this order.
Since Spells are defined, the students define the Mage class, and after that the Warrior class
as another subclass of Hero. This gives the player a choice of profession. The definitions
are still very shallow at this stage, and the design is unstable: Items and Race will never be
changed again after this session.



60 4.3 Evolution of Project I

27/03/06 28/03/06 29/03/06 30/03/06 31/03/06

Figure 4.4: Change matrix of project I, 27/03 to 31/03

Session 3
Date: March 28, night
Goal: Alternative character definitions
Key classes: Hero3

This session supports the idea that the design is unstable, as it can be resumed as a failed
experiment: A hierarchy of races has been introduced, and several classes have been cloned
and modified (Mage2, Hero3 etc.). Most of these classes were removed, or kept as dead code.

Session 4
Date: March 29, afternoon
Goal: Character functionality transfer
Key classes: Mage, Warrior, Hero3

This session is also experimental in nature. Several classes are modified or introduced, but
were never touched again: Hero3, CEC (where several methods are added just to be deleted,
indicating renames), RPGCharacter (except two modifications later on, outside real coding
sessions). Mage and Warrior are changed too, indicating that some of the knowledge gained
in that experiment starts to go back to the main branch.



61 4.3 Evolution of Project I

31/03/06 01/04/06 02/04/06 03/04/06

Figure 4.5: Change matrix of project I, 31/03 to 03/04



62 4.3 Evolution of Project I

Session 5
Date: March 29, evening and night
Goal: Character functionality transfer
Key classes: Hero, Warrior, Mage

This session achieves the knowledge transfer started in session 4. Hero is heavily modified in
a short period of time, including massive renames. In the following sessions, Hero will regain
some stability. In the meanwhile, Mage and Warrior are consolidated. Already with sessions
2, 4, and 5, we can see that Mage and Warrior are co-changing classes.

Session 6
Date: March 30, late afternoon
Goal: Weapon and spell diversification
Key classes: Weapons, Spells, Lightning, Fire, Ice

This session sees a resurgence of interest for the offensive capabilities of the characters. A
real Spell hierarchy is defined (Lightning, Fire, Ice are subclasses of Spells), while the
Weapons class is modified as well. Prior to that, Hero is slightly modified, confirming its god
class status, as each change to the system seems to involve it.

Session 7
Date: March 31, noon
Goal: Game class definition
Key classes: RPG, Hero, Mage, Warrior

The first full prototype of the game. The main class, RPG (standing for Role Playing Game)
is defined, as well as a utility class called Menu, proposing menu-based choices to the player.
Mage, Warrior and their superclass Hero are modified as well, strengthening the patterns we
already established.

Session 8
Date: March 31, evening
Goal: Testing and spells
Key classes: Spells, Lightning, Ice

This session features some work on spells, considerably changing the root class Spells, and
its subclasses Lightning, Fire and Ice. In parallel, several simple test classes, MageTest,
WarriorTest and MenuTest, are created.

Session 9
Date: March 31, night
Goal: Weapon diversification
Key classes: Weapons, Ranged, Melee

There was no real separation between this session and the previous one time-wise. However
the entities in focus clearly change rapidly, hence we separated session 8 and 9 for clarity.



63 4.3 Evolution of Project I

This is an example of a fluid transition from one functionality to the next which might not be
reflected in the SCM system data if the code is not committed before the transition.

This session focuses on weapon diversification with classes Melee and Ranged, both sub-
classes of Weapons; these classes have a very close evolution (co-change) for the rest of their
life, as their patterns are really similar, in the same way Lightning and Ice co-evolve con-
stantly .

Session 10
Date: March 31, night
Goal: Enemy data definition
Key classes: Enemies

This session also features a fluid transition with the previous one. The student’s rhythm of
work is intensifying, and several features are being worked on at the same time.

A real hierarchy of hostile creatures appears: Enemies, Lacché, and Soldier. The sys-
tem is a bit unstable at that time, since Enemies has a lot of methods added then removed
immediately, suggesting renames.

............

...
Brain method
Inactivity

Figure 4.6: Change matrix zoomed on the class Combat

Session 11
Date: April 1st, noon to night
Goal: Combat algorithm definition
Key classes: Weapons, Combat, Hero

As the deadline for the student project approaches, sessions become longer. Work intensifies
further, and transitions between activities are not as smooth as previously. We can however
distinguish two phases in this session: Before, and after the definition of class Combat.

This intensive session sees the first iteration of the combat engine. The weapons, spells
and characters (heroes as well as the Enemies hierarchy) are first refined. In each case, the
co-change relationships are strengthened, as the parallel evolution of Lightning and Ice, on



64 4.3 Evolution of Project I

the one hand, and Ranged and Melee, on the other hand, is easy to see in the session. Mage,
Warrior and Hero are also subject to co-change. Then a new enemy, Master, is defined.

The implementation of the Combat class shows a lot of modifications of the Weapons,
Spells and Hero classes, indicating some crosscutting. An Attack class soon appears. Judg-
ing from its (non-)evolution, it seems to be a data class with no logic, comforting the idea that
Combat is a god class using it. After theses definitions, the implementation of the real algo-
rithm begins. We see on Figure 4.6 –the detailed view of Combat– that one method is heavily
modified continuing in the next session. It seems to be the heart of the combat algorithm.

Session 12
Date: April 2nd, noon to night
Goal: Combat algorithm continued
Key classes: Combat

Development is still heavily focused on the Combat algorithm. Compared to the previous ses-
sion, we observe that the modifications are much more localized. This session also modifies
the main combat algorithm, and at the same time, two methods in the Hero class, showing
some coupling between the two god classes. In parallel, Enemies is also changed, furthering
the integration of both kinds of characters in the combat.

It is interesting to note that the subclasses to Enemies and Hero do not change in this
session. This indicates that either the hierarchies are not fragile, or that Combat handles
everything, using the other classes as data classes. Considering the evolution of Combat, we
are inclined to think the latter, but only a closer code inspection involving actual program
comprehension could tell.

A second method featuring a lot of logic is implemented, as shown in Figure 4.6: several
methods are often modified. This method, along with the one introduced in the previous
session, seem to be the brain methods handling the combat algorithm. In parallel, classes
Potion and Healing are also defined, allowing the heroes to play the game for a longer
time.

Session 13
Date: April 3rd, afternoon to night
Goal: Main game loop and dungeon definition
Key classes: RPG, Combat, Room

This last session has a wider focus than the previous one, as it ties “loose ends” in a time-
limited project.

The students finish the implementation of Combat, changing the Enemies hierarchy in
the process. This change seems like a change to a polymorphic method since the change is
spread out on each hierarchy class but performed quickly. A significant amount of methods
are changed in the Combat class, but only in the methods defined last. Either functionality
has moved to these methods, and the older methods are no longer used, or the algorithm is
compartmentalized, the latter methods being concerned with enemies rather than characters



65 4.3 Evolution of Project I

of the Hero hierarchy. A finer code inspection is needed to determine which hypothesis is
accurate.

After finishing Combat, this session also resumes the work on the entry point of the game,
the RPG class. Only now is a Room class introduced, providing locations in the game, an
aspect overlooked until then. These classes are tied to Combat to conclude the main game
logic. To finish, several types of potions –simple data classes– are defined, and a final monster,
a Dragon, is added at the very last minute.

4.3.3 Recapitulation

From a high-level analysis of the evolutionary data we recorded of small-scale project, we
were able to observe the following:

• The average complexity of the system increased at first, but was kept in control after a
third of the project’s evolution, even if the system size increased significantly.

• We deduced the role of classes from a cursory observation of the patterns we detected
in their evolution. In particular, we identified which classes were god classes (Hero,
Combat, RPG), data classes (Potion class hierarchy, Attack), dead code (Hero2, Mage2,
Hero3, CEC), and the reason of its presence (experimental character definitions), and
which classes had co-change relationships (Ranged with Melee, Lightning with Ice,
Mage with Warrior, classes in the Enemies Hierarchy).

• We reconstructed how the project evolved based on its change history and the patterns
we discovered. We described when and where in the system each functionality was
defined, and identified the most fragile functionality (combat between parties, which
spans several large classes), and have a clear picture of the high-level relationships
between functionalities.

• We formulated a handful of hypotheses that could serve as program comprehension
starting points, concerning the hierarchy of Hero and Enemy, and their relation to the
Combat class.

In short, we gathered a reasonable idea of the system’s design, functionality and evolution
based on the analysis of its change history. We are aware of its shortcoming and of the
probable locations one need to change in order to alter a high-level functionality. We thus
think our initial reverse engineering effort of this system was successful.



66 4.4 Impact of Data Degradation

4.4 Impact of Data Degradation

We have shown on one example how a review of fine-grained changes allows us to infer high-
level facts about the design and evolution of a software system. But how much is this due to
the fine-grained data our approach provides?

In order to evaluate how much our approach depends on fine-grained data, we simulated
the application of the same visualization on data degraded to match the granularity of data
found in SCM systems. We then evaluated how well the patterns we previously located were
preserved when analyzing degraded data. We proceeded in two steps: We first simulated the
usage of SCM commits instead of change recording, and then evaluated the effect of data
sampling, i.e., intentionally reducing the number of versions analyzed in order to deepen the
analysis on each one.

We simulated SCM commits by using the assumption that each development session
would have ended with a commit to the versioning system. Since the Change Matrix dis-
plays changes according to their time, location and type, displaying commits in the change
matrix amounts to altering the time stamp of each change belonging to the same session so
that they share the same time stamp, considered to be the commit time (in our case, the
last change’s time stamp). Figure 4.7 shows a side-by-side comparison of a subset of the
Change Matrix of Project I, with and without data degradation. We see clearly that some
of the patterns, in particular those involving repeated modifications to the same entity, are
much harder to locate. In particular, co-changing methods in the same session are no longer
visible, as changes to other methods seem to appear at the same time. Also, crosscutting
changes (for examples, the last changes on Ranged and Melee, or some of the last changes in
Combat) are no longer distinguishable from sequences of individual changes, and repeatedly
changed brain methods are no different from methods changed once per session.

This comparison is still advantageous to commit-based evolution analyses, since a precise
modeling of systems (such as ours, which is at the AST level) is usually performed on a
subset of the available versions. We simulated version sampling by grouping sessions in sets
of four, and altering the dates of the changes in each session so that all changes share the
same time stamp. This approximates a sampling in which 25% of the versions are kept. For
reference, Ra̧tiu et al. [RDGM04] kept around 10% of the commits, while Xing and Stroulia
[XS05] kept one version per month. In that case, patterns are even harder to locate: Only
the most obvious activity patterns (mainly at the class level), remain detectable, as the mass
of changes happening at the same time hides all the other patterns. Figure 4.7 shows the
Change Matrix (on top) and the sampled Change Matrix (at the bottom). The co-change-
relationship between Melee and Ranged which is obvious on top looks now no different than
their relationship with the unrelated Lacché class. If anything, Lacché and Ranged share a
single change in the last session, making them slightly more related than Melee and Ranged.
Finally, the observations one can make on the Combat class are now very limited: One can
only infer that it is a large, fast-evolving class.



67 4.5 Discussion

4.5 Discussion

Comparison with Related Work

Most evolutionary visualizations display each versions individually. Few visualizations display
several versions of a system simultaneously, in order to review the overall evolution of a
system or part of it. All these approaches share the limitation that the data they considered
was extracted from text-level, version-based SCM. They are limited to changes to files across
versions, while the data used by the Change Matrix is finer-grained. As such, all of these
approaches suffer from the problems we outlined in the previous section.

Lanza’s Evolution Matrix [Lan01] displays the evolution of classes by laying out their
successive versions in a row. Classes are ordered by order of apparition. In essence, the
Change Matrix is a finer-grained version of the Evolution Matrix as it can display the evolution
of methods and can display changes between versions.

Revision Towers by Taylor and Munro [TM02] showed several versions of the same file in
the same figure, as levels of a tower which allowed to see the evolution of a given file across
its lifetime at a glance.

Wu’s et al. Evolution Spectrographs [WHH04] can be set up to display –as the Change
Matrix does– the changes rather than the successive versions of the entities they consider.
However Evolution Spectrographs has been only applied to versioning systems so far.

A finer-grained evolutionary visualization is a polymetric view defined by Gîrba et al.,
the Hierarchy Evolution Complexity View. It displays the structure of the system in terms
of class hierarchies, but overlays the evolutionary information such as the age of classes or
inheritance relationships on top of the structure [GLD05]. The changes themselves are not
displayed: Only the latest version of the hierarchy is, with deleted classes and inheritance
relationships displayed in cyan.

Generalizability

Since we report only on case studies, we can not generalize our results to every system. One
might argue that the results depend on the style of the developer. We kept our description of
the patterns intentionally generic, so they can apply in other contexts. The patterns appeared
in the other case studies we applied our approach to (the other student projects, SpyWare),
so we believe they would appear on any system.

Scaling Up and Down

The example we reported on was one of the largest student project we examined (totaling
41 classes), but is still small by any standard. The visualization we presented has however
the potential to scale. If higher-level insights are needed because of the large number of
entities, the same visualization can be applied to packages and classes, reducing the space
the visualization takes on the Y axis. If the time period is long, the intervals used to display
changes can be made longer, reducing the space taken on the X axis.



68 4.6 Summary

Once system-level questions are answered, the same visualization can be used on shorter
periods and reduced number of entities. If the Change Matrix is used on a given period, it will
automatically omit the entities which do not change during the period. If the Change Matrix
is used on a given entity, the period in which it does not change can be omitted or condensed
with time warping. These factors allow the Change Matrix to be brought to the level we used
it even for larger projects. Other approaches might not support increasing the level of detail
up to a point: Ours ensures we can focus on the smallest level of detail if needed.

Unincorporated Data

The Change Matrix does not use all the data our model records. Two additional data sources
could be incorporated.

Refactorings are changes which do not alter the behavior of the system, yet span several
entities. These could be mistaken for other crosscutting changes. In our case study, no
refactorings were performed, so this did not apply. For other change histories we might want
to distinguish refactorings from other changes.

The usage of entities is not incorporated. One could imagine displaying it on the life-line
of the entity, making it darker as the entity is used more widely. Since this might clutter
the visualization, this could be an interactive feature. Having this information should help
distinguishing between stable (increasing usage) and dead code (decreasing usage), and
identify the central points of the system (a very complex class might actually be on the fringe
of the system). Displaying which entities are using the entity in focus would help determining
if an entity is public (i.e., used system-wide) or private (i.e., only used in its package).

4.6 Summary

During the initial assessment of a system for reverse engineering, visualizing the evolution
of the system allows one to characterize parts of the system according to how it changed in
the past. To assist this task, we defined a comprehensive evolutionary visualization using our
change data, the Change Matrix. The Change Matrix focuses on the changes performed in the
system rather than successive versions as they would be extracted from a versioning system.
Visualizing such fine-grained changes allowed us to easily characterize parts of the system
according to several dimensions:

• Complexity. Classes can be labeled as stable, data or dead classes when they change
rarely, or as god or complex classes if they change often.

• Activity. It is trivial to identify which parts of the system have been active at any point
in time.

• Crosscutting concerns. Crosscutting or moved functionality is visually easy to assess,
as well as co-changing entities.



69 4.6 Summary

• Evolution. The order of appearance of functionality is easily accessible, and the sys-
tem’s evolution can be reconstructed.

We identified several patterns based on the occurrence or absence of fine-grained changes
at a given point in time. Localizing these patterns on a change-centric visualization allows
one to reconstruct with a modest effort an evolution narrative of the system, based on the
change matrix and the names of classes and methods changed.

We showed that the fine-grained change data produced by Change-based Software Evolu-
tion answers high-level reverse engineering questions about software systems by characteriz-
ing the evolution of systems with patterns and providing access to a detailed change history.
Even for high-level questions, the quality of the data is primordial: We compared our results
with what can be obtained by using data equivalent to the one found in an SCM system and
showed that the results were much less accurate. This problem is further compounded by the
common practice of sampling the data in order to make the analysis of individual versions
more precise, which increases the amount of changes between each versions. In that case,
most of the patterns we identified are no longer detectable.

In short, the data Change-based Software Evolution provides eases the reverse engineer-
ing of systems by providing access to a comprehensive and accurate history of the changes
encountered by domain-level entities in the system. The accuracy of these changes improves
the insights one can get on systems even on a high level, as trends and patterns of relation-
ships between entities can be detected with a much greater accuracy when the history of
these entities is closely tracked. Since the data provided by CBSE is fine-grained, the level of
data considered can be scaled up or down.



70 4.6 Summary

Melee

Ranged

Lacché

Enemies

Combat

Melee

Ranged

Lacché

Enemies

Combat

Melee

Ranged

Lacché

Enemies

Combat

Figure 4.7: Impact of data loss: Original (Top), Commits (Middle), Version Sampling (Bot-
tom)



Chapter 5

Characterizing and Understanding
Development Sessions

What happens during a development session? Mining a versioning system’s archives does not
tell us the whole story as only the outcome of a session is stored. In contrast, change-based
repositories contains the exact changes that were performed during any development session.
Accessing the changes in the sequence they happened helps the fine-grained comprehension of the
activity carried out during a development session.

We first provide a high-level context for session understanding by defining a characterization
of sessions. This session characterization is based on metrics measuring particular aspects of the
changes that occurred during the session, and distinguishes between various types of development
sessions.

Further, we support program comprehension through a top-down session exploration process.
This process is based on the previous characterization and uses several interactive visualizations.
It allows a developer to choose and explore the sessions –and the changes contained within them–
in order to better understand how a given system functionality is implemented by understanding
it incrementally. The developer is free to navigate between high-level views of the system (where
the unit of change is the session), and lower level views of the system (where the unit of change
is the individual change to methods and classes of the system).

71



72 5.1 Introduction

5.1 Introduction

When a change to a system is needed, the first thing to do is to localize where in the system the
change should be made. We have shown in Chapter 4 how Change-based Software Evolution
helps to locate functionality to support such a task.

The next task is then to understand the few entities that collaborate to achieve the func-
tionality that one needs to change. Understanding the whole program is unnecessary, but
understanding selected source fragments is critical [ES98]. However, even understanding a
relatively small subset of the code of a system is difficult if one does not start at the right
place or does not follow the right path through it.

A possible path to take is the one the developer himself took while implementing the
functionality. Such a path might contain mistakes and indirections, but developers always
follow a certain logic when writing code and proceed incrementally. Change-based Software
Evolution allows access to the implementation process as it records entire programming ses-
sions. Following the programmers’ footsteps as an aid to program comprehension becomes
possible by reviewing each change in the system in order.

This information can not be recovered at all from a traditional versioning system since
only the outcome of the session will be committed to the SCM system. On the other hand,
IDE monitoring approaches only keep a shallow model of what the developer has actually
done (usually navigation information and shallow change information), which is not enough
to reconstruct the actual changes the developer did. Only recording changes provides enough
information.

In this chapter, we describe how program comprehension can be assisted by reviewing
development sessions. Our session-based program understanding approach is based on two
steps. We first enrich the context of the session by providing a high level characterization of
the activity in the session, based on change metrics. This characterization provides high-level
additional insights on what actually happens during the session. Second, in order to support
actual program understanding, we define a session understanding process supporting top-
down exploration, from several sessions at the same time down to individual changes to
program entities.

Contributions. The contributions of this chapter are:

• A characterization of development sessions across several dimensions, enriching the
context a programmer has for understanding a session.

• The definition of several change-based metrics, unique to our approach, which consti-
tute the basis for our session characterization.

• The definition of a session exploration process supported by tools and interactive visu-
alizations which allows one to review a set of sessions and the individual changes in a
session in order to understand the functionality implemented during these sessions.



73 5.2 Motivations for Session-based Program Understanding

• A validation of these techniques on selected sessions across two case studies, featuring
several hundreds development sessions.

Structure of the chapter. Section 5.2 motivates the usefulness of session-based program un-
derstanding and characterization. Section 5.3 presents our characterization and the change-
based metrics we used to define them. We then describe the process –and the tools that
support it– in order to select and understand relevant sessions in Section 5.4. Section 5.5 val-
idates our approach on two case studies comprising hundreds of development sessions. We
describe in detail selected development sessions, and how our approach assist their under-
standing. Section 5.6 discusses our approach and related work, while Section 5.7 concludes
the chapter.

5.2 Motivations for Session-based Program Understanding

We have already seen in Chapter 4 the usefulness of analyzing fine-grained changes sequen-
tially on several occasions. We were able to:

• Highlight co-change relationships. Entities closely related to each other are usually
changed together. For program understanding, it makes sense to review changes to
related entities at the same time. Some of these relationships, for example those relying
on side effects, might not be obvious as there may not be a direct reference from entity
to the other. The original programmer will be aware of the relationship and change
both, making the relationships more obvious.

• Differentiate functionalities. In the previous chapter’s case study, one session was
graphically divided in three distinct sub-sessions (Sessions 8, 9 and 10). The graphi-
cal differentiation was obvious as three distinct areas of the system were changed in
sequence, but modifications were local to each area. However, a single commit might
have been performed merging these three tasks. Understanding these changes without
accurate historical information might lead one to believe that they are closely related.
In reality, they were not. Starting with a wrong hypothesis makes understanding harder,
as the maintainer will try to relate these distinct pieces.

• Contextualize changes. The changes surrounding an individual change give insights
about its aim. In the previous chapter we were able to visually identify method renames
(methods being deleted while other methods in the same class appear simultaneously),
or potential moves of functionality (changes and deletions in a class while methods are
added to another class shortly after). In this chapter, we inspect these changes more
closely and additionally incorporate actual refactorings which our approach records.
Knowing that a change was performed automatically by a refactoring tool is helpful,
since the change is guaranteed to be behavior-preserving: A closer inspection is not
needed.



74 5.3 A Characterization of Development Sessions

• Incremental implementations. The previous chapter’s case study showed this par-
ticularly towards the end, in the implementation of the Combat algorithm. The main
concepts of a feature are defined first. Later, secondary concepts are defined and pri-
mary concepts are refined. If a feature implementation is reviewed according to its
timeline, a basic version of it can be reviewed initially. Only after the general feature
is defined, improvements such as optimizations, peculiar cases and generalizations are
implemented. Following the steps of the developer leads to a more natural and pro-
gressive understanding of the code.

We see that there are several reasons to understand programs sequentially as they are
built. Some of these apply also to characterizing sessions:

• Increasing context. Characterizing sessions gives an overall context to a session or
parts of it. Context allows us to better understand changes, be it because we know
which entities are related to the one being changed, or because certain changes belong
to refactorings. In the same fashion, an overall session characterization adds context
to the session. Knowing that a session is refactoring-dominant makes it different from
a bug-fixing, feature addition or feature enhancement session.

• Characterize entities. We have not investigated this, but we believe program entities
can be characterized by the development sessions they are involved in. An entity often
involved in maintenance related sessions is either a very central piece of the system
(potentially a god class), or may have a significant amount of defects. Both cases invite
a closer inspection of the entity.

• Focusing the Reviewing and Testing Effort. Code reviewing is an established practice
to prevent defects, but resources might be limited. Generalizing the previous point,
one can allocate more resources to code originating from sessions with a higher risk
of containing bugs. Several change metrics could indicate this, such as the propensity
during a session to move to seemingly unrelated entities (potential side effect), or
seeing entities being changed repeatedly.

5.3 A Characterization of Development Sessions

To provide more context when understanding sessions, we characterize them according to
metrics we defined. We first explain the dimensions we chose for the characterization, then
present the change-based metrics we used as a basis for the characterization. We then per-
form a quantitative analysis of the session characteristics on our case studies.

5.3.1 Primary Session Characterization

We characterize each session according to several dimensions. The primary characteristics
are the session Architectural Type and its Duration. Since the characterization is based on



75 5.3 A Characterization of Development Sessions

change-level metrics, it is applicable to any sequence of changes. As such, it is also useful to
characterize smaller (phases in a development session) or larger (the set of sessions related
to an entity) groups of changes. This allows a session to be separated in several phases if it
helps its understanding.

Architectural Type. The primary dimension is the type of activity carried during a session.
To create a concise but effective vocabulary when we talk about the different types of sessions,
we use a metaphor taken from Brant’s “How Buildings Learn” [Bra94], where he describes
buildings as multilayered structures where inner layers change faster. Brant’s book is about
architecture and therefore his layers are (from inner to outer) stuff, space plan, services, skin,
structure, and site. The idea is that for instance “stuff” (the furniture) is changed more often
than the space plan of a house, which is also changed more often than its skin, etc.

We reuse that metaphor for software development since the frequency of various de-
velopment activities vary in the same fashion, and the types of activity can be mapped to
architectural terms. The possible types of session across the architectural dimension are:

• Decoration is the smallest and most common kind of activity. In our case, it corre-
sponds to light maintenance activity, such as corrective maintenance. It is characterized
by slight alterations to the code base, such as changing method bodies. Pure decoration
sessions do not add any new methods.

• Painting is the next most common activity. It corresponds to feature refinement, i.e.,
extension or alteration of an existing feature. Painting is characterized by the addition
and the modification of methods on already existing classes.

• Masonry is active construction of the system and refers to addition of new functionality
in the system. Since in an object-oriented system the class is the unit of behavior, we
define this as adding –or changing– both classes and methods to the systems.

• Architecture is groundwork for further construction and corresponds to addition of
major features. An architectural session adds a large number of new classes and may
adds packages to the system.

• Restoration refers to preventive maintenance of the system, and is linked with refac-
toring actions, such as actual refactorings or movements of functionality.

Duration. We qualify each session according to its length, in five categories: Blitz sessions
have a very focused activity, and last less than 15 minutes; Short sessions last between 15 and
45 minutes; Average sessions last between 45 and 90 minutes; Long sessions last between
90 minutes and 4 hours –an entire morning or afternoon of development work; Marathon
last more than half a day of work and regroup all sessions lasting more than 4 hours.

Conceivably, long and especially marathon sessions could be more error-prone since fa-
tigue has time to set in. On the contrary, blitz and short sessions indicate a focused activity
that was planed and delimited in advance.



76 5.3 A Characterization of Development Sessions

5.3.2 Session Metrics

We first describe the change-based metrics we defined, before explaining how we use them
to characterize sessions. Our metrics are explained in table Table 5.1. Metrics in bold are
only obtainable through change recording, and not through recovering changes from SCM
archives. Not all metrics are used to compute the primary session characteristics. Others are
used by themselves when the session is inspected, as secondary session characteristics.

Metric Metric Description Indicator of

SLM Session Length – expressed in minutes. Primary duration characteristic.
TNC Total Number of Changes, i.e., developer-level actions per-

formed during a session.
Amount of work actually performed in
a session.

TSC Total Size of Changes, i.e., number of atomic changes per-
formed during a session.

Amount of work actually performed in
a session.

NR Number of (recorded) Refactorings, and related actions. Preventive maintainance
SA Session Activity, i.e., changes per minute (SA= T NC

SLM ). Speed at which the task was per-
formed.

NAM Number of methods added during a session. Amount of new behavior
NCM Number of methods changed during a session. Behavior refinement
UNCM Unique number of methods changed (UNC M ≤ NC M).

Same as NC M , except every method is only counted once.
Behavior refinement

NTM Number of touched methods, i.e., methods that were modi-
fied or added.

Change amount.

ACM Average changes per method (AC M = NC M
UNC M ). Incrementality

MCM Most changed method, the highest number of changes ap-
plied to a single method during the session.

Presence of outliers.

NAC Number of classes added during a session. Behavior extension.
NCC Number of classes whose definition changed during a ses-

sion, i.e., with addition/removals of attributes
Behavior extension.

UNCC Unique number of classes changed (UNCC ≤ NCC). Same
as NCC , but each class is counted only once.

Behavior extension.

NTC Number of touched classes, i.e., classes that were modified
or added.

change magnitude.

NIC Number of involved classes, i.e., classes that were added,
changed, or who had a method added, or changed.

Extent of the changes in the system,
crosscutting.

ACC Average changes per class (ACC = T NC
N IC ). Crosscutting

MCC Most changed class, the highest number of changes applied
to a class.

Presence/absence of outliers.

Table 5.1: Session Metrics.

Our primary characterization of metrics is based on detection strategies [LM05]. Detec-
tion strategies are combinations of metrics and thresholds detecting higher-level characteris-
tics of software system. Their primary use is detecting design flaws [Mar04].

Choosing the thresholds is an important part of designing a detection strategies. Thresh-
olds can be absolute, or relative to the project they are used on. Since we do not yet have
a large enough amount of data to determine thresholds empirically, we also use metrics on
their own as a secondary characterization. In that case, their value is accompanied with a



77 5.3 A Characterization of Development Sessions

percentile telling their relative standing in the project. This also accounts for the variation in
styles of developers. Table 5.2 shows the combinations of metrics and thresholds used in our
primary characterization.

Characteristic Description Rationale

Decoration NC M
T NC ≥ 0.66 Two-thirds or more of the changes are method

modifications.
Painting NAM

T NC ≥ 0.33 One-third or more of the changes in the session in-
troduce a new method.

Masonry NAC + NCC > 0 At least one class is added or modified. Masonry is
superceded by Architecture.

Architecture NAC + NCC
2
> 5 or NAP > 0 At least one package, or more than 5 classes are

added. Modifying a class counts as half as much.
Restauration NCR+ N MR> 6 A large amount of refactorings is performed during

the session.
Blitz SLM ≤ 15 A very short session.
Short SLM > 15 and SLM ≤ 45 A short session.
Average SLM > 45 and SLM ≤ 90 An average session, in which a normal task should

be completed.
Long SLM > 90 and SLM ≤ 240 A longer than usual session.
Marathon SLM > 240 A session longer than a single morning or after-

noon, denoting intense work.

Table 5.2: Definition of our characterization.

5.3.3 Quantitative Analysis of the Characterization

We looked at two of our case studies which have a large number of sessions. These are
SpyWare (around 500 sessions at the time the analysis was done), and Project X (around 120
sessions).

Table 5.3 presents high-level primary characteristics of the sessions for both projects.
Each session is characterized by its architectural type and duration. The session types are
not mutually exclusive, i.e., a session can be of more than one type, such as Masonry and
Painting.

The table reveals that some session types tend to have a characteristic length: Architec-
ture and Restauration are longer sessions, while the highest proportion of Masonry sessions
is found at average lengths. Painting and Decoration sessions are rather homogeneous in
SpyWare, but occur more in shorter sessions in Project X. As expected, Architectural sessions
are the longest and the rarest. Note that there is some overlap: It is possible for a session to
be characterized as both Masonry and either Painting or Decoration, for example. Restaura-
tion also overlaps with other characteristics. Inspecting these sessions further may reveal that
they have phases in which one of the activity is prevalent. Next session describes the process
we defined to support this activity.



78 5.4 Incremental Session Understanding

Length Blitz Short Average Long Marathon Total

Spyware
Architecture 0 1 5 15 11 32
Restoration 2 1 6 18 8 35
Masonry 26 43 41 76 5 191
Painting 51 39 31 40 6 167
Decoration 66 55 36 57 4 218

Project X
Architecture 0 3 3 13 0 19
Restoration 0 9 14 21 0 44
Masonry 13 26 18 10 0 67
Painting 15 11 9 10 0 45
Decoration 9 4 3 1 0 17

Table 5.3: Session Types, for Project X and SpyWare

In general, we see that Project X has more Masonry and less Decoration session than Spy-
Ware. A possible explaination for this is that Project X makes heavy use of a web framework,
in which defining new classes of web components is commonplace. Project X also features
more Restoration sessions, which can be possibly explained by the prototype, deadline-driven
status of SpyWare. This also explains the presence of Marathon sessions in SpyWare.

5.4 Incremental Session Understanding

In this section, we outline the session exploration process we defined, before describing the
tools and visualizations we have built to support it.

5.4.1 A Process for Incremental Session Understanding

We defined our session exploration process to allow the efficient navigation both between
high-level changes (development sessions) and low-level changes (developer-level actions
constituting a session).

Development sessions need to be summarized efficiently in a way which allows easy
recognition of individual sessions. Upon closer inspection, key features and phases must
be identifiable without involving too much cognitive effort. Developer-level actions need to
be inspected closely, for actual program comprehension to take place. Navigating through
related changes must be easy, and the extent of the changes must be assessed as quickly as
possible.

To address these requirements, we defined a four step top-down session exploration pro-
cess, starting with several development sessions, and ending with the inspection of individual
changes. The process is shown in Figure 5.1. Initially, it takes as input a set of sessions of
interest (for example, all the sessions in which a given class that one needs to understand



79 5.4 Incremental Session Understanding

1

2

3

4

Browse Sessions

Set of 
sessions

Candidate 
session

Inspect Session

Confirmed
Candidate

Explore Session

Individual
Changes

Review change

1

2

3

4

Figure 5.1: Session exploration and understanding process

was changed). Sessions are inspected as a whole, before individual sessions are selected for
close review of their changes. The four steps of the process are:

1. Browse Sessions. In this step, one assesses a set of sessions all at once. The challenge
is to summarize a large amount of changes (several sessions lasting several hours each)
in a space compact enough that they can be encompassed at once, while retaining
the ability to recognize individual sessions and gather superficial insight about their
contents. We summarize an individual session in a session sparkline, which takes a very
limited amount of screen space, allowing dozens of sessions to fit in a single screen.

2. Inspect Session. In this step, candidate sessions are inspected on their own. The
session sparkline’s interactive features are used, and phases in the session are recog-
nized. The session inspector provides the values of metrics and the characteristics of
each session in order to decide if a session should be inspected even further.



80 5.4 Incremental Session Understanding

3. Explore Session. In this step, the actual understanding of the changes is supported by
a detailed visualization of the changes in the session via the session explorer. The ses-
sion explorer display changes emphasizing the entity they affect, their type (addition,
modification, removal, refactoring action), and their change amount.

4. Review Changes. Finally, each individual change can be reviewed. This step includes
actual code reading, which is eased via a change reviewer. The change reviewer high-
lights the actual change performed using a before/after view of the entity changed, and
eases navigation to other changes of interest.

5.4.2 Browsing Sessions with the Session Sparkline

The first step of our process requires us to view several sessions at a glance. We do so with
the help of an interactive visualization called the session sparkline. The session sparkline is
influenced by Tufte’s concept of the same name [Tuf06]. A sparkline is a word-sized graphic
containing a high density of information. Figure 5.2 is an example of a session represented
as a sparkline. The gray line in the middle of the figure is a time line. The default resolution
of the figure is one pixel per minute (the example is magnified for clarity). Above and below
the time line are bars representing the amount of changes occurring during a given interval
(in our case a minute). Above the line are method-related changes: The height of these
bars varies with the amount of change performed during the interval. Below the timeline are
class-level changes. The class bars’ height is constant as it is rare that two classes are changed
in less than one minute. The color of each bar reflects the kind of change happening during
the interval. A bar is orange if only modifications happened during that interval. It is red if at
least one change is an entity addition, blue if one is a removal (superseding red), and green
in case of a refactoring (superseding blue).

Time

Class changes

Method changes}
}

Figure 5.2: A session sparkline

The session sparkline sums up the activity pattern of a session at a glance, allowing one
to immediately determine if a session has a lot of activity or not, and which kind of change
dominates it. Activity patterns can be used to determine phases of the session. Assessing the
length of a session is also immediate. Thus this representation ensures that each session has
a distinct shape, making it easily recognizable across other sessions.



81 5.4 Incremental Session Understanding

5.4.3 Inspecting and Characterizing Sessions with The Session Inspector

The session inspector’s goal is to assist the interpretation of session sparklines in order to
better characterize sessions. When summoned on a session, the inspector displays the various
metrics we defined and their relative standing compared to the other sessions in the project.
The inspector highlights the architectural, length, and activity characteristics that the session
fulfills. It also lists the key entities of the session, i.e., classes and methods that have been
changed the most.

The interactive features of the session sparkline can be used during that interpretation
phase: Hovering over any time interval will display a summary of the changes that were
performed during that interval. The various phases of the session (separated by small periods
of inactivity) can be inspected more closely to determine if they affect different parts of the
system.

5.4.4 Viewing Changes in Context with The Session Explorer

The session explorer (Figure 5.3) support careful exploration of a session. It displays the exact
nature of changes performed at a given point in time in a session. It acts as a portal between
sessions and individual changes, as it is tightly integrated with the change reviewer, which
assists program understanding.

Changes of the same type and on the same entity types are displayed on the same line,
as squares. Change types are: modification, addition, removal and refactorings, while the
entities considered are classes, packages and methods. The same colors than the sparkline
are used, but get darker as the size of the change increases, to reflect the change amount.
Each of these change figures has an identifier, so that changes applying to the same entities
can be quickly related. They can also display a tooltip summing up the change as text. If
clicked, a change reviewer is displayed for the given change.

5.4.5 Understanding Individual Changes with The Change Reviewer

The change reviewer eases the understanding of developer-level actions and the navigation
between changes. The change reviewer displays a single developer-level action at once, using
two panels (see Figure 5.1, panel 4).

Understanding incremental changes is eased by emphasizing them in before/after views
of the entity. The view on the left shows the source code of the entity before the application
of the change. It emphasizes removals of statements (in a red and struck-out font). The right
view shows the source code of the entity after the change application. It emphasizes additions
(in a green font) and renames (orange font) of entities. Further, since Change-based Software
Evolution provides changes at the AST level, the changes are displayed at the level of AST
entities, not lines. If a variable is renamed, only the variable will be highlighted, not the
entire line, easing the localization of the change.



82 5.5 Validation

{
Additions

Modifications

Removals

Refactorings

{
{
{

26 July 2008

11:12:05 11:39:430h17

Ref P

Ref C

Ref M

Add P

Add C

Add M

Chg P

Chg C

Chg M

Rem P

Rem C

Rem M

Packages

Classes

Methods

Packages

Classes

Methods

Packages

Classes

Methods

Packages

Classes

Methods

Change type Entity type{{ {Change
amount
(unique)

5
(3)

1
(1)

2
(2)

1
(1)

a1b1 c*b1

b1
a1

1

b1

1

1
(1)1

Figure 5.3: Overview of the session explorer

To ease navigation, the change reviewer offers shortcuts to related changes: The nex-
t/previous change to the same entity, the next/previous change in the session, and the nex-
t/previous session in the history.

In the remainder of this chapter, we report on our results without referring directly to
the change reviewer in order to keep the discussion at a reasonably high level. Usage of the
change reviewer is implied.

5.5 Validation

We now discuss selected example sessions in details. For each session we show the session
sparkline, the primary characteristics, relevant metrics (with their value and their percentile
in the project), key entities, and a snapshot of the session browser.



83 5.5 Validation

5.5.1 Decoration Session (Project X)

Sparkline:
Characteristics:
Decoration, Blitz
Metrics:
SA – 1.63 (90%) – Session Activity
ACC – 7 (74%) – Average Changes per Class
ACM – 2 (90%) – Average Change per Method
MCM – 4 (67%) – Most Changed Method
Key entities:
Methods a (periodicalCallback:) and b (renderPeriodicalOn:)

e*
f*

2
(2)

Figure 5.4: Decoration Session



84 5.5 Validation

Analysis This short session (8 minutes) consists mainly of decoration, i.e., method mod-
ifications. It features towards the end a small amount of masonry and minor restoration
(Figure 5.4). Its interesting characteristics are its high activity (1.6 changes per minute) and
the first part of it where methods a and b are modified together several times (four times for
a, three times for b, raising the ACM metric to 2), evoking high logical coupling. A look at
the source code reveals that they are two HTML generation methods belonging to the same
class. Methods c and d, and the methods e and f (created in the same minute, and bearing
the same name, but on two different classes), are also related to HTML generation.

Conclusions We see that the link between methods a and b is emphasized by the sequential
changes they were involved in. In the same fashion, the link between methods e and f is very
strong, as they were created in the same minute. On the other hand, the refactoring changes
were marked as such and could be reviewed faster. This is an example of session-based
program understanding highlighting and prioritizing relationships between entities.



85 5.5 Validation

5.5.2 Painting Session (Project X)

Sparkline:
Characteristics:
Painting, Short
Metrics:
SA – 0.86 (63%) – Session Activity
ACC – 1.75 (11%) – Average Changes per Class
NIC – 12 (80%) – Number of Involved Classes
ACM – 1 (17%) – Average Changes per Method
NAM - 18 (63%) – Number of Added Methods
Key entities:
Several implementors of filename

Figure 5.5: Painting Session



86 5.5 Validation

Analysis Figure 5.5 shows a peculiar session since its beginning shows the quick addition
of methods to several classes. It is again quite short (25 minutes). The speed of the initial
changes suggests that the task is repetitive. A closer inspection shows that the methods a, to
m (excluding b and c) have the same name and are added to a hierarchy. They each return a
constant, which explains why they are developed in succession. This explains the high values
of N IC , NAM and the low values of ACC and AC M . These are characteristic of a crosscutting
session. In that case it is justified by the protocol extension.

Once this is done, the rhythm slows down, and some actual logic is added to the system.
This trend is started by method n, which specifies a test that needs to be fulfilled for the
implementation to be correct. Later in the session, a strategy for file downloading is imple-
mented relying on two possibilities. It is closely related to the first part of the session since
methods a, d to m were referencing file names, used in methods b and c to build URLs.

Conclusions Reviewing this session with our approach emphasizes crosscutting changes.
Instead of being spread out on several entities, the sequencing information allowed us to re-
view the addition of methods to a class hierarchy (thus extending its protocol), in a sequential
order. The ease of navigation between previous and successive changes made the connection
more obvious. This is yet another example of session-based understanding highlighting rela-
tionships between entities.

From then on, understanding the remaining subset of changes –those having actual logic–
was made simpler. The usage of the previously added protocol on the hierarchy was also
obvious to relate to the later changes. This is an example of session-based understanding
naturally dividing an implemented task into smaller, easily understandable subparts.



87 5.5 Validation

5.5.3 Masonry & Restoration Session (Project X)

Sparkline:
Characteristics:
Masonry, Restoration, Short
Metrics:
NR – 14 (79%) – Number of Refactorings
SA – 1.53 (89%) – Session Activity
TNC – 58 (76%) – Total Number of Changes
ACC – 7.25 (77%) – Average Changes per Class
NCC – 6 (97%) – Number of Class Changes
NAM – 19 (80%) – Number of Added Methods
Key entities:
The entire PRCommand class hierarchy

Figure 5.6: Masonry & Painting Session



88 5.5 Validation

Analysis Figure 5.6 shows an intense 37 minutes long masonry and painting session featur-
ing a lot of class-based development. This is reflected in the metrics, featuring a high value
for both ACC and NCC –which is unusual. One class is added –it is the focus of the session–
while 8 class modifications happen during the first half of the session. Looking at the class
modified and referenced in the session, we found that it is included in a hierarchy of classes
following the Command design pattern [GHJV95]. The developer is fast at implementing the
new command, which is actually a Composite Command, another design pattern. The meth-
ods added to this class show the minimal protocol expected from a member of the command
hierarchy: execute, validate and initialize.

Afterwards, an extended protocol is added to other classes of the hierarchy with the meth-
ods doAnswer and commitToCommands. This session is a good example to follow, should the
system need to be extended with a new kind of command by a less experienced developer.
The characteristics “Masonry, Short, Active” seem to be good indicators of potential examples
implemented by an experienced developer.

Conclusions Some characteristics of development sessions can be signs of a developer using
domain knowledge to implement design patterns. Using our approach, these can be found
and subsequently documented. A less knowledgeable programmer (new to the project or
taking over a part of the system he does not know well) can use that example as an indication
of what needs to be done when implementing a new instance of this domain-specific pattern.
This domain-specific knowledge is important: Gamma et al. mention that design patterns
are general solutions to problems, bound to be adapted to the specific requirements of every
system [GHJV95].



89 5.5 Validation

5.5.4 Architecture & Restoration Session (SpyWare)

Sparkline:
Characteristics:
Architecture, Restoration, Long
Metrics:
NR – 8 (94%) – Number of Refactorings
TNC – 80 (88%) – Total Number of Changes
NAC – 5 (95%) – Number of Added Classes
NIC – 16 (95%) – Number of Involved Classes
NAM – 30 (93%) – Number of Added Methods
NTM – 35 (89%) – Number of Touched Methods
Key entities:
SWSession, SWQueryWrapper, SWChangeExplorer,
changeDescription, sessions, printAuthoredChange:

Analysis We finish with a longer session (see Figure 5.7) from our own prototype, featuring
architectural changes and restoration activities. This long session lasts for 2 hours and 25
minutes. During its implementation, the model of SpyWare was extended to include session-
level changes, and a simple tool was implemented. This is reflected in the metrics, which
show a very high amount of new behavior (NAC , NAM), across a large number of classes
(N IC). From the sparkline we can divide the activity in 3 parts: F1 shows nearly no sign of
activity, F2 is constituted of two activity spikes stopping at around half of the session, then F3
finishes with a more stable output. We see that refactorings are applied consistently during
the session, and that F2 has a higher ratio of additions in its first spike. We now describe each
part of the session in detail:

F1: F1 lays the ground work for the session by defining the ChangeExplorer class and
changing its sister class, ChangeExplorerTest. A period of perceived inactivity ensues, which
can be interpreted as either a design phase or a documentation phase. Since SpyWare was
not able at that time to record navigation information, knowing more about the exact activity
is not possible.

F2: The first spike adds a new element to the system: An interface centralizing queries
to the model and its sister test class. The last methods in the first spike is a stub method
called sessions, indicating the intention of using the session concept in the ChangeExplorer
tool. A short period of inactivity follows, quickly replaced by the second spike of F2. In
it, two classes are defined, the ChangeGroup and the Session class representing a session
of changes. Several class modifications are made as ChangeGroup becomes a superclass of
several classes in a large refactoring. Indeed, F2 has most of the refactoring activities in the
session, with some movements of functionality. Some methods are pushed up (restoration)
and ChangeGroup becomes an abstract class, with Session and Refactoring inheriting from



90 5.5 Validation

it. Alongside this, the sessions method is modified to exploit these new classes, as well as
its test method.

F3: Once F2 finishes, the architectural phase of the session slows down. The imple-
mentation of the actual tool is done in F3 mainly using Painting. In class SWSession, the
method n5, called changeDescription, is modified repeatedly. A closer analysis shows
it returns a textual representation of a change, used in the Explorer tool. The end of
the session adds a new class (11), called ChangePrinter and is then exclusively focused
on it. ChangePrinter is in fact used in method D, modified just before the introduction
of ChangePrinter. Looking at the code we notice that the class of method D is called
AuthoredChange, and the method changeDescription. Looking at the code of the last
methods, we deduce that ChangePrinter is a printing class introduced to handle the changes
defined in AuthoredChange, using a double-dispatch mechanism close to the visitor pattern.

To sum up this session, we can discern and describe 5 phases: (1) a design/information
gathering phase where development was slow, (2) the definition of the query interface and
the definition of sessions, (3) the architectural changes to the model to add sessions, (4) the
implementation of the ChangeExplorer, and (5) the implementation of a dedicated change
printing subclass. Such an incremental vision of the session’s history gives a clearer insight
on the process than just considering the final outcome: 6 classes were added, 4 others were
modified, 27 methods were added and 13 more were modified.

Conclusions This is another example of session-based program comprehension breaking
down the understanding of a complex change to a sequence of smaller tasks. The long session
was split in three parts, two of these being subsequently split again –showing the recursivity
of the process. Restricting the change amount to consider at any given point makes individual
changes easier to understand.

Attempting to understand a change of the same size without sequence information would
be much more difficult. One could think changes of this size are quite rare, but they are not.
In Table 2.1 (page 21), 25% of the commits spawned several files, and 2% spanned five files
or more. This kind of activity happens frequently during active development of subsystems.
It can also be due to developers committing seldomly, or submitting only patches when they
have not access rights to a repository. In all these cases, incremental session understanding
would be of help to understand the changes performed.



91 5.5 Validation

F1
F2

F3

spike 1
spike 2

F3a
F3b

Figure 5.7: Session F: Architecture and Restoration



92 5.6 Discussion

5.6 Discussion

Related Work

Related work in session-based program comprehension is non-existent, because no other ap-
proach records the data needed –or is able to recover it– with enough accuracy.

SCM system store only snapshot of the system, at intervals whose frequency is dictated
by the developer. They thus contain only the outcome of a given task: All the incremental
and sequence information is lost, which has the effect of blurring the relationships between
entities, and forcing the programmer to understand the entire change at once.

On the other hand, approaches based on IDE monitoring keep the sequence information,
but have a too shallow change representation to allow actual program representation. Their
change representation is –at best– limited to knowing when an entity changed, but not how.
Examples are Mylyn, by Kersten et al. [KM06], and work by Zou et al. [ZGH07]. Other
IDE monitoring approaches store only navigation information, and totally bypass change
information, such as NavTracks by Singer et al. [SES05], and work by Parnin et al. [PG06].

Parnin advocated merging both SCM and IDE monitoring [PG06], but combining the
approaches would still lose the incrementality of the changes. To our knowledge, such an
approach has not been implemented yet.

Smalltalk Change Lists

The closest data source to ours is the one found in Smalltalk change files, based on the same
IDE notification mechanism our approach uses. Modification to classes and methods are
stored in a text file for the primary usage of change recovery when the environment crashes.
As a consequence, the tool support is limited to a simple chronological list of changes. Only
versions are stored, and the changes themselves are not recovered: Displaying the differences
between two versions is done on a line-by-line basis, which is harder to read than a syntax-
aware differencing. Changes are also condensed in a single view, rather than two before and
after views. To our knowledge, nobody used this data to perform program comprehension.

Dealing With Errors

One argument against incremental session understanding is that the recorded changes may
contain errors that would have been corrected later on in the session, and would hence not
appear in the SCM repository.

A possible way to deal with this issue is to mark certain entities as transient. A transient
entity is a program element which is created and deleted in the same session. This is easy to
determine with Change-based Software Evolution, since the change history of the entity will
be entirely contained in one session.

Another area of future work is to locate actual bug fixes in the change history. Gîrba
uses the assumption that a method which is only changed between two version of the system
has had a bug fixed [Gîr05]. We hope Change-based Software Evolution will allow us to



93 5.7 Summary

characterize bug fixes with other activity patterns, the primary one being Blitz Decoration
sessions.

Phases of Sessions

Some of the sessions we reviewed had several phases that we identified visually. An auto-
mated approach to split a session in phases, or on the other hand, to link related sessions,
would greatly assist incremental understanding.

Additional Information

Some additional information would help in understanding session. Recent versions of Spy-
Ware record more than only changes: They also record navigation information (which method
is viewed when), execution of code (and when an error occurs), and usage of the version-
ing system. Navigation information would give more context for understanding the changes,
while code execution and errors would tell us whether a session is dealing with bug fixes or
not. Finally, usage of the versioning system would tell us if our assumption that one session
is equivalent to a commit is accurate.

Generalizability

We analyzed the development sessions across two projects, totaling more than 600 sessions.
We can not however account for each type of project. In particular, the style of each developer
vary greatly. This is why, for instance, we used relative thresholds for most of our metrics, so
that sessions would be compared only with other sessions originating from the same project.
Further studies are needed to set the thresholds to more empirical values.

For incremental understanding, we demonstrated its feasibility on several cases. More
studies are of course needed, but the principles of incrementality were verified: In each case,
reviewing the changes in sequence proved to assist program comprehension.

5.7 Summary

Program comprehension is a difficult task as it is unclear which path one needs to follow
in order to understand a static piece of code. By recording the exact sequence of changes
that took place when a given feature was implemented, Change-based Software Evolution
conserves the logical path which the programmer took when building it. Following these so-
called “programmer’s footsteps” while understanding a given piece of code is easier because
of the following reasons:

• Related entities are changed together, even if no obvious link in the code exists. Exam-
ples of this are polymorphic methods (the method which ends up being called depends
on the run-time type of the object, but the programmer knows which object is the most



94 5.7 Summary

relevant to the task at hand), as in the last session we surveyed, or method communi-
cating by means of side effects. The maintainer spends less effort querying the system
to find the next entity to understand: He or she can focus on the actual understanding
of the code.

• Changes are contextualized: It is easy to recognize that a change was performed in
a refactoring, as evidenced in all the sessions we surveyed. Knowing this information
allowed us to skim over these particular changes in order to focus on the changes which
were not part of refactorings. A further context that eases understanding is obtained
by the session characterization we introduced, which classifies sessions by their type,
length and a variety of other metrics measuring various aspects of the session, such as
the change amount and how crosscutting it was.

• Incremental understanding is supported. Instead of being confronted only the finished
piece of code, the user can first review its initial versions, in which the general in-
tent might not be hidden behind special cases that are bound to appear as time goes
by. When the time comes to understand these changes, the newer changes defining a
particular special case can be reviewed in priority. Our syntax-aware change viewer
ensures that these changes are properly emphasized.

• Some repetitive patterns can be looked for and reused as examples. The third session
we reviewed contained such a pattern as the developer reused his previous knowl-
edge to efficiently implement a new feature according to the Command design pattern,
adapted to its particular domain.

The characterization and the process we defined ease session-based program understand-
ing as they support the navigation in and between sessions, augment the context by highlight-
ing traits or characteristics relevant to the session, and ease the understanding of individual
changes as we provide change-aware syntax highlighting of source code.

The information needed for incremental program understanding is only available through
Change-based Software Evolution. Versioning system archives do not store the incremental
process one took to build a given piece of code, only its final outcome. On the other hand,
lightweight IDE monitoring tools store a change representation which is too shallow to re-
construct the actual incremental steps, if they store one at all.

We validated the effectiveness of session-based program characterization and understand-
ing on four distinct examples, and from this conclude that program comprehension is signifi-
cantly helped by Change-based Software Evolution. Change-based Software Evolution allows
one to comprehend changes in an incremental fashion. The process and characterization we
defined enables it at several levels, from high-level sessions to low-level individual changes,
and to transition between levels fluidly.



Chapter 6

Measuring Evolution:
The Case of Logical Coupling

Metrics are ubiquitous in software engineering, and especially in software evolution as a way to
summarize large amounts of data. It is thus natural to evaluate how our Change-based Software
Evolution can assist the definition, accuracy and usage of metrics.

How much are entities related to each other? Several metrics exist to answer this question.
Logical coupling measures how often entities change together, and is a good measure to extract
non-obvious relationships between entities: Entities might change together even if they do not
reference each other or do so by indirect means.

Logical coupling has been traditionally computed based on transactions in a versioning sys-
tems, giving equal weight to all the entities modified in the same development session. With a
more detailed change history, where the actual development sessions are recorded, we can recover
relationships with more precision since a different weight can be given to entities changed in the
same session.

95



96 6.1 Introduction

6.1 Introduction

A significant portion of the reverse engineering field is dedicated to metrics and measure-
ments. In Chapter 3, we have seen how Change-based Software Evolution can define system
and change metrics. In Chapter 4, we used a fine-grained metric, the average size of methods
in statements. Change-based Software Evolution eases these measurements since its system
representation is very fine-grained. An approach based on an SCM system would first need
to parse the entire system before providing this kind of metric. In Chapter 5, we used change
metrics, most of them specific to our approach, to help us characterize sessions.

In this chapter, we continue this evaluation of Change-based Software Evolution for mea-
surements. We evaluate how much the accurate system and evolutionary representation
provided by Change-based Software Evolution improves the definition and the accuracy of
metrics. We use the example of one of the most useful evolutionary software measurement,
logical coupling.

Coupling was first used –alongside cohesion– as an indicator of good design by Parnas
[Par72]. Parnas advocates that components in a software system should have a high cohesion
and a low coupling to other components. If two components are highly coupled, chances
are that changing one requires changing the other. Briand et al., among others, correlated
coupling between components with ripple effects [BWL99].

Coupling transitioned from being an indicator to an actual measurement, for which sev-
eral metrics exist. Briand et al. gathered and formalized the variations between metrics in
a comprehensive framework [BDW99]. A drawback of these metrics is that they require an
accurate system representation, usually including calls between components and accesses to
variables. Over the years, several alternative measures of coupling have been proposed, such
as logical coupling [GHJ98], dynamic coupling [ABF04], or conceptual coupling [PM06].

Logical coupling is an evolutionary metric based on the change history of entities. The
rationale behind logical coupling is that “entities which have changed together in the past are
bound to change together in the future”. Logical coupling is computed from the versions of the
system archived in a SCM such as CVS or Subversion [GJK03] (From now on, we refer to this
measure of logical coupling as SCM logical coupling).

However, SCM logical coupling suffers from the inaccuracies of SCM systems. In this
chapter, we investigate how much logical coupling can be improved by taking into account
finer-grained change information. We compare SCM logical coupling against alternative logi-
cal coupling measurements in a prediction benchmark on two case studies with a large history.

Contributions. The contributions of this chapter are:

• Several novel measures of logical coupling using fine-grained change data. They take
into account the amount and the precise time when the changes were performed.

• A comparative evaluation of these measures compared to SCM logical coupling on the
change history of two case studies. The evaluation assesses how well the measures
estimate logical coupling with less data.



97 6.2 Logical Coupling

Structure of the chapter. Section 6.2 explains the shortcomings of SCM logical coupling,
describes its usages and the approaches that address its shortcomings. Section 6.3 details our
evaluation procedure to measure the accuracy of the logical coupling measures. Section 6.4
describes the various alternatives to logical coupling we defined and report on their accuracy.
Finally, Section 6.5 discusses the approach, while Section 6.6 concludes.

6.2 Logical Coupling

In this section, we first recall how logical coupling has been used for various activities, then
explain the shortcoming of the current measure of logical coupling, before describing alter-
native measures in the literature.

6.2.1 Usages of Logical Coupling

Logical coupling is primarily used in reverse engineering as a means to detect dependencies
between components. There are two reasons for this: (1) SCM logical coupling is cheaper to
compute than a traditional coupling measurement such as the calls between components —as
logical coupling does not involve parsing the entire system, but only the transaction logs—
and (2) logical coupling can uncover implicit dependencies. Examples of implicit dependencies
are indirect calls between classes, use of the reflective facilities in some languages, or code
that communicates through side-effects. In all of these cases, a change to one of the classes
requires the other class to be changed as well; this change is recorded in the versioning
system, while it is not easily captured by program analysis.

Gall et al. first introduced the concept of logical coupling [GHJ98] to analyse the de-
pendencies in 20 releases of a telecommunications switching system. The concept was soon
adopted by other researchers in the context of reverse engineering and program compre-
hension. Biem et al. defined visualizations to recognize change proneness, and defined an
aggregated measure of all the change coupling relationships of a class [BAY03]. Pinzger used
logical coupling as part of his Archview methodology [Pin05] for architecture reconstruction.
D’Ambros visualized logical coupling with an interactive visualization called the Evolution
Radar [DL06a].

Logical coupling has also been used for change prediction. Zimmermann et al. [ZWDZ04]
presented an approach based on data mining in which co-change patterns between entities
are used to suggest relevant changes in the IDE, when one entity in the relationship is changed
by the programmer. Ying et al., and Sayyad-Shirabad et al. employed a similar approaches
[YMNCC04; SLM03], although at a coarser granularity level. These approaches suggests files,
while Zimmermann’s employs lightweight parsing to recommend finer-grained entities.



98 6.2 Logical Coupling

6.2.2 Shortcomings of SCM Logical Coupling

Computing logical coupling based on an SCM system is restricted by the two shortcomings
of SCM we identified in Chapter 2, information loss and coarseness. Figure 6.1 shows a
hypothetical development sessions explaining these shortcomings.

t

A
B
C
D

co
m
m
it

ch
ec
ko
ut

Figure 6.1: A development session involving four entities

SCM Logical coupling suffers from information loss. In the figure, entities A, B, C and D,
are modified during a single development session. The figure shows a timeline for each entity,
with a mark every time the entity was changed during the session. It is obvious that entities
A and B have a very strong relationship, while entities C and D have a moderate relationship.
In addition, the relationships AC, BC, AD or BD, are weak at best. However, based only on the
information recovered from the version repository, an SCM-based logical coupling algorithm
will give equal values to each relationship. This means that a large amount of data is needed
before the measure can be accurate. The threshold commonly used to establish a strong logical
coupling between entities is 5 co-change occurrences [GJK03]. Zimmermann et al. found
that change prediction works much better for projects with a large history, in “maintenance
mode”, such as Gcc, rather than in active development [ZWDZ04].

In addition, SCM systems are file-based. Without additional preprocessing like the one
employed by Zimmermann et al., the relationships will be computed only at the file level.
Knowing the relationships at a finer level, such as methods, is useful in a reverse engineering
context. There is a difference between a coupling involving most of the methods in two
classes, and one involving only a handful of them: The second one is much more tractable.

6.2.3 Alternatives to SCM Logical Coupling

Given the shortcomings of Logical Coupling, two alternative measurements have been pro-
posed to improve its accuracy.

Zou, Godfrey and Hassan introduced Interaction Coupling [ZGH07] to address informa-
tion loss. Interaction coupling is based on IDE monitoring, like our approach, and records two
types of events during development sessions: Navigation events and edition events. These
events are counted at the file level, and the number of context switches between two files is



99 6.3 SCM Logical Coupling Prediction

the measure of interaction coupling. The measures are also classified in three categories: co-
change (the two files changed at least once together), change-view (one of the files changed,
while the other was consulted) and co-view (the two files were viewed together). Only the
sequence of events is taken into account, not their date or their contents.

Fluri et al. developed an approach to identify and classify changes between versions,
beyond file-level changes [FG06]. Each type of change has a significance ranging from low
to crucial. Taking into account the significance of changes when computing change coupling
gives a different measure of it. The comparison with logical coupling was performed on a
case-by-case basis. Moreover, Fluri’s approach still relies on standard versioning systems.

Change-based Software Evolution shares some of the advantages of Fluri’s approach. In
particular, our AST-based changes automatically filter out layout changes, or changes to com-
ments. We can also filter out changes performed by refactoring tools (which are behavior
preserving), as we monitor the tools themselves.

6.3 SCM Logical Coupling Prediction

Since we define alternative measurements to logical coupling, we need a way to evaluate
them. The criteria we chose is the approximation by alternative metrics of future SCM Logical
Coupling with a shorter history. This section explains our evaluation strategy.

6.3.1 Motivation

The amount of data needed by logical coupling is one of the reasons logical coupling is used
more for retrospective analysis, rather than forward engineering. In plain words, if there
is not enough data, the measure is useless. For instance, Zou et al. mention in their study
that SCM logical coupling was unable to find any coupling relationship from a one-month
period of data [ZGH07]. On the other hand, the coupling they defined did work on shorter
periods than the classic logical coupling. Their comparative evaluation of the two metrics
was however anecdotal. Since we have recorded a larger amount of data, we can compare
more formally the accuracy of the coupling measures, by employing a predictive approach.

6.3.2 Procedure

We first need to gather the predictions of the approaches, and the actual events they predict.
To gather the set of actual strong relationships in the system, we measure the SCM logical

coupling in the entire system. We then select the relationships which have a logical coupling
beyond the threshold value used by Gall et al. [GHJ98], which is 5. This constitutes the
expected set of strongly coupled entities E.

For each logical coupling measure m we measure the coupling of each relationships for
each session. This coupling is between 0 and 1. If a relationship’s coupling is above a certain
threshold t r, we put the relationship in a candidate set Cmt r . The relationships where an



100 6.3 SCM Logical Coupling Prediction

entity has changed less than 5 times overall are filtered out, since we can not verify the
prediction for these. To be extensive, we tried threshold values between 0.01 and 0.99, with
a 0.01 increment.

To evaluate the impact of adding data, we repeat this procedure for two or three sessions,
i.e.,, the threshold for a relationship has to be crossed in two (respectively three) sessions in
the history to add an entity in the candidate set.

6.3.3 Evaluation

We evaluate the accuracy of the measures by comparing the candidate sets with the expected
set in terms of precision and recall. We define the precision P and recall R for a candidate set
C , with respect to the expected set E, as:

P =
|E ∩ C |
|C |

and R=
|E ∩ C |
|E|

Precision and recall come from information retrieval and give an idea of the accuracy of a
prediction [vR79]. The recall expresses the number of false negatives given by the measure:
It is the proportion of expected entities that were predicted. If all the expected entities
are predicted, the recall is 1. The precision evaluates the number of false positives in the
prediction: It is the proportion of predicted entities that were wrong. If only entities in the
expected set are predicted, the precision is 1.

Intuitively, using two or three sessions instead of one should decrease recall and increase
precision. Increasing the threshold also increases the precision and decreases the recall. The
relationship is however not linear.

To more formally elect the best thresholds and the best coupling measures, we combine
precision and recall into the F -measure, defined as their weighted harmonic mean:

Fβ =
(1+ β2) · P · R
β2 · P + R

Common variations from β = 1 give a stronger weight to precision (β = 0.5), or to recall
(β = 2).

6.3.4 Result Format

For each measurement, we present its accuracy in our prediction benchmark with two pre-
cision/recall scatterplots, one for each case study. Each point represents a threshold value
(between 0.01 and 0.99), its x-coordinate being the recall of the measurement for the thresh-
old, and its y-coordinate being the precision. Both vary between 0 and 1.

We also provide a table with the best possible f-measures for each case study, taking into
account each parameter: The number of sessions, and the weight to give to F .



101 6.4 Logical Coupling Measurements and Results

6.3.5 Data Corpus

We compared the coupling measures over the change histories of our two projects with the
most coupled relationships according to our previous definition.

The first of those is SpyWare. For this study we selected the first three years of de-
velopment of SpyWare, representing 500 sessions of development for a total of 500 class
relationships marked as highly coupled.

The second project is Software Animator, a system written in Java over 134 sessions and
a period of three months, obtained via the Eclipse version of our plugin. It features around
250 class relationships considered as highly coupled.

6.4 Logical Coupling Measurements and Results

In this section, we present the coupling measurements we defined or reproduced. For each
measure, we note which aspect of the evolution the measure emphasizes, explain its intuitive
meaning, give the actual formula we use to compute it, and the accuracy results we found.

For any program entity a and session s, we note δa for any change concerning a or the
children of a (changes to a method also concern its class) and sa = {δa ∈ s}. We compute the
coupling a¡ b between two entities by aggregating a per-session coupling measure over a
set of sessions. The various coupling measures each define their own

s
¡.

6.4.1 SCM Logical Coupling

Emphasizes Occurrence of co-change of two entities during the same sessions.

Intuition This logical coupling measurement is the one introduced by Gall et al. Two entities
are related if they change during the same session. A threshold of five co-change occurrences
is often used to qualify entity as logically coupled.

Definition

a
LC
¡ b

def
=

¨

1 if a and b changed during s;
0 otherwise.

Results Table ?? presents the F-measures of SCM Logical Coupling. This measurement
serves as the baseline for our further measurements. Since this is the measure we try to
predict, it will make every recommendation that will eventually reach 5 co-change occur-
rences. Hence, its recall is always 1. However, its precision is very low, yielding very low
values of F for one and two sessions. Of course, the more sessions are taken into account,
the more accurate the measure becomes.



102 6.4 Logical Coupling Measurements and Results

6.4.2 Change-based Coupling

Emphasizes How much an entity changed during a development session.

Intuition Entities that change many times during a session are more coupled than those
which only change occasionally. This is similar to the LC measure except the number of
changes for each entity is factored into the measure.

Definition

a
CC
¡ b

def
=

 

∏

sa×sb

|sa| · |sb|

!1/|sa×sb |

Results Figure 6.2 is the precision-recall graph on the two case studies. F-measures are
shown in Table 6.1. This measure is a significant improvement over the baseline, especially
when only one or two sessions of information are taken into account. This measure performs
best with medium (for higher precision, or with less sessions) to low (for better recall, or
with more sessions) thresholds.

(a) SpyWare (b) Software Animator

Figure 6.2: Graphs of Precision (X axis) and Recall (Y axis) of Change Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)



103 6.4 Logical Coupling Measurements and Results

6.4.3 Interaction Coupling

Emphasizes Interleaving of sequential changes.

Intuition This measure is related to the one introduced by Zou et al., although we consider
only the code changes and ignore the navigation events. Each time an entity changes, it
becomes the entity in focus. The coupling between A and B is equal to the number of times
the focus switched from A to B or from B to A. The original version of the measure is then
rounded between zero and one, based on whether the number of context switches is below
or above the historical average. To keep the accuracy of the measure, we do not round it.

Definition
a

IC
¡ b

def
= |sa × sb| with δa and δb successive

Results Figure 6.3 is the precision-recall graph on the two case studies. F-measures are
shown in Table 6.1. If all measures improved the accuracy of Logical Coupling by comparable
amounts, this measure is the best performing. When not rounded, it has better results, albeit
by a low margin. As for the Change Coupling, medium to low thresholds work best.

(a) SpyWare (b) Software Animator

Figure 6.3: Graphs of Precision (X axis) and Recall (Y axis) of Interaction Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)



104 6.4 Logical Coupling Measurements and Results

6.4.4 Time-based Coupling

Emphasizes Proximity in time of changes in a session.

Intuition If two entities changed simultaneously, their relationship is stronger than if one
changed at the beginning of the session and the other at the end. The coupling linearly
decreases with the average delay between changes, from 1 if all changes happened simulta-
neously to 0 if it is one hour or more.

Definition

a
T C
¡ b

def
= max

 

0, 1−
1

|sa×sb|

∑

sa×sb

|∆t(δa,δb)|

!

Results Figure 6.4 is the precision-recall graph on the two case studies. F-measures are
shown in Table 6.1. Unlike the previous two measurements, Time Coupling works best with
high to medium thresholds. It performs slightly worse than other measures for low number
of sessions, but performs closer for a higher number of sessions.

(a) SpyWare (b) Software Animator

Figure 6.4: Graphs of Precision (X axis) and Recall (Y axis) of Time Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)



105 6.4 Logical Coupling Measurements and Results

6.4.5 Close Time-based Coupling

Emphasizes Close proximity in time of changes in a session.

Intuition If two entities are usually changed close together, but one experiences changes
much later in the session, their relationship will decrease. To counter this, this coupling
averages only the five lowest time intervals.

Definition The definition is identical to the Time Coupling, however only the five lowest
time intervals are kept.

Results Figure 6.5 is the precision-recall graph on the two case studies. F-measures are
shown in Table 6.1. This measurement performs better than the regular Time Coupling,
but needs very high thresholds. This is to be expected, since it averages the smallest time
intervals, hence providing higher values on average.

(a) SpyWare (b) Software Animator

Figure 6.5: Graphs of Precision (X axis) and Recall (Y axis) of Close Time Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)



106 6.4 Logical Coupling Measurements and Results

6.4.6 Combined Coupling

Emphasizes All the previous characteristics.

Intuition All the coupling definitions we described yielded an improvement over the default
definition. By combining the three measurements, we may have an even better measure.

Definition Average of the normalized values of the Change Coupling, the Time Coupling,
and the Interaction Coupling. Time Coupling was selected over Close Time Coupling since
the optimal thresholds are closer to the ones of the two other measures.

Results Figure 6.6 is the precision-recall graph on the two case studies. F-measures are
shown in Table 6.1. If there was no clear winner in the previous measurements –save the
Interaction Coupling by a small margin– combining the measures yields a significant im-
provement. This improvement is best in the most important case, for one or two sessions.
The F-measure for one session is actually comparable with the one of the other approaches,
but for two sessions. The same is valid for two versus three sessions. For three sessions, its
accuracy is in range with the other measurements.

(a) SpyWare (b) Software Animator

Figure 6.6: Graphs of Precision (X axis) and Recall (Y axis) of Combined Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)



107 6.4 Logical Coupling Measurements and Results

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions 1 Session 2 Sessions 3 Sessions

SCM Logical Coupling
F0.5 3.9 6.1 14.1 3.4 5.4 12.5
F 13.5 20.0 38.4 14.7 21.6 40.8
F2 28.1 38.5 61.0 28.6 39.1 61.6
Change Coupling
F0.5 22.5 28.1 39.7 36.2 41.4 49.6
F 44.0 47.0 61.0 61.5 57.7 68.0
F2 56.6 59.2 72.2 69.6 68.3 76.3
Interaction Coupling
F0.5 22.0 28.8 42.2 36.0 40.9 54.4
F 43.3 49.0 60.1 56.5 55.0 67.7
F2 58.1 63.9 77.4 72.1 68.8 79.1
Time Coupling
F0.5 22.8 27.8 38.8 18.7 20.4 30.0
F 48.8 47.5 61.0 37.7 45.4 61.1
F2 66.4 61.0 74.8 57.0 61.9 70.8
Close Time Coupling
F0.5 21.6 28.1 41.3 22.0 29.0 42.4
F 41.5 46.8 62.2 51.4 54.6 67.6
F2 59.3 61.3 74.6 58.9 62.6 74.5
Combined Coupling
F0.5 41.5 39.9 55.1 50.7 53.9 68.9
F 49.9 55.3 69.0 63.8 64.0 72.7
F2 62.7 64.1 77.9 70.3 70.2 78.2

Table 6.1: Best F-measures for all logical coupling measurements

6.4.7 Discussion of the Results

The measures perform comparably on both case studies, except for the general tendency to
perform slightly better on our second case study. We are not sure of the cause of this behavior.
Possible reasons could be differences in style of programming, designs of the system, or
programming language used (one was built in Smalltalk, the other in Java). Increasing the
data used in the benchmark would help us see the overall trend better.

However, all measures performed more or less comparably across the two case studies,
and most of all, performed significantly better than SCM Logical Coupling with a lesser, but
more detailed, history. This gives us confidence that our alternative measures of logical
coupling can be used faster than the previous one.

Finally, combining the metrics works surprisingly well, especially in the cases where the
history is the most limited, with only one or two sessions in which a co-change event hap-
pened. We think that there is still room for improvement, since our definition of the Combined
Coupling is a simple average. One possible way to improve this would be to give different
weights to the metrics, or change the way the average is computed to give more weight to
high metric values.



108 6.5 Discussion

6.5 Discussion

Recording

In the absence of explicit commits, SpyWare automatically starts a new session whenever
there is a gap of one hour or more between changes. We make the assumption that the
session boundaries is where commits would occur.

Precision

When more accurate information is taken into account, the logical coupling is more stable,
and can thus be used earlier on to make predictions. SCM logical coupling is often used for
retrospective analyses when the history is considerable. We provided initial evidence that
more detailed measures provide useful results earlier.

Generalizability

Our experiment was carried on a small sample (500 and 250 strong coupling relationships).
We can not generalize it to other systems. However, the measures performed comparably on
both case studies. Further, all of them performed, in both cases, with a significant improve-
ment over the default measure of logical coupling. Once we gather more case studies, we
intend to replicate the experiment. In the meantime, the size of the improvement makes us
confident that our results will be verified.

Replication of Fluri’s Approach

We did not attempt to replicate the coupling measured by Fluri et al. [FG06] for the following
reasons: (1) Some of the changes in Fluri’s taxonomy are Java specific, and could not be
translated to Smalltalk, and (2) the measure of change coupling integrating significance was
specified informally.

Replication of Zou’s Approach

On the other hand, we partially replicated the interaction coupling of Zou et al.. One limita-
tion is that we consider only the change events, not the navigation events, since our prototype
did not record them over the whole period. One improvement over the original approach is
that we do not round the measure at the end of each session. The original metric return a
binary metric for each development session, depending on whether the number of context
switches was greater than the average. Instead, we return a more precise value between 0
and 1. We then use this value in combination with a threshold to evaluate its accuracy.



109 6.6 Summary

Method-level Coupling

We also performed a preliminary classification of the coupling relationships between classes
based on how the methods in the classes were related. We can detect if a coupling is caused
by a large number of methods (which is less manageable), and whether these methods call
each other directly or not (which makes the coupling harder to detect). However these results
are not mature enough to be discussed further.

6.6 Summary

In this chapter, we evaluated how Change-based Software Evolution can improve the accu-
racy and the level of detail taken into account in software measurements. CBSE maintains
at all time an accurate, AST based representation of evolving systems, down to individual
statements and the entities (classes, methods, variables) they represent. This ensures that
measures computed on top of data provided by Change-based Software Evolution are accu-
rate since the finest level of detail can be used if necessary.

In addition, CBSE closely monitors the evolution of systems by recording, instead of re-
covering changes. This considerably increases the accuracy of evolutionary metrics, as well
as the accuracy with which we can follow the evolution of more static metrics.

We demonstrated the improvements provided by these two aspects on logical coupling.
While a coarse measurement of logical coupling yields boolean values at the file level, mea-
surements defined on Change-based Software Evolution data yields values in a range (from
zero to one), on finer-grained entities such as classes and methods.

The consequence of these improvements is that less evolutionary data is needed for the
measurements to be reliable. Where logical coupling was used primarily for retrospective
analyses –as a long system history was needed–, our measurements can be used sooner and
hence support active development. We verified this by defining a prediction benchmark and
concluded that 1 or 2 occurrences of co-change could quite accurately predict whether future
co-change occurrences would take place. Several metrics were shown to have good predictive
powers, around 50% in both precision and recall with only two sessions of data instead of 5.
In addition, combining metrics increased the accuracy further.

This shows that the fine-grained data provided by Change-based Software Evolution is still
useful when summarized at a very high-level by measurements, as these are more accurate
than measurements based on coarser data.



110 6.6 Summary



Part III

How First-Class Changes Support
Software Evolution

111





Executive Summary

This part of the dissertation shows how, beyond understanding systems, Change-based Software
Evolution can assist programmers to actually perform new changes. We show that:

CBSE helps to automatize repetitive changes. In Chapter 7, we show how we extended
CBSE with program transformations behaving as change generators. This has two advantages.
The first is that the transformations are fully integrated in the system’s evolution, and can be
further used for program comprehension, or to ease the transformation’s evolution. The second is
that concrete recorded changes can be refined into generic transformations, providing a concrete
bases for transformation definition.

CBSE improves recommender systems. In Chapter 8, we show how CBSE can be used to
define a benchmark for code completion. In Chapter 9, we show how CBSE improves on the
existing, SCM-based benchmarks for change prediction. In both cases, CBSE-based benchmarks
allow to reliably and repeatedly evaluate several variations of recommender algorithms. In both
cases, the best performing algorithms use fine-grained change data to make their predictions.

This shows that recording fine-grained history has a lot of diverse usages beyond the obvious
uses in reverse engineering. We expect more of these usages to be defined in the future.





Chapter 7

Program Transformation and
Evolution

When a system needs repetitive changes, programmers are faced with a choice: Either perform
the change manually, running the risk of introducing errors in the process, or use a program
transformation language to automate the task. We tackle three problems related to program
transformations, and their integration in Change-based Software Evolution.

• We first extend our change metamodel to support parametrized program transformations
in a natural fashion.

• Second, we propose an example-based program transformation approach: Instead of using
a transformation language, recent changes to the system are used as concrete examples
which are generalized to define program transformations.

• Finally, we show how program transformations can be integrated in the overall evolution
of a system, and the possibilities this enables.

115



116 7.1 Introduction

7.1 Introduction

Program transformations automatize repetitive changes that would be error-prone if per-
formed manually. Program transformations are ubiquitous: They span a broad spectrum from
compilers transforming high-level programs to machine code, up to refactorings, available in
every IDE. It seems natural to investigate how well Change-based Software Evolution can
support and interact with program transformations. We decompose the interplay between
Change-based Software Evolution and program transformations in three problems:

Transformation support: How can Change-based Software Evolution be extended to define
generic program transformations, and to which degree extending our model to support
program transformations is natural.

Transformation definition: How can recorded manual changes be used to ease the defini-
tion of program transformations, by making more explicit the process through which
transformations are created from concrete examples.

Transformation integration and evolution: How can program transformations be integrated
in our vision of an accurate description of a program’s evolution, and what are the con-
sequences of this integration.

Each of these problems is related to a different aspect of Change-based Software Evolu-
tion.

The first problem is spawned by the fact that the changes we defined are already program
transformations, albeit basic ones. In Chapter 3, we specified that each change is executable
and affects an AST. Changes are in essence constant transformations. We want to see how
far our model can be extended to support parameterized program transformations without
degrading it.

The second problem stems from our previous observations that recording changes gives
us considerably more information than is available in an SCM system. We want to investigate
to which extent the structure and the order of recorded changes is useful to express program
transformations. We call this approach example-based program transformation.

Finally, the last problem is related to our desire to model evolution with accuracy. We
already model and record a subset of program transformations, namely refactorings. We
used these for reverse engineering and program comprehension purposes in Chapter 5. In
the same fashion, we investigate how we can document when and where a program transfor-
mation was applied to the system. In addition, we explain how documenting transformation
applications could assist in transformation maintenance, automation and evolution.



117 7.2 Change-based Program Transformations

Contributions. The contributions of this chapter are:

• An extension to our change metamodel to define parametrized program transforma-
tions, which views program transformations as change generators.

• An example-based program transformation approach to assist the definition of program
transformations. It is based on (1) the recording of a sequence of changes to provide
the initial transformation structure to be worked on, (2) a direct interaction with this
structure to refine and generalize it, and (3) the interaction with example entities to
set the scope of the newly defined transformation.

• A proof-of-concept of Example-based Program Transformation through three distinct
examples that demonstrate its versatility: (1) Flexible refactoring definition, such as
the “extract method with holes” refactoring, (2) Program-specific code transformations,
exemplified by replicating changes to code clones in a code base, and (3) Definition of
“informal aspects”, exemplified via the definition of a simple logging aspect.

• How to fully integrate program transformations in a system’s evolution, and a descrip-
tion of the consequences of transformation integration for their comprehension and
evolution.

Structure of the chapter. We first describe how we extend our change metamodel to
include program transformations in Section 7.2. In Section 7.3 we motivate and outline our
approach to define transformations from examples found in the history. We describe its steps
in detail in Section 7.4, illustrated on a running example. We describe additional examples
in Section 7.5. In Section 7.6, we describe transformation integration and evolution. Finally,
we discuss our approach in Section 7.7, and conclude in Section 7.8.

7.2 Change-based Program Transformations

The definition of a program transformation is simple. It is a function which takes as input
a program and a set of parameters, and returns a modified program. Our changes fit that
definition, except that they do not accept parameters: Each change encodes a constant trans-
formation. In this section we extend our model with generic changes, which support parame-
ters. We first describe variables and their roles, then generic atomic changes, transformation
application, and finally change-based control structures.

7.2.1 Variables And Their Roles

In our model, program transformations are sequences of generic composite changes or generic
atomic changes. Each of these changes reference several variables. When the transformation
is applied to a system, each variable will be eventually bound to the ID of a given program
element. Depending on the natures of the references to it in the atomic changes of a program
transformation, a variable can have three roles:



118 7.2 Change-based Program Transformations

Constant: The variable is involved in a creation change. Its ID is guaranteed to be generated
at instantiation time. No further treatment is necessary.

Parameter: The variable is not created in the change. Its ID will be given to the transforma-
tion as an argument as it is instantiated.

Unlocated: The variable is not created in the change. Rather than being given as a param-
eter, it is computed from other parameters and the state of the system the program
transformation is applied to.

From this, we observe that only the variables which have the role of parameters need to be
assigned an ID when the transformation is instantiated. Other variables will be automatically
bound to the ID they need.

Heuristics are used to differentiate between parameters and unlocated variables. Variables
in parent or entity slots of changes are preferably parameters. Variables in location slots are
preferably unlocated. The roles are not fixed and can be changed afterwards.

7.2.2 Generic Changes

Generic atomic changes fields contain variables, instead of IDs of concrete entities. Whenever
a variable is assigned an ID, all references to it in all the changes in the transformation are
updated. When a transformation is applied to a system, each generic change in it is instan-
tiated: It generates a concrete change by assigning IDs present in the system to variables.
Executing the changes on the system modifies it according to the transformation.

All types of atomic changes have a generic counterpart, their behavior during instantiation
is as follows:

Creation: Generates a new ID for its entity each time it is instantiated.

Addition/Removal: The parent or the entity must have an ID assigned, or the change fails.
As an alternative, the parent or the entity can be computed via functions.

Insertion/Deletion: Works the same as an addition for parent and entity. The location inside
the parent is determined by variables as well. Their ID must be known, or computed
from the parent. In the latter case, the location has to be computed according to the
state of the parent (i.e., the contents of its AST) at instantiation time.

Property Change: The property value can be computed via a function.

7.2.3 Instantiation and Application of Transformations

Applying a transformation on a set of parameters works as follows:

Bind parameters to their actual values (IDs).



119 7.2 Change-based Program Transformations

Instantiate each change. IDs of constants are generated. IDs in unlocated variables are
computed as well. Should such a computation not succeed for any reason, the change
fails.

Execute the changes. After each atomic change is instantiated, apply it directly to the code
base. Changes later on in the transformation may depend on previous changes being
applied.

Tag each concrete change generated by the transformation as being issued by the transfor-
mation. This is described in Section 7.6.

During instantiation, a list of all the already applied concrete changes for each generic
composed change is kept. If a change fails, all the concrete changes generated by the generic
composed change that have been executed so far are undone. The generic composed change
then also fails, triggering a sequence of undo at the next level, until the entire transformation
is undone.

7.2.4 Control Structures

To define more complex transformations, changes need to be applied differently depending
on the parameter that is given. Consider for instance the case of a change that should be
applied to all methods in a class, or only to methods whose name start with “test”. For
this we need control structure such as for loops and conditionals. Since our model supports
composition, control structures are represented as special kinds of changes, that wrap one or
more generic composite changes.

Iteration We allow a generic composite change (or more) to be applied to a set of entities
via a generic iteration change. The collection of parameters to which the contained changes
will be applied is computed by a function of other parameters and is called the iteration set.
For instance, an iteration can take as parameter the ID of a class, and compute its iteration
set as being all methods of the class. The wrapped change is then instantiated multiple times,
once for each method.

Another kind of iteration consists in attempting a change an unspecified number of times,
until it fails to apply. The iteration change intercepts the failure so that only the last applica-
tion of the wrapped change is undone. A use case for this would be to replace all references
in the system from one variable name to another.

Conditional Conditional changes wrap several generic composed changes. Each one is an
alternative. When the conditional is instantiated, it instantiates each wrapped change until
one does not fail. Previous failing changes are undone. If all changes inside it fail, the
conditional itself fails. Optional changes are similar. They attempt to apply the changes
inside them, but they do not fail if every wrapped change fails.



120 7.3 Transforming programs by examples

Calling Transformations Transformations can call one another. The calling transformation
specifies the values of the parameters to give to the callee. This allows reuse of commonly
used transformations as building blocks of bigger ones.

7.2.5 Wrap-up

Our change model is easily extended to implement transformations. By simply considering
them as change generators, we added a layer above our previous layer which does not inter-
fere with the layer below.

In addition, composition of changes is naturally extended to implement higher-level con-
trol structures such as iterations and conditionals, which control how the changes they en-
capsulate are instantiated. Even if the control structures we defined in such a way are simple,
they have been sufficient so far. Our model can support the definition of more complex
transformations in this way.

The remainder of this chapter deals with how recorded changes ease the definition of
transformation as a sequence of changes, and the definition of the computations that take
place in them.

7.3 Transforming programs by examples

If program transformations are useful, defining them is not always easy. It is often the realms
of specialists: Compiler writers, Refactoring implementors, or users of program transforma-
tion languages. If a program transformation is outside that realm, such as a domain-specific
transformation not large enough to warrant the use of a full-blown program transformation
language, it will often end up being done manually, which is error-prone.

As an alternative to manual editing we present an example-based program transformation
approach: To specify how a repetitive task should be automated, a programmer records a
sequence of changes as an example of it.

The rationale behind our approach is that highly abstract activities such as defining a
program transformation have less overhead when one is working on concrete instances of the
problem. In one experience report of the DMS program transformation system [ABM+05],
the authors mention that before defining a large-scale transformation to be applied on several
modules of a system, they first converted one module of the application by hand.

Since programmers need to work on concrete instances of a problem before defining
transformation, our approach maximizes the usage of these concrete example. Starting from
a recorded example working in its particular context, the developer generalizes it to make it
applicable in other contexts. During this process, we allow the developer to directly inter-
act with the structure of the transformation and the entities affected by the transformation.
Finally, the programmer can explicitly name and store the newly defined program transfor-
mation, and reuse it as needed.



121 7.3 Transforming programs by examples

We first compare existing approaches to draw requirements for a transformation approach
filling the gap that exists in the program transformation spectrum. We then give a bird’s eye
view of how we define a program transformation based on example changes, and show how
our approach fulfills the requirements.

7.3.1 The Program Transformation Spectrum

Program transformation has been tackled in 4 areas 1:

1. Refactorings [Fow02] are by now well integrated in many IDEs and –generally being
one right-click away– easy to apply. They are also safe due to their behavior-preserving
nature. They are part of many a developer’s toolbox. They are however limited in
scope: Only the handful of most common refactorings are available in IDEs. Imple-
menting a new refactoring involves a significant coding effort: An example on the
Eclipse website 2. The refactoring described in the example is implemented in several
Java source code files and is more than a thousand lines of code long, making such a
practice out of reach for most users.

2. Linked Editing refers to the ability of some code editors [TBG04; DER07] to change
a code fragment and have the editor broadcast the changes to similar regions of code,
called clones. The clones can be either documented or detected by the tool. Since
they usually work at the text level, not the syntactic level, their applicability is usually
limited to code fragments with a high degree of similarity. Parameterizing an edit is not
supported.

3. Aspect-Oriented Programming (AOP) allows crosscutting concerns to be abstracted
and separated from the code base into aspects [KLM+97]. As part of the compilation
process, the program is transformed to include the aspects which were extracted. Using
Aspect-Oriented Programming involves learning a new language, with all the hurdles
that implies.

4. Program Transformation Languages are the most flexible and powerful approach,
but the most difficult to successfully use. Transformations tend to deal directly with the
AST of the program, whereas AOP uses special purpose (and more limited) constructs
such as advices and pointcuts. Such languages are seldom integrated in a development
process, but defined externally and applied to the entire program as a separate step of
the build process. All these factors make the use of program transformation languages
worthwhile only for large-scale, system-wide, transformations such as migrating code
from one distribution framework to another [ABM+05; RB04].

1Compilers are out of scope in this work.
2www.eclipse.org/articles/Article-Unleashing-the-Power-of-Refactoring/



122 7.3 Transforming programs by examples

In Table 7.1 we compare the approaches on flexibility, scale of usage, ease of use and
IDE integration. From this, we extract the following requirements to ease transformation
definition:

Linked Transf.
Refactoring Editing AOP Languages

Flexibility - - + ++
Transformation size - - + ++

Ease of use ++ + - –
IDE integration ++ + - –

Table 7.1: Advantages and drawbacks of approaches in automated program transformation

IDE integration tremendously lowers the barrier to entry as the functionality is directly
available.

Flexibility. Low flexibility rules out many smaller transformation tasks. To fill the spectrum
between easy, but limited usage (refactoring, linked editing), and complex, large-scale usage
(AOP, transformation languages), we need a sufficiently expressive and flexible approach,
integrated in the IDE.

Low Abstraction Level. The flexibility offered by program transformation tools requires a
high abstraction capacity, reducing the efficiency of most programmers. Even transformation
experts need concrete examples [ABM+05]. A key requirement is to lower the abstraction
level of the task, by giving it concrete foundations. The steep learning curve of program
transformation languages (and to a lesser extent AOP) is due to the highly abstract nature of
the tasks they involve: The programmer has to build a mental representation of the program
as a data structure and manipulate it, without having an easy way to check the results.

We now describe Example-based Program Transformation in general terms before dis-
cussing how it fulfill these requirements.

7.3.2 Example-based Program Transformation in a Nutshell

Example-based program transformations use recorded changes as examples, refined into general-
purpose program transformations. Defining and using example-based program transforma-
tions is divided in 6 steps. We describe these steps alongside a running example (in italics):
The definition of an informal logging aspect. A full-fledged aspect would probably not be im-
plemented as such in a project not already using AOP. Instead, developers might implement
it manually by inserting the same instructions over and over in the source code, leading to
maintainability problems in the long run.



123 7.3 Transforming programs by examples

Step 1: Record changes. To start the procees, one first needs to record a concrete example
of a transformation. The transformation is manually performed on example entities. The
example change for a logging aspect is to introduce a logging statement at the beginning of a
method.

Step 2: Generalize changes in a transformation. This process is performed automatically
given a concrete sequence of changes. Each reference to an entity ID in the change is con-
verted to a variable. Based on how each entity is created, modified or removed in the change
sequence, the system deduces a role for it. Some will be parameters to the transformation
(i.e., specified before running it), while others will need to be computed from these parame-
ters. From the example change, the generalization process deduces that the change applies to a
parameter, X, which is a method. It also deduces that the location where the statement is inserted
is variable, and must be specified by the user.

Step 3: Edit variables part of the transformation. Based on the roles of the variables de-
duced from the previous step, the developer edits the transformation and specifies how the
values of the variables are computed. The developer specifies the location inside X where to
insert the statement, and also that the string printed in the logging statement should contain the
name of X.

Step 4: Compose changes. The developer can introduce higher-level constructs such as
iterations or conditionals to build larger changes from elementary building blocks. The devel-
oper specifies that to apply the logging transformation to a class, the previous change must be
applied to all the methods of the class. He can also define variants of the change, depending on
the number of arguments in the calling method.

Step 5: Test the transformation on examples. At any time during steps 3 and 4, the de-
veloper can test the effects of the modified transformation by running it repeatedly on the
example entities, to assess if the results match his needs on the initial example. The devel-
oper can compare the results of the initial change and the specified transformation on the same
targets.

Step 6: Apply the transformation to the system. Once the transformation is defined, it is
saved and can be immediately used from the code browser of the IDE. This allows the trans-
formation to be applied to one entity at a time. A special-purpose tool allow the transforma-
tion to be applied to a larger number of entities if it is needed. The logging transformation
is stored, ready to be applied at any moment to any program. The transformation can also be
undone.



124 7.3 Transforming programs by examples

7.3.3 Does our approach fulfill the requirements?

IDE Integration. An IDE plugin monitors programmer activity, and records it as change
operations. This is done silently, without interrupting the workflow of the developer. The
subsequent refinement of the transformation is done using a user interface which still belongs
to the IDE. Then, the transformation can be quickly accessed and tested on program elements
since the tool has access to the program representation through the IDE.

Low abstraction. We kick-start the transformation process by extracting the initial transfor-
mation structure from the recorded example. The tool infers which parts of the transforma-
tion need to be further edited or not, giving the developer a concrete list of tasks to perform.
The reified program transformation also allows direct interaction with the structure of the
transformation. Parts of it can be easily edited, swapped, removed or cloned. The process to
follow is given by the recorded changes in the transformation itself.

Flexibility. A transformation is not limited to a single entity, since an arbitrary number of
changes can be recorded. It can also be edited to include higher-level control structures,
such as iterations of a change on multiple entities, or trying alternative changes depending
on the type of the entity a transformation is applied to. Unlike refactorings, we do not focus
exclusively on behavior-preserving program transformations.

7.3.4 Running example

We present a more complex example, that we use in the following sections. It is an extension
to the “Extract Method” refactoring. According to Fowler, “Extract Method” is the Refactoring
Rubicon, i.e., a refactoring tool featuring “Extract Method” is probably complex enough to
implement most refactorings3. Refactoring tools featuring “Extract Method” are able to infer
which local variables need to be passed as arguments to the extracted block of code (those
that are referenced both in the code block that is being extracted, and outside of it).

A frequent situation however is that a constant expression in the block of code would need
to be passed as a parameter to the new method that is being created. Since this expression
is referenced only inside the code block that is extracted, it is not converted to a parameter
(See Figure 7.1, top). Another related situation is when a method call is used on an extracted
variable. Usually, the call becomes part of the extracted code, while sometimes it should
stay in the calling method (Figure 7.1, bottom). In both cases, additional modifications are
needed: There are two possible alternatives, shown in Table 7.2.

Both approaches require several steps and disrupt the flow of the programmer. In the
following we show how, using our approach, we create the “Extract Method with Holes”
refactoring, i.e., additionally to extracting a method, portions of constant code can be also
extracted as parameters of the newly created method.

3See www.martinfowler.com/articles/refactoringRubicon.html



125 7.3 Transforming programs by examples

initial code and selection

exampleMethod: argument
    argument + 42.
    ^ argument

"Extract Method" behavior

exampleMethod: argument
    self addTo: argument.
    ^ argument

addTo: argument
    argument + 42.

desired behavior

exampleMethod: argument
    self add: 42 to: argument.
    ^ argument

add: value to: argument
    argument + value.

exampleMethod: arg1 and: arg2
    arg1 + arg2 squared.
    ^ arg1

exampleMethod: arg1 and: arg2
    self add: arg1 to: arg2.
    ^ argument
add: arg1 to: arg2 
    arg1 + arg2 squared

exampleMethod: arg1 and: arg2
    self add: arg1 to: arg2 squared.
    ^ argument
add: arg1 to: arg2
    arg1 + arg2.

Figure 7.1: Actual vs expected behavior of extract method

A. Extract Temporaries B. Add Parameters
1. Extract the constant expression to a temporary
variable.

1. Extract the code of the method.

2. Move temporary variable declaration out of
code block

2. Apply the “Add Parameter” refactoring to the
newly created method.

3. Extract code block to new method 3. Replace constant expression with the parame-
ter in the body of the newly created method.

4. Inline the temporary again. 4. Edit call site; add constant expression in place
of new parameter.

Table 7.2: Refactoring alternatives



126 7.4 The Six-step Program to Transformation Definition

7.4 The Six-step Program to Transformation Definition

7.4.1 Recording the example

Change recording has been discussed at length previously and is no different than the process
described in Chapter 3. This step is fully automatic.

Example. For the “Extract Method with Holes” refactoring, six composite changes are recorded,
as shown in Figure 7.2.

exampleMethod: argument
    | value |
    value := 42.
    ^ argument

add: value to: argument

add: value to: argument

    argument + value.

exampleMethod: argument
    | value |
    value := 42.
    self add: value to: argument.
    ^ argument

exampleMethod: argument

    self add: 42 to: argument.
    ^ argument

A: select and extract 
temporary

exampleMethod: argument

    argument + 42.
    ^ argument

exampleMethod: argument
    | value |
    value := 42.
    argument + value.
    ^ argument

B: select and delete 
code block

C: create new
 method 

signature

D: insert 
code 
block

E: insert method callF: inline temporary

Figure 7.2: Recorded changes

7.4.2 Generalizing the example

To generalize an example, the developer looks into the change history, where the recent
changes are stored, and selects the changes of interest, using the Change Chooser tool (Fig-
ure 7.3). This tool allows a developer to look for changes farther in history, or to unselect
parts of the changes if other activities were performed in parallel that do not belong to the
envisioned transformation.

Deducing the role of each variable. Given the structure of a generic change, a role (pa-
rameter, unlocated or constant) is automatically deduced for each variable, affecting how
the programmer has to process it. Since changes can be composed, a given variable can
play different roles in several parts of the change, e.g., it might be a parameter in some of
the composite changes and a constant in another. At the transformation level, it will be a
constant.



127 7.4 The Six-step Program to Transformation Definition

Figure 7.3: The Change Chooser shows the recent changes to the system.

Example. Looking at the structure of the sequence of changes shown in Figure 7.2, the
changes are generalized in the following way (roles are in italics):

Change A: The variable representing the number 42 is a parameter, which the user will set
up via selection (see Section 7.4.3). The inserted statements (variable declaration and
variable assignment), are unlocated.

Change B: The deleted block of code will also be a parameter of the transformation. Nodes
under it are constants.

Change C: There are no parameters or variables needing a location, as every entity is created
on the spot. They are constants.

Change D: The block of code is unlocated and needs a location (the very beginning of a
method). The constant method in change C is a parameter in change D.

Change E: The unlocated method call needs a location (the previous position of the selected
code block).

Change F: The deleted statements (variable declaration, assignment and reference) are un-
located, while the value in the assignment (also unlocated) needs to be relocated where
the variable reference was.

In the overall transformation, the only parameter is the method to which the refactoring
is applied.



128 7.4 The Six-step Program to Transformation Definition

7.4.3 Editing the Example

Change tree panel:
select changes and edit the change structure

Change specific panel:
Edit properties of the selected change

State of the entity before the  
selected change

State of the entity after the 
selected change

Insertion/deletion 
changes have an

AST pattern 
edition menu

Figure 7.4: The Change Factory’s main interface, shown editing a deletion change

Editing the example is the first step requiring manual work. Figure 7.4 shows the Change
Factory, the prototype tool in charge of editing and testing program transformations. Using
this tool, one can:

• Change properties of variables such as their name.

• Specify the location of unlocated variables via user selection or pattern matching.

• Specify conditions which may prevent or modify the action of the change.

• Modify the structure of the change by adding, removing or reordering changes (Sec-
tion 7.4.4).

• Add control structures such as iterations and conditionals (Section 7.4.4).

Each type of atomic change has a number of properties that can be edited.Table 7.3 sums
up which properties are editable for each kind of atomic change.



129 7.4 The Six-step Program to Transformation Definition

Atomic Change Aim Possible actions
Creation Create a new entity of a given type. Change the kind of entity created. Re-

move to convert a constant or a vari-
able to a parameter. Create one to do
the opposite.

Addition/Removal Add/Remove a method, variable,
class, package from the class, package,
system.

Define a condition for the successful
addition of the current class, package,
method or variable.

Property Change Change a property (name, superclass,
etc.) of an entity.

Change the kind of property set.
Change the value of the property set
(constant or function). Add a success
condition.

Insertion/Deletion Inserts/Remove a statement-level en-
tity in a method body.

Define the insertion/deletion AST pat-
tern for an unlocated variable. Add a
success condition. Specify if a selec-
tion should be used.

Table 7.3: The properties that can be edited for each atomic change.

Changing properties. By default, a generic property change keeps the property of the origi-
nal concrete change, but the Change Factory allows it to be either a computation or a demand
for user input (for example the user might want to pick a name or a superclass for a given
class). To compute properties, the change factory provides the user with a context object that
can be queried for information during the change’s application. Using the context, one can
access the values of the parameters and variables during the change execution, as well as the
entire state of the program. One can assume all the changes before the current change in the
transformation are instantiated and executed. The context has a convenient API to access the
most useful queries, such as: current class or method, current method name etc. Identifiers
can be bound to values in the context and those values can be retrieved later on, to transmit
information between changes.

Specifying conditions. The context can be used to define conditions altering the behavior
of the change depending on where it is applied (e.g., if the current method does not override
another). Conditions can be either preconditions (tested before the change takes place) or
post-conditions (tested on the modified entities after the change takes place). If these are not
met during instantiation, the change fails.

Locating entities with AST patterns. Unlocated entities must be found in the ASTs of the
methods to which the transformation will be applied. However, dealing with the intricacies of
ASTs is one of the overly abstract activities a programmer faces when transforming programs.
In addition, building a mental representation is hard since example run-time ASTs are not
easily accessible. It is not clear which nodes to look for in the AST, and where they should
be located. We address these problems by using the ASTs of the concrete entities on which
the recorded changes were applied as an initial AST pattern to be incrementally refined by



130 7.4 The Six-step Program to Transformation Definition

the programmer. An AST pattern is an AST enriched with information to relax or constrain
its comparison to other ASTs. Furthermore, we minimize the need for the programmer to
consider the AST pattern structure by providing a direct manipulation interface.

These two features work in concert in the following way: For each insertion or deletion
of an unlocated entity, the programmer is presented with the state of the example just before
(for a deletion) or after (for an insertion) the change was applied (Figure 7.4, top right
panel). The variable inserted or deleted is highlighted to ease focusing. Behind the printed
text, the programmer is in fact interacting with a serialized AST pattern of the state of the
original example method. When the transformation is applied to another method, the AST
of the method will be retrieved and matched against the AST pattern in an attempt to find
either a correct place in the AST for an inserted entity, or the ID of an entity in the AST to
delete. If the ASTs do not match, the change fails.

If no modification is made to the AST pattern, it will only match the initial method in its
initial state. We allow the programmer to relax the constraints in the AST pattern by simply
selecting a node or a range of nodes in the text. The tool maintains a mapping from text po-
sition to AST nodes, sparing the programmer to manually locate every node. A context menu
gives the available constraints for the selected nodes. Upon selection, the constraints are ap-
plied to the nodes, and the text in the panel is re-rendered to update the applied constraints.
Several constraints can be put on the same node (name, kind, multiplicity, optionality, recur-
sion). The constraints are listed in Table 7.4. Some common sets of constraints are provided
as shorthands, such as “allow any method signature” (a method having any name, an unlim-
ited number of arguments and an unlimited number of temporaries), or “any position in the
body” (inserts nodes in the pattern matching any other nodes in the relevant position).

Constraint Effect Representation
None (default) Same name and kind (entity type) foo
Same kind Same kind as original, any name is possible. $temporary
Name matches . . . Same kind as original, name matches condition (e.g.,

the name must start with “set”).
$temporary([n])

Kinds . . . Matches any set of kinds (e.g., any body statement). $k1|k2 or $*
Optional May be present. foo(?)
Forbidden May not be present. (e.g., specify a counter example). foo(!)
Unlimited May be present several times. foo(+) or foo(*)
No recursion Ignore any children of the entity (e.g., the presence

of an if is important, not its contents).
foo(. . . )

Anything Any nodes . . .
Manual . . . Specified by the programmer with Smalltalk code foo([])

Table 7.4: Available constraints in AST patterns



131 7.4 The Six-step Program to Transformation Definition

Locating variables via selection. Some unlocated variables rely on the user selecting them
when the transformation is performed. The change factory allows to specify this as well.
When the change is instantiated, a window with the source code of the method to which the
variable insertion or deletion is applied opens, asking the user to select the relevant piece of
code. One can also ask for the former position of a deleted selection (e.g., to substitute two
pieces of code).

Example: property edits. Since it is selection-intensive, “Extract Method with Holes” does
not need many property edits. The created variables in “Extract Temporary” (change A) need
to be named: User input will be requested when the transformation is performed. In change
C, the newly created method must be named –also via user input– based on the names of the
arguments it takes. “Extract Method” must infer the arguments of the arguments: It queries
the context to get the set of arguments and temporaries which are referenced both inside and
outside of the extracted block of code.

O
rig

in
al

 p
at

te
rn

Re
fin

ed

exampleMethod: argument
    | <<value>> |
    value := 42.
    ^ argument

$method: $argument(*)
    | $temporary(*) <<value>> |
    ...

exampleMethod: argument
    | value |
    value <<:=>> 42.
    ^ argument

$method: $argument*
    | $temp* |
    (...) <<:=>> (...)
    ...

- any method signature
- temporary in last position

- any signature
- first body statement

exampleMethod: argument
    | <<value>> |
    value := 42.
    self add: value to: argument.
    ^ argument

A: temporary location A: assigment location F: temporary location

$method: $argument*
    | <<$temporary([n])>> |
   ...

- temporary named 
  as parameter
- temporary 
   in any position

$method: $argument*
    | $temporary* |
    ...
    $reference[n] <<:=>> ....
    ...

- any signature
- assignment anywhere 
  in the body
- match name in 
  left hand side
- the right hand side 
  will be stored

exampleMethod: argument
    | value |
    value <<:=>> 42.
    self add: value to: argument.
    ^ argument

exampleMethod: argument
    | value |
    value := 42.
    self add: <<value>> to: 
argument.
    ^ argument

$method: $argument*
    | $temp* |
    ...
    <<$reference[n]>>
    ...

- any signature
- position anywhere 
  in the body
- name matches parameter
- replace declaration with
   old right hand side

F: assignment location F: reference location

Co
ns

tra
in

ts

Figure 7.5: Initial patterns and resulting constraints

Example: variable Locations. The constant expressions and the extracted code block are
user-selected, when the transformation is performed. On the other hand AST patterns need
to be defined for the changes dealing with temporaries (A and F). Figure 7.5 shows these
patterns.



132 7.4 The Six-step Program to Transformation Definition

7.4.4 Composing Changes

The change factory can edit the change structure itself in order to alter its behavior. Possible
operations are adding, moving or removing changes and adding control structures to repeat
certain changes or apply them conditionally.

Generic Change Aim Possible actions
Iteration Repeat the contained changes on

several targets.
Sets the variable that contains the
list of targets. Optionally enter an
initialization query for this vari-
able.

Conditional Perform the first contained change
that succeeds to apply.

Optionally add a query to choose
the change to apply instead of try-
ing them in order.

Optional Attempts to apply the sub-
changes, but does not fails if they
do.

None.

Table 7.5: The supported composite generic changes.

Editing the structure. The recorded changes and their generalized counterparts have a tree-
like structure. The Change Factory can alter this structure by adding, removing, or reordering
the changes. Composite changes can also be merged (two composite changes become one
change containing the atomic changes of both), or split (one composite becomes two distinct
changes).

These alterations can affect the behavior of the change: Removing a creation changes
the role of the unlocated variable or constant which was created to a parameter. Splitting a
change allows to decompose a composite change in smaller steps. Some of those might be
wrapped in conditional structures afterwards.

Adding Control Structures. We described the control structures in Section 7.2. The Change
Factory allows one to select which changes need to be wrapped in a control structure in the
tree view of the first panel, and to edit the properties of the change in the second panel (see
Table 7.5).

Example. Structure alteration. When we recorded the changes to define “Extract Method
with Holes”, our first selection of the changes contained an extra change, the creation of
exampleMethod: itself. This change had to be removed to allow exampleMethod: to become
a parameter to the transformation. Also during recording, changes C and D were performed
as one single change, which had to be split in two.



133 7.4 The Six-step Program to Transformation Definition

Iterations. To specify that an unlimited number of holes can be defined, extracted into
temporaries and subsequently inlined, we used several iteration constructs: A set of tempo-
rary names T is initialized in change A using as many selections and input names as the user
wants. At the end of the transformation, T is reused in change F to inline all the “temporary”
temporaries. Change A initializes the set of temporaries by asking the user for selections until
he or she stops. Also, in changes C and E, the set of arguments to the method –computed
from the context– is used to build the signature of the extracted method and the call to it in
the original method.

Calling transformations. In the interest of reuse, the extracted and inlined temporary
transformations could be defined separately. “Extract Temporary” takes as parameter a method,
and asks the user to select an expression inside it, while “Inline Temporary” takes as parame-
ter a method and a temporary before inlining all references to the variable. Changes C and E
are small enough buildings blocks that they could also be abstracted and reused.

Conditionals. One alternative to using iterations is to define a fixed number of holes, by
calling several times the “Extract Temporary” change. At the end of the transformation, the
calls to “Inline Temporary” can be wrapped in optional changes, failing it the variable they
reference is undefined. It is improbable that many holes will be needed in extracted code,
making this “brute force” solution viable.

7.4.5 Testing the Transformation

Due to the exploratory nature of our tool, the boundary between testing and applying a
change is fuzzy: An applied change is one which has not been undone. Testing a transforma-
tion applies it to the original example, then saves the resulting state, undoes the transforma-
tion, applies the initial concrete change, and finally shows the state of the concrete change
and the transformation side-by-side. The developer can then compare the current state of the
transformation side-by-side with the original example and assess how far he or she is from
the desired goal. This allows the developer to quickly evaluate his/her change at the press of
a button.

7.4.6 Applying the Transformation

Once defined, transformations can be applied on a case-by-case basis or in a system-wide
fashion. The transformation is named and stored in a transformation repository. this reposi-
tory is made accessible within the IDE through menus for case-by-case usage. When browsing
the system, the user can decide to apply a transformation in the repository to the entities he is
currently viewing. This is the preferred way to use a transformation such as “Extract Method
with Holes”.

Larger transformations can be applied system-wide, on larger set of entities, using a
Change Applicator tool with which one can select a larger set of entities in the system and
display the result. For instance, the Change Applicator makes it easy to select all the classes
in the packages, or all the methods in a class.



134 7.5 Additional Examples

7.5 Additional Examples

Example-based program transformations are useful in a variety of contexts, beyond“Extract
Method With Holes” illustrated above. We describe two additional examples.

7.5.1 Defining informal aspects

If an application is designed from the ground up to incorporate aspects, the design allows
it clearly. However, when introducing an aspect in an existing system, it is not always clear
where to introduce the aspect. The developers have to localize code related to the concern
they want to separate, isolate it in an aspect, and determine general rules to define a pointcut
before weaving the aspect back in the system.

In contrast, our approach allows one to define an aspect informally, and to initially col-
lect its join points manually. The transformation definition represents the advice of such an
informal aspect, while the entities to which the transformation is applied are its join points.
Applying the transformation corresponds to weaving the aspect, and undoing it removes the
concern from the system. Since the transformation is reified and its effects upon instantiation
are reified and documented, unweaving an aspect is easy.

If an aspect is worth keeping, the extensive listing of the join points could be used as a
basis for a more formal definition of a pointcut. Techniques employed in aspect mining could
be used to assist such a process [BvDT05; BCH+05].

Defining aspects with the Change Factory bears resemblance to Fluid AOP, a recent variant
of AOP where aspects are not implemented by an aspect oriented programming language, but
by tools integrated with the IDE [HK06].

Informal aspects exemplified. An example is the running example of Section 7.3, the simple
logging aspect. To define such an aspect involves the following steps:

1. Record the insertion of a logging statement at the start of a method, calling the logging
facility with a literal specifying the name of the method.

2. The system deduces that the only parameter of the example is the method to which the
transformation should be applied.

3. The programmer edits the position of the logging statement to match the start of any
method. The “name” property of the string that is printed is computed by a context
query which includes the name of the method to which the transformation is applied.

4. The programmer might actually record several examples, depending on the number of
arguments. If the method has arguments, the values of these could be logged. These
changes could then be wrapped in a conditional change to choose the correct transfor-
mation to apply to a system.

5. The change can then be applied to all the join points in the system.



135 7.5 Additional Examples

7.5.2 Clone Management

Several researchers have claimed that code clones are sometimes best “left alone” [KSNM05;
KG06]. They point that in certain conditions, refactoring a set of clones to remove the du-
plication is either not possible due to language limitations or too expensive. It can even be
harmful if it leads to over-abstraction, or if the clones are destined to grow apart eventually.
To assist the programmer when dealing with duplicated, unrefactorable code, linked editing
[TBG04] and clone tracking tools [DER07] have been proposed. These tools maintain a list
of clones, and when one of these is edited, propose to the user to change the other clones in
the same way.

When propagating changes from one clone to the others, clone tracking tools usually
work at the text level. Since we record changes at the AST level, we can propagate changes
to clones at a syntactic level rather than a textual one. Moreover, our AST pattern definitions
are more tolerant with differences between clones (inserted/deleted statements, renamings,
etc.), since these can be relaxed when interacting with the AST patterns. As such, we believe
our tool could manage situations better than current linked editing tools.

One advantage that linked editing tools have over our current implementation is a larger
degree of automation. Currently, our system lacks the ability to detect clones, so the developer
has to propagates changes manually. However integrating a clone-detection tool is possible.
The specification of AST pattern constraints is more work than other tools, but is more flexible
when broadcasting the changes. We still have to investigate whether and to which extent
having several examples (i.e., all the clones in a clone group), allows one to automatically
relax constraints in the AST patterns to fit as many members of the group as possible.

Linked Editing Exemplified. Our own tools are not exempt from cloning. For instance, a
design decision forced us to duplicate some code during the implementation of the Change
Factory. Our change metamodel features concrete and generic changes. Since Smalltalk
does not provide multiple inheritance, the implementation of generic atomic changes leads
to problems.

The two possible solutions both involve code duplication. They are shown in Figure 7.6.
We chose extension A. During implementation, we had to change how concrete changes
were instantiated. Previously, a concrete change was simply returned by the generic atomic
change. We found best to directly execute the concrete change during instantiation, before
returning it. This spared the composite changes to do it themselves but forced us to update
all 6 versions of the instantiateIn: method 4.

As seen in Figure 7.7, each method creates a new change, sets it up, and returns it. Setting
it up differs for each change. In addition, the change has a different name in each method for
clarity, and due to inconsistencies, the name of the argument differs in some of the methods.
When recording an instance of the change, the system will deduce that the contents of the
return statement was deleted, and another statement was inserted. It will also identify that

4If we had a common superclass for all the changes (extension B), we could have put this behavior in it.



136 7.5 Additional Examples

AtomicChange

Creation Addition Removal Insertion Deletion Property
Change

Generic
AtomicChange

Generic
Creation

Generic
Addition

Generic
Removal

Generic
Insertion

Generic
Deletion

Generic
Property
Change

Generic
Creation

Generic
Addition

Generic
Removal

Generic
Insertion

Generic
Deletion

Generic
Property
Change

Original
Design

Extension
A

Extension
B

AtomicChange

Figure 7.6: Two possible generic change designs

there is one parameter to the change, the method to which it is applied. To define an AST
pattern matching the needed editions, the user has to specify the following constraints:

• The argument’s name varies, and must be stored (as X).

• The temporary’s name varies, and must be stored (as Y).

• Any number of body statements can follow.

• When a return statement with the temporary is encountered, the temporary must be
deleted.

• When an empty return statement is encountered, a message send must be inserted,
with receiver X and argument Y.



137 7.6 Towards Transformation Integration and Evolution

class: GenericInsertion class: GenericPropertyChange

class: GenericAdditionclass: GenericCreation
instantiateIn: aSWModelView 

| addition |
addition := SWAddition new.
addition entity: self entity id.
addition parent: self parent id.
^ aSWModelView execute: addition
^ addition

instantiateIn: aSWModelView 
| creation |
self entity id: ID gen.
creation := SWCreation new.
creation entity: self entity id.
creation kind: self kind.
^ aSWModelView execute: creation

        ^ creation

instantiateIn: aSWModelView 
| propertyChange |
propertyChange := SWPropertyChange new.
propertyChange entity: self entity id.
propertyChange property: self property.
propertyChange value: 

                  (self valueIn: aSWModelView).
^ aSWModelView execute: propertyChange

        ^ propertyChange 

instantiateIn: aView 
| insertion state |
insertion := SWInsertion new.
insertion entity: self entity id.
insertion root: self root id.
self useSelection 

ifTrue: [self initializeFromSelection: insertion in: aView]
ifFalse: [(entity isConstantIn: self composite) ifFalse: [

state := aView stateOf: root id.
self updatePatternIn: aView.
pattern matches: state.]].

insertion under: self under id.
insertion after: self after id. 
^ aView execute: insertion

        ^ insertion

Figure 7.7: Sample clones in the Change Factory

7.6 Towards Transformation Integration and Evolution

In this section, we describe how transformations are integrated in our model, and what con-
sequences this has for the system in terms of comprehension and evolution.

7.6.1 Transformation Integration

Transformation integration is enabled by a very simple addition to the model. Since a trans-
formation is a change generator, it has control on how it generates them, and is free to add
metadata to the change for this specific instantiation.

Whenever a transformation is defined, it is stored in a transformation repository for future
usage. Each change generated by the transformation is also tagged with an identifier linking
it to the transformation that generated it. These changes are stored in the change repository
like any other change, where they are explicitly linked to the transformation that produced
it, and the values of the parameters that were given to the transformation.

This is enough to fully integrate the transformations in the evolution, as the changes they
generate can be treated either as normal changes when replaying them, or generated changes
when a deeper processing is needed.



138 7.6 Towards Transformation Integration and Evolution

7.6.2 Transformation Comprehension

Each transformation application is stored and explicitly documented in the change reposi-
tory. This allows transformations to be treated in the same way as refactorings for program
comprehension purposes. We used refactorings for program comprehension in Chapter 5.
They gave context to surrounding changes, and were reviewed more quickly since they were
automated and marked as such.

The same treatment is possible for program transformations. In particular, the concrete
changes in the transformation can be easily traced back to their abstracted purpose, the
transformation application. Understanding a systematic change to each method of a given
class is immediate when it can be traced back to the application of the “Informal Logging”
aspect. All the changes related to the aspect are clearly delimited.

Transformation application can be treated differently than other changes to compute met-
rics. Change-based metrics can be defined to better understand sessions, listing transforma-
tions separately. Logical coupling measurements may want to weight the changes caused by
transformations differently.

7.6.3 Transformation Evolution

In the face of changing requirements, some transformations might no longer be needed, need
to be changed, or applied to new parts of the system. Dig and Johnson reported that 80%
of changes breaking the APIs of framework are due to applications of automated transforma-
tions, namely refactorings [DJ05]. This shows that even behavior-preserving transformations
such as refactorings cause problems in the evolution of systems.

Documenting the application of transformations is a first step towards a better support of
their evolution. The first immediate usage is that if a transformation needs to be changed,
the places that are affected in the system are immediately known, as the changes it gener-
ated can be searched in the history. Each of these can then be reviewed to determine how
and if it needs to change in the face of the new requirements. A newer transformation can
subsequently be defined and applied to these new locations.

A transformation can be undone in all the places where it was applied. If some of those
were changed afterwards, undoing the transformation might not be possible without undoing
these changes. The list of conflicting places can be brought up, and manual inspection can
determine how to deal with them. How much of that process can be automated is a question
for which we do not have an answer yet.

Finally, documenting where the transformation was applied means that one also knows
where it was not applied. This makes it easier to apply it to parts of the system which need the
transformation due to updated requirements. A use case for this is the case of refactorings
in frameworks: A refactoring may have renamed all the references to an entity inside the
framework, but client code needs to be updated as well.



139 7.7 Discussion

7.7 Discussion

7.7.1 Change-based Program Transformation

Impact of Composition

We allow sequences of changes to be recorded and specified. This eases the definition of
transformations affecting several entities. Several transformation tools, such as iXj [BGH07]
or the Rewrite Tool [RB04], are based on pattern-matching to provide a concrete syntax to
ease transformation definition. They however operate on a single pattern at once, which
limits the extent of the transformations they can define.

Applicability

Our prototype is implemented in Smalltalk, a language with a simple and consistent syntax.
Applying it to a more complex language like Java, which is typed and includes generic types,
might pose some issues. We think it is feasible, since many transformation tools exist for
Java: The existence of such tools might help us porting our approach. However, whether the
approach is as usable in such a context is yet to be determined. In our approach, the type of
an entity is modeled as a property, which may need additional constraints to enforce the type
system.

Expressivity

We did not directly evaluate the expressivity of our approach, i.e., if every kind of trans-
formation can be expressed with it. The change-based program transformation and their
applications could span an entire thesis topic in itself. In this chapter, we focused on the
definition of transformation and their integration in the overall Change-based Software Evo-
lution approach. We undertook a feasibility study in which we applied it to three examples.
We consider the expressivity more of a pure program transformation problem, whereas our
primary objective was to extend Change-based Software Evolution with program transforma-
tion support in a natural and integrated fashion.

We are however confident that our approach is expressive enough. One of the examples
we selected was a more complex variant of the “Extract Method” refactoring, which Fowler
describes as the Refactoring Rubicon, i.e., a refactoring that has the necessary complexity to
indicate that the approach supports other kinds of refactorings.

Moreover, our approach shares a lot with other transformation tools. It merely describes
the transformations in a more concrete way. Other problems like expressing conditions can
be done in the same way other tools do if needed. The fact that other tools are expressive
enough to handle more kinds of transformation is an indication our approach is expressive as
well.



140 7.7 Discussion

Behavior preservation

Unlike refactorings, behavior preservation is not guaranteed. Our tool will require program-
mer supervision to ensure the results are correct. Some transformations could be recognized
as behavior-preserving once the needed analyses are defined.

7.7.2 Example-based Program Transformation

Example-based

Our approach uses two kinds of entities: Domain entities comprising the AST of the system,
and changes applied to them. Using our change representation on top of the AST allows us to
infer from a single example which entities are parameters to the change, and which ones are
unlocated. Furthermore, we display ASTs to allow the programmer to work directly with the
concrete syntax of the system, instead of having to learn a dedicated syntax to match entities.
Since those ASTs are also extracted from examples, one does not start over, but abstracts
away from the concrete example at hand.

Quality of the examples

When coding, programmers often make errors and backtrack. These digressions are recorded
in our changes and are unnecessary when generalizing the change. To address this one can
use our change-editing facilities to remove undesired changes from the sequence. Alterna-
tively, the example can be “replayed”, i.e., re-recorded to avoid the quirks introduced the first
time around.

Related Transformation Approaches

Several approaches have used concrete syntax to ease the definition of transformations. Strat-
ego/XT is a program transformation tool, which has seen applications in defining language
extensions. Visser argues that manipulating ASTs of programs is too complex for many ap-
plications, and proposes a scheme to instead use the concrete syntax of the programming
language [Vis02]. The result is a transformation language with both Stratego and the con-
crete syntax.

In the same vein, De Roover et al. [RDB+07] introduced a concrete layer on top of a logic
programming language, similar to Java source code, with variables to be matched prefixed
by question marks. The rationale is to simplify matching structures by hiding the AST where
possible.

Due to its extensive IDE integration, the language-based approach closest to ours is iXj
by Boshernitsan et al. [BGH07], an interactive IDE extension to transform Java programs
supported by a visual programming language. ASTs are represented graphically. The trans-
formation still has to be written with only the starting state specified (via selection).



141 7.7 Discussion

Roberts and Brant describe the Rewrite Tool [RB04] which uses pattern matching to im-
plement arbitrary transformations. However the patterns defined in the transformations can
only refer to one entity at a time and must be written from scratch in a dedicated language.

Program Transformation in Model-Driven Engineering

Transformation is a prominent concept in model-driven engineering. Several model trans-
formation languages have been defined, such as MTL, Xion and Kermeta [MFV+05], or ATL
[JK05]. However, they have a different target than our approach, since they transform ab-
stract models of programs, and not the programs themselves.

Another tendency found in model transformation is to use example for the definition of
transformations. This approach was pioneered by Varró [Var06]. His approach requires an
example of a source model and a target model and infers the changes in them. This approach
has also been adopted by Wimmer et al. [WSKK07], and Kessentini et al. [KSB08].

7.7.3 Integrating Transformations in The Evolution

Approaches Integrating Refactorings in the Evolution

Several approaches address the problem of refactoring frameworks. When a framework is
refactored, its users may experience API-breaking changes [DJ05]. Several approaches either
record the refactoring application and apply it on client code (work by Henkel and Diwan
[HD05], Ekman and Asklund [EA04], Dig et al. [DMJN07]), or recover the refactorings from
SCM archives (work by Weißgerber and Diehl [WD06], Dig et al. [DCMJ06]). Other generate
code adaptors at the source or binary level, such as the Comeback approach by Savga et al.
[SRG08] and the ReBa approach by Dig et al. [DNMJ08].

A limitation of these approaches is that they only consider refactorings, whereas our ap-
proach has the potential to be applied to every kind of program transformation, whether they
are behavior-preserving or not. In addition, our approach allows full integration of the trans-
formations in the evolution of the system. The only other approach that promotes integration
in the history are SCM system reifying refactorings [EA04], [DMJN07]. They are however
limited to only refactorings, and do not describe other changes to the system, storing merely
versions. Their integration is hence far from complete.



142 7.8 Summary

7.8 Summary

By automating repetitive changes, program transformation is one of the most useful tool
to support software engineering. In this chapter, we investigated if Change-based Software
Evolution could be extended with program transformations. We divided this problems in
three sub-problems, and found that:

• Change-based Software Evolution naturally supports automated program transforma-
tions. Each atomic change is in essence a constant program transformation. We success-
fully extended our model to include high-level, parametrized program transformations.
When applied to a set of parameters on a system, these generate a set of concrete trans-
formations corresponding to the actual change to perform. We simply added a layer on
top of our model which does not affect the bottom layer.

• Change-based Software Evolution eases the definition of program transformations. One
of the key factors when dealing with abstract concepts such as program transformations
is the need of concrete examples. We found that recording a concrete change as an
example of a transformation and subsequently generalizing it was a natural process.
The structure of the recorded change acts as a checklist of what needs to be generalized.
Each individual change can be subsequently customized. The concrete examples can
also be generalized to define where the transformation should be applied.

• Transformations can be integrated in the evolution. In the same way our approach
recognizes refactorings and uses them to assist program comprehension, applications
of transformations –being generated changes– can be traced and used for program un-
derstanding later on. In addition, tagging changes as parts of transformations enables
transformation evolution: If a transformation needs to be updated, instances of its ap-
plication can be recalled and reviewed.

An aspect which we explored only partially is automation: Our transformation definition
approach is at the moment semi-automated. We need to investigate how much further it can
be automated, through the use of more than one example. Possible enhancements are to use
multiple examples to automate the definition of the AST patterns and conditions, automating
code clone management, and automating the evolution of transformations by changing the
locations were they were previously applied.



Chapter 8

Evaluating Recommendations for
Code Completion

Recommender systems assist programmers but must be evaluated with care: An inaccurate recom-
mender system will be harmful to a programmer’s productivity. An example is code completion.
Code completion is a productivity tool used by every programmer. Code completion is seldom im-
proved because it has reached a local maximum with the information available in current IDES.
Furthermore, the accuracy of a completion engine is hard to assess, besides manual testing.

We use data provided by Change-based Software Evolution to both define a benchmark to
comprehensively evaluate the quality of a code completion engine and to improve completion
engines. By using program history as an additional information source, we significantly increase
the accuracy of a completion engine. The probability that the match a programmer is looking for
shows up in the completion tool in a top spot can reach 80%, even with very short completion
prefixes.

143



144 8.1 Introduction

8.1 Introduction

This chapter is the first (along with Chapter 9) where we assess the usefulness of Change-
based Software Evolution to implement and evaluate recommender systems. Recommender
systems aim to improve the productivity of programmers when building and maintaining sys-
tems, by assisting them while they change them. Such assistance can take several forms:
Recommending which entities to change next (the focus of Chapter 9), filtering out poten-
tially useless entities, or pointing out shortcomings in the system’s design, such as duplication
or code smells. In all cases, recommender systems have to be accurate: Incorrect predictions
will actually slow down the programmer, forcing him to invest significant time and cognition
into false leads.

Recommender systems must hence be evaluated with care. Such an evaluation is how-
ever not simple. The most natural evaluation strategy is the human subject study, where
test subjects are monitored with or without using the tool while performing a given task.
While giving a relatively high confidence in the results, these evaluations are very long and
expensive to set up.

An alternative evaluation strategy is the benchmark. Eliott-Sim et al. have shown that
benchmarks have the potential to dynamize a research community by making evaluations
easier to perform, compare and replicate [SEH03].

A benchmark is hence desirable at least as a pre evaluation technique before a human
subject study begins. However, constituting the data corpus the benchmark uses may be
difficult, depending on the data needed by the tools.

A recommender system lacking such a benchmark is code completion. In 2006, Murphy
et al. published an empirical study on how 41 Java developers used the Eclipse IDE [MKF06].
One of their findings was that each developer in the study used the code completion feature.
Among the top commands executed across all 41 developers, code completion came sixth
with 6.7% of the number of executed commands, sharing the top spots with basic editing
commands such as copy, paste, save and delete. It is hardly surprising that this was not
discussed much: Code completion is one of those features that once used becomes second
nature. Nowadays, every major IDE features a language-specific code completion system,
while any text editor has to offer at least some kind of word completion to be deemed usable
for programming.

Despite the wide usage of code completion by developers, research in improving code
completion has been rare, due to the difficulty of evaluating it with respect to the expected
improvement.

In this chapter, we test the use of Change-based Software Evolution to define benchmarks
for recommender systems where data was not previously available, through the example
of code completion. In essence, our benchmark replays the entire development history of
the program and calls the completion engine at every step, comparing the suggestions of
the completion engine with the changes that were actually performed on the program. We
also investigate if and how Change-based Software Evolution can be used to improve the
recommender system themselves. Initial evidence leads us to believe so: We saw in Chapter 4



145 8.2 The Cost of Human Subject Studies

and Chapter 5 that Change-based Software Evolution highlights the relationships between
program entities, and in Chapter 6 that this translates in measurable improvements. Using
the accurate data Change-based Software Evolution provides may also demonstrably improve
recommender systems. With our benchmark as a basis for comparison, we define alternative
completion algorithms which use change-based historical information to different extents,
and compare them to the default algorithm which sorts matches in alphabetical order.

Contributions. The contributions of this chapter are:

• The definition of a benchmark for code completion engines, based on replaying fine-
grained program change histories and testing the completion engine at every opportu-
nity.

• The definition of several code completion algorithms, and their evaluation with the
benchmark we defined.

Structure of the chapter. Section 8.2 compares human subject studies with benchmarks
with respect to ease of creating and sharing experiments. Section 8.3 details existing code
completion algorithms and their relative lack of evaluations. Next, Section 8.4 presents the
benchmarking framework we defined to measure the accuracy of completion engines. In
Section 8.5 we evaluate several code completion algorithms, including algorithms using re-
cent change information to fine-tune their recommendations. Finally, after a discussion in
Section 8.6, we conclude in Section 8.7.

8.2 The Cost of Human Subject Studies

Human subject studies have a long tradition as an evaluation method in software engineering
for methodologies and tools. They usually involve two groups of people assigned to perform
a given task, one using the methodology under study, and a control group not using it. The
performance of the groups are then measured according to the protocol defined in the study,
and compared with each other. Hopefully, the methodology under study provides an improve-
ment in the task at hand. To have confidence in the measure, a larger sample of individual is
needed to confirm a smaller increase. If they provide usually high confidence in their results,
human subject studies have drawbacks:

• They are very time-consuming and potentially expensive to set up. Dry runs must be
performed first, so that the experiment’s protocol is carefully defined. Volunteers have
to be be found, which may also require a monetary compensation. The most extreme
case in recent history is the pair programming study of Arisholm et al., which tested
–and compensated– 295 professional programmers [AGDS07].



146 8.2 The Cost of Human Subject Studies

• Since they are expensive and time-consuming to set-up, they are as difficult to repro-
duce. The original authors need to document their experimental set-up very carefully
in order for the experiment to be reproduced. Lung et al. documented [LAEW08] the
difficulties they encountered while reproducing a human subject study [DB06].

• The same time-consuming issues make them unsuited for incremental refinement of
an approach, as they are too expensive to be run repeatedly. In addition, a modest
increment on an existing approach is harder to measure and must be validated on a
higher sample size, making the study even more expensive.

• Comparing two approaches is difficult, as it involves running a new experiment pitting
the two approaches side by side. The alternative is to use a common baseline, but
variations in the set-up of the experiment may skew the results.

• In the case of tools, they include a wide range of issues possibly unrelated to the ap-
proach the tool implements. Simple UI and usability issues may overshadow the im-
provements the new approach brings.

Another evaluation methodology is the benchmark. A benchmark is a procedure designed
to (most of the time) automatically evaluate the performance of an approach on a dataset.
A benchmark hence carefully delimit the problem to be solved in order to reliably measure
performance against a well-known baseline. The outcome of a benchmark is typically an
array of measurement summing up the overall efficiency of the approach. An example is the
CppETS benchmark, for C++ fact extractors in the context of reverse engineering [SHE02].
Its data corpus is made of several C++ programs exercising the various capabilities of fact
extractors. A fact extractor can be run on the data set, and will return the list of facts it
extracted, which can be compared with known results. The fact extractor is then reliably
evaluated. A benchmark has the following advantages over a human subject study:

• Automated benchmarks can be run at the press of a button. This allows each experi-
ment to be ran easily, and reran if needed. This considerably eases the replication of
other people’s experiments.

• Benchmarks usually score the approaches they evaluate, making it trivial to compare
an approach to another.

• The simplicity of running an experiment and the ease of comparison makes it easy to
measure incremental improvements.

• Benchmarks test a restricted functionality, and if automated are impervious to usability
issues.

• Making them more extensive is as simple as adding data to their current data corpus.



147 8.3 Current Approaches to Code Completion

In a nutshell, the strength of the benchmark are the weaknesses of the human subject
study. As Sim et al. explained, these advantages dynamize the activity of a research commu-
nity that uses a benchmark [SEH03].

However, creating the benchmark itself and the data corpus it uses represents a consid-
erable amount of work. For the C++ fact extractor benchmark, it presumably involved a
manual review of the C++ programs in the dataset to list the expected facts to be extracted.
In the case of other systems, the tasks may be too large to be worthwhile.

8.3 Current Approaches to Code Completion

In the following, we focus on the completion engine, i.e., the part of the code completion
tool which takes as input a token to be completed and a context used to access all the infor-
mation necessary in the system, and outputs an ordered sequence of possible completions.
We describe code completion in three IDEs: Eclipse (for Java), Squeak, and VisualWorks (for
Smalltalk).

8.3.1 Code Completion in Eclipse

Code completion in Eclipse for Java is structure-sensitive, i.e., it can detect when it completes
a variable or a method name. It is also type-sensitive: If a variable is an instance of class
String, the matches returned when completing a method name will be looked for in the
classes String and Object, i.e., the class itself and all of its superclasses.

Figure 8.1 shows Eclipse’s code completion in action: The programmer typed “remove”
and attempts to complete it. The system determines that the object to which the message is
sent is an instance of javax.swing.JButton. This class features a large API of more than 400
methods, of which 22 start with “remove”. These 22 potential matches are all returned and
displayed in a popup window showing around 10 of them, the rest needing scrolling to be
accessed. The matches are sorted in alphabetical order, with the shorter ones given priority
(the first 3 matches would barely save typing as they would only insert parentheses).

This example shows that sometimes the completion system, even in a typed programming
language, can break down and be more a hindrance than an actual help. As APIs grow larger,
completion becomes less useful, especially since some prefixes tend to be shared by more
methods than other: For instance, more than a hundred methods in JButton’s interface start
with the prefix “get”.

8.3.2 Code Completion in VisualWorks

VisualWorks is a Smalltalk IDE sold by Cincom. Since Smalltalk is a dynamically typed lan-
guage, VisualWorks faces more challenges than Eclipse to propose accurate matches. The
IDE can not make any assumption on the type of an object since it is determined at run-
time only, and thus returns potential candidates from all the classes defined in the system.



148 8.3 Current Approaches to Code Completion

Figure 8.1: Code completion in Eclipse

Since Smalltalk contains large libraries and is implemented in itself, the IDE contains more
than 2600 classes already defined and accessible initially. These 2600 classes total more
than 50,000 methods, defining around 27,000 unique method names, i.e., 27,000 poten-
tial matches for each completion. The potential matches are presented in a menu, which is
routinely more than 50 entries long (see Figure 8.2). As in Eclipse, the matches are sorted
alphabetically, but the sheer number of possible matches renders the system very hard to use.

8.3.3 Code Completion in Squeak

Squeak’s completion system has two modes. The normal mode of operation is similar to
VisualWorks: Since the type of the receiver is not known, the set of candidates is searched for
in the entire system. However, Squeak features an integration of the completion engine with
a type inference system, Roel Wuyts’ RoelTyper [Wuy07]. When the type inference engine
finds a possible type for the receiver, the completion is equivalent to the one found in Eclipse.
Otherwise matches are searched in the entire system (3000 classes, 57,000 methods totaling
33,000 unique method names). In both cases matches are alphabetized.



149 8.3 Current Approaches to Code Completion

Figure 8.2: Code completion in VisualWorks

8.3.4 Code Completion in Eclipse with Mylyn

An alternative completion engine for Eclipse is shipped with the Mylyn tool. It leverages
Mylyn’s degree-of-interest model to prioritize entities with a high degree-of-interest value
in Eclipse’s completion menu. However, it was only mentioned in passing as an add-on
to the Mylyn tool, and never fully evaluated [KM06]. Its effect in the overall productivity
enhancements provided by Mylyn’s DOI could not be measured.

8.3.5 Optimistic and Pessimistic Code Completion

All these algorithms, except Mylyn, have the same shortcoming: the match actually looked
for may be buried under a large number of irrelevant suggestions because the matches are
sorted alphabetically. The only way to narrow it down is to type a longer completion pre-



150 8.4 A Benchmark For Code Completion

fix which diminishes the value of code completion. To qualify completion algorithms, we
reuse the “pessimistic/optimistic” analogy first employed in Software Configuration Manage-
ment. Versioning systems have two major ways to resolve conflicts for concurrent develop-
ment [CW98]. Pessimistic version control prevents any conflict by forcing developers to lock a
resource before using it. In optimistic version control, conflicts are possible but several devel-
opers can freely work on the same resource. The optimistic view states that conflicts do not
happen often enough to be counter-productive. Today, every major versioning system uses
an optimistic strategy [ELvdH+05].

We characterize current completion algorithms as “pessimistic”: They expect to return a
large number of matches, and order them alphabetically. The alphabetical order is the fastest
way to look up an individual entry among a large set. This makes the entry lookup a non-
trivial operation: As anyone who has ever used a dictionary knows, search is still involved
and the cognitive load associated with it might incur a context switch from the coding task at
hand.

In contrast, an “optimistic” completion algorithm would be free of the obligation to sort
matches alphabetically, under the following assumptions:

1. The number of matches returned with each completion attempt are limited. The list of
matches must be very quick to be checked. Our implementation limits the number of
matches returned to 3.

2. The match the programmer is looking for has a high probability of being among the
matches returned by the completion engine. Even if checking a short list of matches is
fast, it is pointless if the match looked for is not in it.

3. The completion prefix needed to have the correct match with a high probability should
be short to minimize typing. With a 10 character prefix, it is an easy task to return only
3 matches and have the right one among them.

To sum up, an optimistic code completion strategy seeks to maximize the probability that
the desired entry is among the ones proposed, while minimizing the number of entries re-
turned, so that checking the list is fast enough. It attempts to do so even for short completion
prefixes to minimize the typing involved by the programmer. The question then is to find out
whether optimism is a sound completion strategy: How can we be sure that a given algorithm
has a high enough probability of giving the right answer?

8.4 A Benchmark For Code Completion

To describe our benchmark for code completion, we reuse the format we used in our pre-
diction benchmark for logical coupling measurements in Chapter 6. We first motivate the
need for the benchmark, then describe how it is run, the way the results are evaluated and
presented, before presenting the corpus that constitutes the dataset used by the benchmark.



151 8.4 A Benchmark For Code Completion

8.4.1 Motivation

In our review of current approaches to code completion, we noticed that all but one ap-
proaches were very similar. Improvements to completion are rare: The only one we found
was mentioned as a side remark in a more general article, and was not evaluated by itself.

This does not mean that code completion cannot be improved, far from it: The set of
possible candidates (referred from now on as suggestions or matches) returned by a code
completion engine is often inconveniently large. The match a developer is actually looking
can be buried under many irrelevant suggestions. If spotting it takes too long, the context
switch risks breaking the flow the developer is in. Given the limitations of current code
completion, we argue that there are several reasons for the lack of work done to improve it:

1. Local Maximum. There is no obvious way to improve language-dependent code com-
pletion: Code completion algorithms already take into account the structure of the
program, and if possible the APIs the program uses. To improve the state of the art,
additional sources of information are needed.

2. Hard to Measure. Beyond obvious improvements such as using the program structure,
there is no way to assert that a completion mechanism is “better” than another. A
standard measure of how a completion algorithm performs compared to another on
some empirical data is missing, since the data itself is not there. The only possible
assessment of a completion engine is to manually test selected test cases.

3. If it ain’t broke, don’t fix it. Users are accustomed to the way code completion works
and are resistant to change. This healthy skepticism implies that only a significant
improvement over the default code completion system can change the status quo.

Ultimately, these reasons are tied to a single one: Code completion is “as good as it gets”
with the information provided by current IDEs. To improve it, we need additional sources
of information, and provide evidence that the improvement is worthwhile. A human subject
study of a code completion tool seems disproportionate.

However, code completion is a prime candidate for a benchmark-based evaluation, since
the problem can be easily reduced to the ranking of matches returned by the completion
engine. What is missing is realistic data of completion usage.

Change-based Software Evolution provides it. The idea behind our benchmark is to replay
the change history of programs while calling the completion engine as often as possible.
Since the information we record in our repository is accurate, we can simulate a programmer
typing the text of the program while maintaining its structure as an AST. While replaying the
evolution of the program, we can potentially call the completion engine at every keystroke,
and gather the results it would have returned, as if it had been called at that point in time.
Since we represent the program as an evolving AST, we are able to reconstruct the context
necessary for the completion engine to work correctly, including the structure of the source
code. For instance, the completion engine is able to locate in which class it is called, and
therefore works as if under normal conditions.



152 8.4 A Benchmark For Code Completion

8.4.2 Procedure

The rationale behind the benchmarking framework is to reproduce as closely as possible
the conditions encountered by the completion engine during its actual use. To recreate the
context needed by the completion engine at each step, we execute each change in the change
history to recreate the AST of the program. In addition, the completion engine can use the
actual change data to improve its future predictions. To measure the completion engine’s
accuracy, we use algorithm 3.

Input: Change history, completion engine to test
Output: Benchmark results

resul ts = newCollection();
foreach Change ch in Change history do

if methodCallInsertion(ch) then
name = changeName(ch);
foreach pre f i x of name between 2 and 8 do

ent ries = queryEngine(engine, pre f i x);
index = indexOf(ent ries, name);
add(resul ts, length(pre f i x), index);

end
end
processChange(engine,ch);

end
Algorithm 3: The benchmark’s main algorithm

While replaying the history of the system, we call the completion engine whenever we
encounter the insertion of a statement including a method call. To test its accuracy with
variable prefix length, we call the engine with every prefix of the method name between 2
and 8 letters –a prefix longer than this would not be worthwhile. For each prefix, we collect
the list of suggestions, look up the index of the method that was actually inserted in the
list, and store it in the benchmark results. One can picture our benchmark as emulating the
behavior of a programmer compulsively pressing the completion key. The benchmark does
not ask for predictions for changes done as part of refactorings or other code transformations,
as these were not initially performed by a developer.

Using a concrete example, if the programmer inserted a method call to a method named
hasEnoughRooms(), we would query the completion engine first with “ha”, then “has”, then
“hasE”, . . . , up to “hasEnoughR”. For each completion attempt we measure the index of
hasEnoughRooms() in the list of results. In our example, hasEnoughRooms() could be 23rd
for “ha”, 15th for “has” and 8th for “hasE”.



153 8.4 A Benchmark For Code Completion

It is possible that the correct match is not present in the list of entries returned by the
engine. This can happen in the following cases:

1. The method called does not exist yet. There is no way to predict an entity which is not
known to the system.

2. The match is below the cut-off rate we set. If a match is at an index greater than 10,
we consider that the completion has failed as it is unlikely a human will scroll down
the list of matches. In the example above, we would store a result only when the size
of the prefix is 4 (8th position).

In the latter case we record that the algorithm failed to produce a useful result. When all
the history is processed, the results are stored, before being evaluated.

8.4.3 Evaluation

To compare algorithm with another, we need a numerical estimation of its accuracy. Preci-
sion and recall are often used to evaluate prediction algorithms. For completion algorithms
however, the ranking of the matches plays a very important role. For this reason we devised a
grading scheme giving more weight to both shorter prefixes and higher ranks in the returned
list of matches. For each prefix length we compute a grade Gi , where i is the prefix length, in
the following way:

Gi =

∑10
j=1

resul ts(i, j)
j

at tempts(i)
(8.1)

Where resul ts(i, j) represents the number of correct matches at index j for prefix length i,
and at tempts(i) the number of time the benchmark was run for prefix length i. Hence the
grade improves when the indices of the correct match improves. A hypothetical algorithm
having an accuracy of 100% for a given prefix length would have a grade of 1 for that prefix
length.

Based on this grade we compute the total score of the completion algorithm, using the
following formula which gives greater weight to shorter prefixes:

S =

∑7
i=1

Gi+1

i
∑7

k=1
1
k

× 100 (8.2)

The numerator is the sum of the actual grades for prefixes 2 to 8, with weights, while
the denominator in the formula corresponds to a perfect score (1) for each prefix. Thus a
hypothetical algorithm always placing the correct match in the first position, for any prefix
length, would get a score of 1. The score is then multiplied by 100 to ease reading.



154 8.4 A Benchmark For Code Completion

8.4.4 Result Format

First, we mention the overall accuracy score of the algorithm (out of 100). We also display
the data in a more detailed format to facilitate analysis. We provide a table showing the
algorithm’s results for prefixes from 2 to 8 characters. Each column represents a prefix size.
The results are expressed in percentages of accurate predictions for each index. The first row
gives the percentage of correct prediction in the first place, ditto for the second and third.
The fourth row aggregates the results for indices between 4 and 10. Anything more than 10
is considered a failure since it would require scrolling to be selected. Failures are indicated in
the bottom row.

8.4.5 Data Corpus

We used the history of SpyWare, to test our benchmark, since it is the largest project we
have, with the longest history. In this history, more than 200,000 method calls were inserted,
resulting in roughly 200,000 tests for our algorithm, and more than a million individual calls
to the completion engine.

We also tested the accuracy of typed completion algorithms by running the benchmark
using the type inference engine of Squeak. Only the matches where the type of the object for
which completion was attempted were used. This gives us an initial idea of the usefulness of
optimist completion in a typed setting.

We also used the data from the 6 student projects, much smaller in nature and lasting
a week, to evaluate how the algorithms perform on several code bases, and also how much
they can learn in a shorter amount of time. Table 8.1 shows the number of tests for each case
study.

Project Number of Tests
SpyWare 131,000
SpyWare (with types) 49,000
Project A 5,500
Project B 8,500
Project C 10,700
Project D 5,600
Project E 5,700
Project F 9,600

Table 8.1: Number of completion attempts



155 8.5 Code Completion Algorithms

8.5 Code Completion Algorithms

For each algorithm we present, we first give an intuition of why it should improve the perfor-
mance of code completion, then describe its principles. We then detail its overall performance
on our larger case study, SpyWare. After a brief analysis, we finally provide the global accu-
racy score for the algorithm, computed from the results. We discuss all the algorithms and
their performances on the six other projects in the last section.

8.5.1 Default Untyped Strategy

Intuition: The match we are looking for can be anywhere in the system.

Algorithm: The algorithm searches through all methods defined in the system matching the
prefix on which the completion is attempted. It sorts the list alphabetically.

Prefix 2 3 4 5 6 7 8
% 1st 0.0 0.33 2.39 3.09 0.0 0.03 0.13
% 2nd 2.89 10.79 14.35 19.37 16.39 23.99 19.77
% 3nd 0.7 5.01 8.46 14.39 14.73 23.53 26.88
% 4-10 6.74 17.63 24.52 23.9 39.18 36.51 41.66
% fail 89.63 66.2 50.24 39.22 29.67 15.9 11.53

Table 8.2: Results for the default algorithm

Results: The algorithm’s score is 12.1. The algorithm barely, if ever, places the correct match
in the top position. However it performs better for the second and third places, which rise
steadily: They contain the right match nearly half of the time with a prefix length of 7 or 8,
however a prefix length of eight is already long.



156 8.5 Code Completion Algorithms

8.5.2 Default Typed Strategy

Intuition: The match is one of the methods defined in the hierarchy of the class of the
receiver.

Algorithm: The algorithm searches through all the methods defined in the class hierarchy
of the receiver, as inferred by the completion engine.

Prefix 2 3 4 5 6 7 8
% 1st 31.07 36.96 39.14 41.67 50.26 51.46 52.84
% 2nd 10.11 11.41 13.84 16.78 13.13 13.51 12.15
% 3nd 5.19 5.94 4.91 5.15 3.2 1.94 2.0
% 4-10 16.29 12.54 12.24 8.12 6.29 4.14 2.79
% fail 37.3 33.11 29.83 28.24 27.08 28.91 30.18

Table 8.3: Results for the default typed completion

Results: The score is 47.95. Only the results where the type inference engine found a type
were considered. This test was only run on the SpyWare case study as technical reasons
prevented us to make the type inference engine work properly for the other case studies.
The algorithm consistently achieves more than 30% of matches in the first position, which is
much better than the untyped case. On short prefixes, it still has less than 50% of chances to
get the right match in the top 3 positions.



157 8.5 Code Completion Algorithms

8.5.3 Optimist Structure

Intuition: Local methods are called more often than distant ones (i.e., in other packages).

Algorithm: The algorithm searches first in the methods of the current class, then in its
package, and finally in the entire system.

Prefix 2 3 4 5 6 7 8
% 1st 12.7 22.45 24.93 27.32 33.46 39.5 40.18
% 2nd 5.94 13.21 18.09 21.24 20.52 18.15 22.4
% 3nd 3.26 5.27 6.24 7.22 10.69 14.72 10.77
% 4-10 14.86 16.78 18.02 17.93 17.23 20.51 20.75
% fail 63.2 42.26 32.69 26.26 18.07 7.08 5.87

Table 8.4: Results for optimist structure

Results: The algorithm scored 34.16. This algorithm does not use the history of the sys-
tem, only its structure, but is still an optimist algorithm since it orders the matches non-
alphabetically. This algorithm represents how much one can achieve without using an addi-
tional source of information. As we can see, its results are a definite improvement over the
default algorithm, since even with only two letters it gets more than 10% of correct matches.
There is still room for improvement.



158 8.5 Code Completion Algorithms

8.5.4 Recently Modified Method Names

Intuition: Programmers are likely to use methods they have just defined or modified.

Algorithm: Instead of ordering all the matches alphabetically, they are ordered by date,
with the most recent date being given priority. Upon initialization, the algorithm creates a
new dated entry for every method in the system, dated as January 1, 1970. Whenever a
method is added or modified, its entry is changed to the current date, making it much more
likely to be selected.

Prefix 2 3 4 5 6 7 8
% 1st 16.73 23.81 25.87 28.34 33.38 41.07 41.15
% 2nd 6.53 12.99 17.41 19.3 18.23 16.37 21.31
% 3nd 4.56 6.27 6.83 7.7 11.53 15.58 10.76
% 4-10 15.53 17.0 20.16 20.73 20.34 20.65 21.55
% fail 56.63 39.89 29.7 23.9 16.47 6.3 5.18

Table 8.5: Results for recent method names

Results: The score is 36.57, so using a little amount of historical information is slightly
better than using the structure. The results increase steadily with the length of the prefix,
achieving a very good accuracy (nearly 75% in the top three) with longer prefixes. However
the results for short prefixes are not as good. In all cases, results for the first position rise
steadily from 16 to 40%. This puts this first “optimist” algorithm slightly less than on par
with the default typed algorithm, albeit without using type information.



159 8.5 Code Completion Algorithms

8.5.5 Recently Modified Method Bodies

Intuition: Programmers work with a vocabulary which is larger than the names of the meth-
ods they are currently modifying. We need to also consider the methods which are called in
the bodies of the methods they have recently visited. This vocabulary evolves, so only the
most recent methods are to be considered.

Algorithm: A set of 1000 entries is kept which is considered to be the “working vocabulary”
of the programmer. Whenever a method is modified, its name and all the methods which are
called in it are added to the working set. All the entries are sorted by date, favoring the most
recent entries. The names of recently modified method are further prioritized.

Prefix 2 3 4 5 6 7 8
% 1st 47.04 60.36 65.91 67.03 69.51 72.56 72.82
% 2nd 16.88 15.63 14.24 14.91 14.51 14.04 14.12
% 3nd 8.02 5.42 4.39 4.29 3.83 4.09 4.58
% 4-10 11.25 7.06 6.49 6.64 6.51 5.95 5.64
% fail 16.79 11.49 8.93 7.09 5.6 3.33 2.81

Table 8.6: Results for recently modified bodies

Results: The score is 70.13. Considering the vocabulary the programmer is currently using
yields much better results. With a two-letter prefix, the correct match is in the top 3 in two
thirds of the cases. With a six-letter prefix, in two-third of the cases it is the first one, and it
is in the top three in 85% of the cases. This level of performance is worthy of an “optimist”
algorithm.



160 8.5 Code Completion Algorithms

8.5.6 Recently Inserted Code

Intuition: The vocabulary taken with the entire methods bodies is too large, as some of the
statements included in these bodies are not relevant anymore. Only the most recent inserted
statements should be considered.

Algorithm: The algorithm is similar to the previous one. However when a method is modi-
fied, we only refresh the vocabulary entries which have been newly inserted in the modified
method as well as the name, instead of taking into account every method call. This algorithm
makes a more extensive use of the change information we provide.

Prefix 2 3 4 5 6 7 8
% 1st 33.99 52.02 59.66 60.71 63.44 67.13 68.1
% 2nd 15.05 16.4 15.44 16.46 16.38 17.09 16.52
% 3nd 9.29 7.46 5.98 5.64 5.36 4.74 5.45
% 4-10 22.84 11.05 8.53 8.65 8.45 7.23 6.71
% fail 18.79 13.03 10.35 8.5 6.33 3.77 3.17

Table 8.7: Results for recently inserted code

Results: In that case our hypothesis was wrong, since this algorithm is less precise (the score
is 62.66) than the previous one, especially for short prefixes. In all cases, this algorithm still
performs better than the typed completion strategy.



161 8.5 Code Completion Algorithms

8.5.7 Per-Session Vocabulary

Intuition: Programmers have an evolving vocabulary representing their working set. How-
ever it changes quickly when they change tasks. In that case they reuse and modify an older
vocabulary. It is possible to find that vocabulary when considering the class which is currently
changed.

Algorithm: This algorithm fully uses the change information we provide. In this algorithm,
a vocabulary (i.e., a set of dated entries) is maintained for each development session in the
history. A session is a sequence of dated changes separated by at most an hour. If a new
change occurs with a delay superior to an hour, a new session is started. In addition to
a vocabulary, each session contains a list of classes which were changed (or had methods
changed) during it.

When looking for a completion, the class of the current method is looked up. The vocab-
ulary most relevant to that class is the sum of the vocabularies of all the sessions in which the
class was modified. These sessions are prioritized over the other.

Prefix 2 3 4 5 6 7 8
% 1st 46.9 61.98 67.82 69.15 72.59 75.61 76.43
% 2nd 16.88 15.96 14.41 15.01 14.24 14.44 13.8
% 3nd 7.97 5.73 4.64 4.3 3.45 3.0 3.4
% 4-10 14.66 8.18 6.5 6.19 5.44 4.53 4.16
% fail 13.56 8.12 6.58 5.32 4.25 2.39 2.17

Table 8.8: Results for per-session vocabulary

Results: This algorithm is the best we found so far –with a score of 71.67– even if only by
1.5 points. It does so as it reacts more quickly to the developer changing tasks, or moving
around in the system. Since this does not happen that often, the results are only marginally
better. However when switching tasks the additional accuracy helps. It seems that filtering
the history based on the entity in focus (at the class level) is a good fit for an “optimistic”
completion algorithm.



162 8.5 Code Completion Algorithms

8.5.8 Typed Optimist Completion

Intuition: Merging optimist completion and type information should give us the best of both
worlds.

Algorithm: This algorithm merges two previously seen algorithms. It uses the data from the
session-based algorithm (our best optimist algorithm so far), and merges it with the one from
the default typed algorithm. The list of matches for the two algorithms are retrieved (Msession
and Mt yped). The matches present in both lists are further prioritized in Msession, which is
returned.

Prefix 2 3 4 5 6 7 8
% 1st 59.65 64.82 70.09 73.49 76.39 79.73 82.09
% 2nd 14.43 14.96 14.1 13.87 13.17 13.09 12.08
% 3nd 4.86 4.64 3.89 3.27 2.92 2.23 1.85
% 4-10 8.71 7.04 5.86 4.58 4.09 3.37 2.5
% fail 12.31 8.51 6.03 4.75 3.4 1.54 1.44

Table 8.9: Results for typed optimist completion

Results: The result is a significant improvement, by 5 points at 76.79 (we ran it on SpyWare
only for the same reasons as the default typed algorithm). This algorithm merely reuses the
already accurate session information, but makes sure that the matches corresponding to the
right type are prioritized. In particular, with a two letter prefix, it gets the first match correctly
60 percents of the times, compared to 30 and 45 for the two individual algorithms.



163 8.5 Code Completion Algorithms

8.5.9 Discussion of the results

Most of our hypotheses on what helps code completion where correct, except “Recently in-
serted code”. We expected it to perform better than using the entire method bodies, but
were proven wrong. We need to investigate if merging the two strategies (the vocabulary
is the entire body, but recently inserted entries are prioritized further), yields any benefits
over using only “Recent modified bodies”. On the other hand, using sessions to order the
history of the program is still the best algorithm we found, even if by a narrow margin. This
algorithm considers only inserted calls during each session, perhaps using the method bodies
there could be helpful as well.

When considering the other case studies (Table 8.10), we see that the trends are the same
for all the studies, with some variations. Globally, if one algorithm performs better than
another for a case study, it tends to do so for all of them. The only exception is the session-
aware algorithm, which sometimes perform better, sometimes worse, than using the code of
all the methods recently modified, a close second. One reason for this may be that the other
case studies have a much shorter history, diminishing the roles of sessions. The algorithm has
hence less time to adapt.

Project SW S1 S2 S3 S4 S5 S6
Baseline 12.15 11.17 10.72 15.26 14.35 14.69 14.86
Structure 34.15 23.31 26.92 37.37 31.79 36.46 37.72
Names 36.57 30.11 34.69 41.32 29.84 39.80 39.68
Inserted 62.66 75.46 75.87 71.25 69.03 68.79 59.95
Bodies 70.14 82.37 80.94 77.93 79.03 77.76 67.46
Sessions 71.67 79.23 78.95 70.92 77.19 79.56 66.79

Table 8.10: Scores for the untyped algorithms of all projects

Considering type information, we saw that it gives a significant improvement on the de-
fault strategy. However, the score obtained by our optimist algorithms –without using any
type information– is still better. Further, our optimist algorithms work even in cases where
the type inference engine does not infer a type, and hence is more useful globally. Merging
the two strategies, e.g., filtering the list of returned matches by an optimist algorithm based
on type information, gives even better results.



164 8.6 Discussion

8.6 Discussion

Systematic Evaluation

Our approach is the only one to our knowledge allowing a systematic, automatic and repeat-
able evaluation of code completion engines. In addition, the ability to define a benchmark
has proven very valuable to the incremental development of the completion algorithms we
tested. It is easy to see if a change results in an improvement when this amounts to comparing
two numbers.

Completion of Methods Versus Other Entities

The benchmark we defined only takes into account the completion of method calls, and
not other program entities. This is because the number of methods is usually the highest.
Other entities, such as packages, classes, variables or keywords are less numerous. Hence the
number of methods usually dwarfs the number of other entities in the system, and is where
efforts should be first focused to get the most improvements.

Typed Versus Untyped Completions

As we have seen in Section 8.3, there are mainly two kinds of completion: Type-sensitive
completion, and type-insensitive completion, the latter being the one which needs to be im-
proved most. We used the Squeak IDE to implement our benchmark. As Smalltalk is dynam-
ically typed, this allows us to improve type-insensitive completion. Since Squeak features
an inference engine, we were able to test whether our completion algorithms also improves
type-sensitive completion, but only with inferred types.

Applicability to Other Programs

We have tested several programs, but can not account for the general validity of our results.
However, our results are consistent among the different program we tested. If an algorithm
performs better in one, it tends to perform better on the others. To generalize our results, one
simply needs to add new development histories to the benchmark’s corpus and run it again.

Applicability to Other Languages

Our results are currently valid for Smalltalk only. However, the tests showed that our optimist
algorithms perform better than the default algorithm using type inference, even without any
type information. Merging the two approaches shows another improvement. An intuitive
reason for this is that even if only 5 matches are returned due to the help of typing, the
position they occupy is still important. Thus we think our results have some potential for
typed object-oriented languages such as Java. In addition, we are confident they could greatly
benefit any dynamically typed language, such as Python, Ruby, Erlang, etc.



165 8.7 Summary

As for the previous discussion point, adding development histories for these languages
would confirm or infirm this hypothesis. Depending on the features of the language, this may
require modifying the algorithms as well. However, our algorithms make few assumptions
about the structure of the system (the only one being the structure-aware algorithm, and to
a limited extent the session-aware algorithm), so the modifications should be minimal.

Replication of Mylyn’s Completion

Mylyn’s task contexts feature a form of code completion prioritizing elements belonging to
the task at hand [KM06], which is similar to our approach. We could however not repro-
duce their algorithm since our recorded information focuses on changes, while theirs focuses
on interactions (they also record which entities were changed, but not the change extent).
The data we recorded includes interactions only on a smaller period and could thus not be
compared with the rest of the data.

Resource Usage

Our benchmark in its current form is resource-intensive. Testing the completion engine sev-
eral hundred thousands time in a row takes a few hours for each benchmark. We are looking
at ways to make this faster.

8.7 Summary

In this chapter, we tackled the problem of improving and evaluating recommender systems
through the example of code completion. Recommender systems monitor a programmer’s
activity and make recommendations that need to be accurate in order not to slow the pro-
grammer down. Even if code completion is a tool used by every developer, improvements
have been few and far-between as additional data was needed to both improve it and mea-
sure the improvement.

Change-based Software Evolution proved to be a valuable asset to evaluate code comple-
tion engines, as it records enough information to simulate the usage of a completion engine
at any point in the history of the system. This recorded information was used in the definition
of a benchmark allowing systematic testing of code completion engines with realistic data.

This shows that recording development histories is a good way to evaluate recommender
systems needing expensive human studies, provided that enough information is available to
recreate the context needed by the recommender. Recording a system’s evolution in a manner
that makes it possible to recreate the system’s AST as Change-based Software Evolution does
is a significant source of information to gather. Other data sources such as navigation infor-
mation in the IDE are simpler to record and could be added to the data recorded by Change-
based Software Evolution. The availability of this data allows the definition of benchmarks
which measure recommender systems in a cheap, accurate and repeatable fashion.



166 8.7 Summary

In addition, the data provided by Change-based Software Evolution was also useful to
improve the accuracy of the recommendations a completion engine offers. Incorporating
change information in the code completion algorithm improved the score from 12 out of 100
to more than 70. This translated to slightly less than a 75% chance of having the match
one was looking for with a two-letter prefix. This is due because recent changes are a good
approximation of the entities that constitute the working set a programmer is using at any
time. Of course, whether this applies to other types of recommender systems in the same
proportions remain to be determined.



Chapter 9

Improving Recommendations for
Change Prediction

Change prediction consists in recommending artifacts that have a high probability of changing
when a given artifact changes. Change prediction is useful both to recommend artifacts whose
modification is not obvious, or as a productivity tool to facilitate navigation to entities that the
programmer has to modify. If the first can be reliably tested up to a certain extent with SCM
archives, there is no way to repeatedly test the second.

The fine-grained granularity of the data we record allows us to replay exact development
sessions. With this fine-grained recorded history, we defined a benchmark for change prediction
algorithms in order to reliably measure the accuracy of change recommender systems on the
entire development history of several projects. With this benchmark, we evaluated several change
recommender systems either found in the literature or that we introduced.

167



168 9.1 Introduction

9.1 Introduction

In the previous chapter, we investigated the usefulness of Change-based Software Evolu-
tion in the case of recommender systems. We showed that using Change-based Software
Evolution’s data, one can build a comprehensive benchmark to evaluate a specific type of
recommender system, code completion. The benchmark being fully automatized allows us to
repeat the experiment cheaply, enabling the reproduction of other approaches, their compar-
ison and measuring incremental improvements to recommendation algorithms. We have also
shown that the evolutionary data provided by Change-based Software Evolution significantly
improved the accuracy of the recommendations of the completion engine.

In this chapter, we bring further support to these conclusions by defining and using a
benchmark for change prediction. The difference with the previous chapter is that bench-
marks for change prediction tools already exist using SCM archives. The intent of this chap-
ter is hence to show that benchmarks based on Change-based Software Evolution improve on
SCM-based ones in the following ways:

• Benchmarks defined by Change-based Software Evolution approximate the behavior
of a developer better, as they record and replay actual developer interactions, thus
providing a more realistic setting.

• Our benchmarks provide more data, of a more precise nature than SCM-based bench-
marks. This in turn makes recommender systems for Change-based Software Evolution
outperform those relying on SCM data.

• Benchmarks defined by Change-based Software Evolution can be used to evaluate an-
other class of recommender systems (based on IDE monitoring) in the same unified
framework.

The recommender system under study in this chapter is change prediction. Change pre-
dictors assist developers and maintainers by recommending entities that may need to be
modified alongside the entities currently being changed. Depending on the development
phase, change prediction has different usages.

For software maintenance, change predictors recommend changes to entities that may not
be obvious [ZWDZ04; YMNCC04]. In a software system, there often exist implicit or indirect
relationships between entities [GHJ98]. If one of the entities in the relationship is changed,
but not the other, subtle bugs may appear that are hard to track down.

For forward engineering, change predictors serve as productivity enhancing tools that ease
the navigation to the entities that are going to be changed next. In this scenario, a change
predictor maintains and proposes a set of entities of interest to help developers focus the
programming tasks.

So far, maintenance-mode change prediction has been validated using the history archives
of software systems as an oracle. This is an existing benchmark, which is however ad-hoc. It
is in particular unadapted to active development, when the transactions are too large to allow



169 9.2 Change Prediction Approaches

an accurate evaluation. As a consequence, no satisfactory approach has been proposed for
tools adapted to the forward engineering use case. Those are assessed through comparative
studies involving developers [KM06; SES05], a labor-intensive, error-prone and imprecise
process (see Section 8.2 for the costs of human subject studies). An accurate benchmark
handling both cases is needed.

We present a unifying benchmark for both kinds of change prediction, based on several
fine-grained development histories, recorded with Change-based Software Evolution. Our
detailed histories are unaffected by the inaccuracies of large transactions, making it usable
for both kind of change predictors. It provides (close to) real life benchmark data without
needing to perform comparative studies. Based on the benchmark, we perform a comparative
evaluation of several change prediction approaches.

Contributions. The contributions of this chapter are:

• A benchmark for change predictor based on the fine-grained data recorded by Change-
based Software Evolution. It is more accurate and more generic than previous SCM-
based benchmarks.

• The evaluation of several change prediction approaches, some replicated from the lit-
erature, some novel. These approaches are representative of the various branches of
change prediction.

Structure of the chapter. Section 9.2 describes various change prediction approaches ex-
isting in the literature in the two change prediction styles. Section 9.3 justifies and presents
our benchmark for change prediction approaches. Section 9.4 details the approaches we
evaluated with our benchmark and presents the benchmark results, which we discuss in Sec-
tion 9.5, before concluding in Section 9.6.

9.2 Change Prediction Approaches

Several change prediction approaches have been proposed, along three major trends. Histor-
ical approaches and approaches based on Impact Analysis have been evaluated on SCM-based
data. IDE-based approaches, have on the other hand mostly been evaluated with human
subjects.

9.2.1 Historical Approaches

Historical approaches use an SCM system’s repository to predict changes, primarily in a main-
tenance setting.

Zimmerman et al. [ZWDZ04] mined the CVS history of several open-source systems to
predict software changes using the heuristic that entities that changed together in the past are



170 9.2 Change Prediction Approaches

going to change together in the future. They reported that on some systems, there is a 64%
probability that among the three suggestions given by the tool when an entity is changed, one
is a location that indeed needs to be changed. Their approach works best with stable systems,
where few new features are added. It is indeed impossible to predict new features from the
history. Changes were predicted at the class level, but also at the function (or method) level,
with better results at the class level.

Ying et al. employed a similar approach and mined the history of several open source
projects [YMNCC04]. They classified their recommendations by interestingness: A recom-
mendation is obvious if two entities referencing each other are recommended, or surprising
if there was no relationships between the changed entity and the recommended one. The
analysis was performed at the class level. Sayyad-Shirabad et al. also mined the change
history of a software system in the same fashion [SLM03], but stayed at the file level.

Girba also detected co-change patterns [Gîr05] at the level of classes instead of file, using
his metamodel Hismo. He also qualified co-change patterns, with qualifiers such as Shotgun
Surgery, Parallel Inheritance or Parallel Semantics. He also proposed the Yesterday’s Weather
measure [GDL04]. Yesterday’s Weather postulates that future changes will take place where
the system just changed and measures how much a given system conforms to this postulate.

9.2.2 Impact Analysis Approaches

Impact analysis has been performed using a variety of techniques; we only comment on a few.
Briand et al. [BWL99] evaluated the effectiveness of coupling measurements to predict ripple
effect changes on a system with 90 classes. The results were verified by using the change data
in the SCM system over 3 years. One limitation is that the coupling measures were computed
only on the first version of the system, as the authors took the assumption that it would not
change enough to warrant recomputing the coupling measures for each version. The system
was in maintenance mode.

Wilkie and Kitchenham [WK00] performed a similar study on another system, validating
change predictions over 130 SCM transactions concerning a system of 114 classes. Forty-four
transactions featured ripple changes. Both analyses considered coupling among classes.

Tsantalis et al. proposed an alternative change prediction approach, based on a model of
design quality. It was validated on two systems. One had 58 classes and 13 versions, while
the other had 169 classes and 9 versions [TCS05].

Hassan and Holt proposed a generic evaluation approach based on replaying the devel-
opment history of projects based on their versioning system archives[HH06]. They com-
pared several change prediction approaches over the history of several large open-source
projects, and found that historical approaches have a higher precision and recall than other
approaches. Similar to Zimmermann et al., they observed that the GCC project has different
results and hypothesized this is due to the project being in maintenance mode.

Kagdi proposed a hybrid approach merging impact analysis techniques with historical
techniques [Kag07]. They argued that such an approach provides better results than the two
other approaches on their own, but no results have been published.



171 9.3 A Benchmark for Change Prediction

9.2.3 IDE-based approaches

The goal of short-term, IDE-based prediction approaches is to ease the navigation to entities
which are thought to be used next by the programmer. These approaches are based on
IDE monitoring and predict changes from development session information rather than from
transactions in an SCM system. They can thus better predict changes while new features are
being built, as they monitor the creation of the new entities and can thus incorporate them
in their predictions.

Mylyn [KM06] maintains a task context consisting of entities recently modified or viewed
for each task the programmer defined. It limits the number of entities the IDE displays to the
most relevant, easing the navigation and modification of these entities. Mylyn uses a Degree
Of Interest (DOI) model, and has been validated by assessing the impact of its usage on the
edit ratio of developers, i.e., the proportion of edit events with respect to navigation events
in the IDE. It was shown that using Mylyn, developers spent more time editing code, and less
time looking for places to edit.

NavTracks [SES05] and Teamtracks [DCR05] both record navigation events to ease nav-
igation of future users, and are geared towards maintenance activities. Teamtracks also
features a DOI model. NavTrack’s recommendations are at the file level. Teamtracks was
validated with user studies, while NavTracks was validated both with a user study and also
by recording the navigation of users and evaluating how often NavTracks would correctly
predict their navigation paths (around 35% of the recommendations were correct).

9.3 A Benchmark for Change Prediction

As with our previous benchmark descriptions, we first motivate the need for a change pre-
diction benchmark, then describe its procedure, how approaches are evaluated and how the
results are presented. Finally, we present the change histories our benchmark uses.

9.3.1 Motivation

In Section 9.2 we have listed a number of change prediction approaches that have been
evaluated with data obtained either by mining the repositories of SCM systems or with human
subject studies. In Section 8.2, we already showed why a human subject study may not be
the most adequate validation method. SCM-based benchmarks also suffer from drawbacks.

An SCM-based benchmark proceeds as follows: For each transaction, the set of entities
that have changed are extracted. This set is split in two parts, A and B. The predictor is given
the set of entities A, and its task is to guess the entities that are in B. The predictor’s accuracy
can then be measured in terms of precision and recall. This approach however suffers from
several limitations.

The first is that the data obtained by mining an SCM repository is potentially inaccurate:
Some SCM transactions represent patch applications rather than developments and cannot
be used for change prediction. Other transactions are simply too large to extract useful



172 9.3 A Benchmark for Change Prediction

information. SCM transactions in the case of active development are larger, and inherently
more noisy as the relationship between two related entities is obscured by other entities in
the transaction which are less related. This is one of the reasons why change prediction does
not work as well in the case of active development.

Another reason is the arbitrary way in which a transaction is split in two sets of entities.
In an SCM transaction, the order of the changes is lost, hence there is no indication of which
entities were modified first in the session. These entities would more naturally fit in the set
of entities given as context to the predictor. This problem is compounded with the above
problem of large transactions.

If these drawbacks are merely a nuisance for history and coupling-based approaches on
maintenance systems, they render the SCM-based benchmark approach useless for IDE-based
recommender system, and more generally in the context of active development. Active devel-
opment is characterized by a greater amount of changes, causing larger commits and more
noise overall. IDE-based approaches require a finer context, which is simply not possible to
reconstruct only from the outcome of the session.

Zeller’s vision is that future IDEs are bound to offer more and more assistance to develop-
ers in the IDE itself [Zel07]. Evaluating this kind of IDE-based recommender systems needs
to be done in a close to real-world setting. SCM-based benchmarks are simply not accurate
enough for that.

9.3.2 Procedure

Our benchmark functions similarly to a SCM-based benchmark, but at a much finer level.
During each run, we test the accuracy of a change prediction algorithm over a program’s
history, by processing each change in turn. We first ask the algorithm for its guess of what
will change next. The algorithm returns a list of entities expected to change. We evaluate
that guess compared to the next changes, and then provide that change to the algorithm, so
that it can update its representation of the program’s state and its evolution.

Some changes are directly submitted to the prediction engine without asking it to guess
the changes first. They are still processed, since the engine must have an accurate representa-
tion of the program. These are (1) changes that create new entities, since one cannot predict
anything for them, (2) repeated changes, i.e., if a change affects the same entity than the
previous one, it is skipped, and (3) refactorings or other automated code transformations.

The pseudo-code of our algorithm is shown in Algorithm 4. It runs on two levels at once,
asking the predictor to predict the next changing class and the next changing method. When
a method changes, the predictor is first asked to guess the class the method belongs to. Then
it is asked to guess the actual method. When a class definition changes, the predictor is only
tested at the class level. This algorithm does not evaluate the results, but merely stores them
along with the actual next changing entities.



173 9.3 A Benchmark for Change Prediction

Input: Histor y: Change history used
Predic tor: Change predictor to test
Output: Resul ts: benchmark results

Resul ts = makeResultSet();
foreach Session S in ChangeHistor y do

storeSessionInfo(S, resul t);
testableChanges = filterTestableChanges(S); foreach Change ch in S do

if includes(testableChanges,ch) then
predic t ions = predict(Predic tor);
nbPred = size(predic t ions);
oracle = nextElements(testableChanges, nbPred);
storeResult(resul ts, predic t ions, oracle);

end
processChange(Predic tor, ch);

end
return Resul ts

end
Algorithm 4: Benchmark result collection

9.3.3 Evaluation

With these results stored, we can evaluate them in a variety of ways. All of them share the
same performance measurement, but applied to a different set of predictions. Given a set of
predictions, we use Algorithm 5 to return an accuracy score.

Given a list of n predictions, the algorithm compares them to the next n entities that
changed, and sets the accuracy of the algorithm as the fraction of correct predictions over the
number of predictions. In the case where less than n entities changed afterwards (m), only
the m first predictions are taken into account.

Accuracy vs. Prediction and Recall. Change prediction approaches that use SCM data
are often evaluated using precision and recall. We found however that our data does not
fit naturally with such measurements, because while recorded changes are sequential, some
development actions can be performed in any order: If a developer has to change three
methods A, B, and C, he can do so in any order he wants. To account for this parallelism,
we do not just test for the prediction of the next change, but for the immediate sequence
changes with length n. Defining precision and recall for the prediction set and the set of the
actual changes would make both measures have the same value. This does not fit the normal
precision and recall measures which vary in inverse proportion to each other. Intuitively,
approaches with a high recall tend to make a greater number of predictions, while approaches
with a higher precision make less predictions, which are more accurate. Since we fix the
number of predictions to a certain size n, we use one single accuracy measure.

We measure the following types of accuracy:



174 9.3 A Benchmark for Change Prediction

Input: Resul ts: Benchmark results
Depth: Number of predictions to evaluate
Output: Score: Accuracy Score

accurac y = 0;
at tempts = size(resul ts);
foreach Attempt at t in at temps do

predic t ions = getPredictions(at t, Depth);
oracles = getOracles(oracles, Depth);
predic ted = predic t ions ∩ oracles;
accurac y = accurac y + (size(predic ted) / size(predic t ions));

end
Score = accurac y / at tempts;
return Score

Algorithm 5: Benchmark result evaluation

• Coarse-grained accuracy (C) measures the ability to predict the classes where changes
will occur.

• Fine-grained accuracy (M) measures the ability to predict the methods where changes
will occur.

• Initial accuracy (I) measures how well a predictor adapts itself to a changing context
both for classes and methods. To evaluate how fast a change predictor reacts to a
changing context, we measure its accuracy on the first changes of each session. These
feature the highest probability that a new feature is started or continued. We measure
the accuracy for the first 20 changes of each session.

9.3.4 Result Format

In the next section we measure the accuracy of a number of approaches using the previously
presented benchmark. We present the results in tables following the format of the sample
Table 9.1.

For each of the projects (occupying the rows) we compute the coarse-grained (C5, C7,
C9), the fine-grained (M5, M7, M9) and the initial accuracy for classes (CI7) and for methods
(MI7). The digits (5,7,9) indicate the length of the prediction and validation set, e.g., M7
means that we measure the accuracy of change prediction for a sequence of method changes
of length 7.

How are the numbers to be understood? For example, in the C5 column we measure
the coarse-grained accuracy of one of the approaches. The ’13’ in the SpyWare (SW) row
means that when it comes to predicting the next 5 classes that will be changed, the fictive



175 9.3 A Benchmark for Change Prediction

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 13.0 15.5 17.5 2.7 2.9 3.1 17.2 4.1
A-F 27.3 32.0 37.1 3.3 3.7 4.0 34.7 5.5
SA 16.1 19.3 21.9 4.5 5.4 6.2 21.7 6.4
X 6.0 7.4 8.4 2.1 2.2 2.2 7.9 3.7
AVG 14.4 17.2 19.6 3.1 3.5 3.9 18.5 4.6

Table 9.1: Sample results for an algorithm

predictor evaluated in Table 9.1 is guessing correctly in 13% of the cases. In the case of
the small student projects (row A-F) the values indicate how the predictors perform on very
small sets of data. We aggregated the results of all the students projects in a single row to
ease reading. The Software Animator (SA) row indicates how the predictors perform on Java
systems, while the second last row (X) indicates how the predictors perform on a system
built around a large web framework. The bottom row contains the weighted average value
accuracy for each type of prediction. The average is weighted with the number of changes
of each of the benchmark systems. This means that the longest history, the one of SpyWare,
plays a major role, and that one should not expect arithmetic averages in the last row.

9.3.5 Data Corpus

We selected the following development histories as benchmark data:

• SpyWare, our prototype, monitored over a period of three years, constitutes the largest
data set. The system has currently around 25,000 lines of code in 700 classes. We
recorded close to 25,000 changes so far.

• A Java project developed over 3 months, the Software Animator. In this case, we
used our Java implementation of SpyWare, an Eclipse plugin called EclipseEye[Sha07],
which however does not support the recording of usage histories.

• Six one-week small student projects with sizes ranging from 15 to 40 classes, with
which we tested the accuracy of approaches on limited data. These development his-
tories test whether an approach can adapt quickly at the beginning of a fast-evolving
project.

• A professional Smalltalk project tracked for 3 months, built on top of a web application
development framework.

The characteristics of each project are detailed in Table 9.2, namely the duration and size
of each project (in term of classes, methods, number of changes and sessions), as well as the
number of times the predictor was tested for each project, in four categories: overall class



176 9.4 Results

Project Days Sessions Changes Classes Predictions Early Methods Predictions Early
SpyWare 1,095 496 23,227 697 6,966 4,937 7,243 12,937 6,246
Animator 62 133 15,723 605 3,229 1,784 1,682 8,867 2,249
Project X 98 125 5,513 498 2,100 1,424 2,280 3,981 1,743
Project A 7 17 903 17 259 126 228 670 236
Project B 7 19 1,595 35 524 210 340 1,174 298
Project C 8 19 757 20 215 151 260 538 251
Project D 8 17 511 15 137 122 142 296 156
Project E 7 22 597 10 175 148 159 376 238
Project F 7 22 1,326 50 425 258 454 946 369
Total 1,299 870 50,152 1,947 14,030 9,160 12,788 29,785 11,786

Table 9.2: Development histories in the benchmark.

prediction, overall method prediction, and class and method prediction at the start of sessions
only (this last point is explained in Section 9.3.3).

9.4 Results

In this section we detail the evaluation of a number of change prediction approaches using
our benchmark. We reproduced approaches presented in the literature and evaluated novel
ones. In the case of reproduced approaches, we mention the possible limitations of our
reproduction and the assumptions we make. This is followed by the results of each approach
and a brief discussion.

We start with a few general remarks. First, the larger the number of matches considered,
the higher the accuracy. This is not surprising. One must however limit the number of entities
proposed, since proposing too many entities is useless. One can always have 100% accuracy
by proposing all the entities in the project. This is why we limited ourselves to 7+2 entities,
thus keeping a shortlist of entities, these having still a reasonable probability of being the
next ones. This number is estimated to be the number of items that humans can keep in
short-term memory [Pin99].

Second, all the algorithms follow roughly the same trends across projects. The smaller
projects (A-F) have a higher accuracy, which is to be expected since there are less entities to
choose from, hence a higher probability to pick the correct ones. The software animator (SA)
project has a higher accuracy than SpyWare (SW), since it is also smaller. The project with
the least accuracy overall is project X. Its development is constituted of a variety of smaller
tasks and features frequent switching between these tasks. These parts are loosely related,
hence the history of the project is only partially useful at any given point in time. Further,
project X was already started when we starting monitoring it, so we do not have the full
history. Predictions relying on the further past (such as Association Rules Mining) are at a
disadvantage.



177 9.4 Results

9.4.1 Association Rules Mining

Description. This is the approach employed by Zimmermann et al. [ZWDZ04]. Like Zim-
mermann’s approach, our version supports incremental updating of the dataset to better fit
incremental development. The alternative would be to analyze all the history at once, using
two-thirds of the data as a training set to predict the other third. This does however not fit
a real-life setting. As the approach uses SCM transactions, we make the assumption that one
session corresponds to one commit in the versioning system.

When processing each change in the session, it is added to the transaction that is being
built. When looking for association rules, we use the context of the 5 preceding changes. We
mine for rules with 1 to 5 antecedent entities, and return the ones with the highest support
in the previous transactions in the history. Like in Zimmermann’s approach, we only look for
single-consequent rules.

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 13.0 15.5 17.5 2.7 2.9 3.1 17.2 4.1
A-F 27.3 32.0 37.1 3.3 3.7 4.0 34.7 5.5
SA 16.1 19.3 21.9 4.5 5.4 6.2 21.7 6.4
X 6.0 7.4 8.4 2.1 2.2 2.2 7.9 3.7
AVG 14.4 17.2 19.6 3.1 3.5 3.9 18.5 4.6

Table 9.3: Results for Association Rules Mining

Results. Association rule mining serves as our baseline. As Table 9.3 shows, the results are
relatively accurate for class-level predictions, but much lower for method-level predictions.
The results are in the range of those reported by Zimmermann et al. [ZWDZ04]. They cite
that for case studies under active development, the precision of their method was only around
4%. Our results for method-level accuracy are in the low single-digit range as well.



178 9.4 Results

9.4.2 Enhanced Association Rule Mining

Description. The main drawback of association rule mining is that it does not take into
account changes in the current session. If entities are created during it, as is the case during
active development, prediction based on previous transactions is impossible. To address this,
we incrementally build a transaction containing the changes in the current session and mine
it as well as the previous transactions.

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 30.0 36.1 40.8 13.7 16.2 18.4 40.0 23.1
A-F 39.7 45.6 52.2 12.4 14.9 16.6 50.6 23.4
SA 28.0 34.1 39.5 14.2 17.7 20.9 39.4 24.0
X 24.4 29.6 33.7 14.3 17.3 20.2 31.5 31.1
AVG 29.9 35.8 40.8 13.7 16.6 19.0 39.7 24.5

Table 9.4: Results for Enhanced Association Rules Mining

Results. The results of this simple addition are shown in Table 9.4. The prediction accuracy
at the class-level is higher, but the method-level accuracy is much higher. Incrementally
building the current session, and mining it allows us to quickly incorporate new entities
which have been created in the current session, something that the original approach of
Zimmermann does not support, because the data is not available. Of note, the algorithm
is more precise at the beginning of the session than at the end, because the current session
has less entities to propose at the beginning of the session. Towards the end of the session,
there are more possible proposals, hence the approach loses some of its accuracy. In the
following, we compare other approaches with enhanced association rule mining, as it is a
fairer comparison since it takes into account entities created during the session.



179 9.4 Results

9.4.3 Degree of Interest

Description. Mylyn maintains a degree-of-interest model [KM05] for entities which have
been recently changed and edited. We implemented the same algorithm, with the following
limitations:

• The original algorithm takes into account navigation data in addition to change data.
Since we have recorded navigation data only on a fraction of the history, we do not
consider it. We make the assumption that navigation data is not essential in predicting
future change. Of course, one will probably navigate to the entity he wants to change
before changing it, but recommending to change what one is currently looking at is
hardly a useful recommendation.

• Another limitation is that more recent versions of the algorithm [KM06] maintain sev-
eral degrees of interests based on manually delimited tasks. The tasks are then recalled
by the developer. We do not consider separate tasks. The closest approximation of that
for us would be to assume that a task corresponds to a session, maintain a degree-of-
interest model for each session, and reuse the one most related to the entity at hand.

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 16.1 21.0 25.7 10.2 12.8 14.8 20.1 12.5
A-F 52.0 60.2 67.0 16.6 20.7 23.3 57.8 20.2
SA 22.4 29.8 35.5 21.2 26.9 31.0 29.7 25.2
X 15.5 19.5 22.0 6.1 7.4 8.2 17.1 6.5
AVG 21.9 27.6 32.5 13.2 16.6 19.1 25.7 14.9

Table 9.5: Results for Degree of Interest

Results. We expected the degree of interest to perform quite well and found the results to
be below our expectations. At the class level, it is less precise than association-rule mining. At
the method level, it has roughly the same accuracy. The accuracy drops sharply with project
X, whose development involved continuous task switching. Since the degree-of-interest needs
time to adapt to changing conditions, such sharp changes lowers its performance. Indeed,
the best accuracy is attained when the algorithm has more time to adapt. One indicator of
this is that the algorithm’s accuracy at the beginning of the session is lower than the average
accuracy. The algorithm also performs well to predict classes in projects A-F, since their size
is limited. It nevertheless shows limitations on the same projects to predict methods given
the very short-term nature of the projects (only a week).



180 9.4 Results

9.4.4 Coupling-based

Description. Briand et al. found that several coupling measures were good predictors of
changes [BWL99]. We chose to run our measure with the PIM coupling metric, one of the
best predictors found by Briand et al. PIM is a count of the number of methods invocations of
an entity A to an entity B. In the case of classes, this measure is aggregated between all the
methods in the corresponding two classes.

To work well, the coupling-based approach needs to have access to all the code base of
the system and the call relationships in it. With respect to this requirement, our benchmark
suffers from a number of limitations:

• We could not run this test on project SA, since our Java parser is currently not fine-
grained enough to parse method calls.

• We also do not include the results of Project X. Unfortunately, project X was already
under development when we started recording its evolution, and relies on an external
framework. Since we could not access that data, including the results would make for
an unfair comparison.

• One last limitation is that the Smalltalk systems do not have any type information, due
to the dynamically typed nature of Smalltalk. This makes our PIM measure slightly less
accurate.

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 21.0 26.2 30.6 9.7 11.8 13.3 25.3 11.2
A-F 21.3 28.0 34.0 10.8 14.1 16.6 29.9 15.7
SA - - - - - - - -
X - - - - - - - -
AVG 21.0 26.6 31.3 9.9 12.3 14.0 26.1 12.1

Table 9.6: Results for Coupling with PIM

Results. As we see in Table 9.6, comparing with the other approaches is difficult since part
of the data is missing. On the available data, we see that the coupling approach performs
worse at the method level than Association Rules Mining and Degree of Interest. At the class
level, results are less clear: The approach performs worse than association rules, while the
degree of interest performs significantly better on projects A-F, but is outperformed at the
class level.

Overall, we share the conclusions of Hassan and Holt [HH06]: Coupling approaches have
a lower accuracy than history-based ones such as association rule mining. The compari-
son with degree of interest somewhat confirms this, although it was outperformed in one
instance.



181 9.4 Results

9.4.5 Association Rules with Time Coupling

Description. In previous work [RPL08] we observed that a fine-grained measure of logical
coupling was able to predict logical coupling with less data. We therefore used one of these
fine-grained measurements instead of the classical one to see if it was able to better predict
changes with association-rule mining. When mining for rules, instead of simply counting
the occurrences of each rule in the history, we factor a measure of time coupling. Time
coupling measures how closely in a session two entities changed. Entities changing very
closely together will have a higher time coupling value than two entities changing at the
beginning and at the end of a development session.

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 30.1 36.0 40.6 13.2 16.0 18.3 38.0 21.4
A-F 37.0 43.6 50.8 14.6 17.3 19.3 45.7 23.3
SA 25.6 31.0 35.7 17.2 20.7 23.7 33.0 23.1
X 23.8 29.0 33.2 10.8 14.6 17.6 29.9 25.9
AVG 29.0 34.7 39.7 14.0 17.2 19.7 36.6 22.6

Table 9.7: Results for Association Rules with Time Coupling

Results. As we see in Table 9.7, our results are mixed. The prediction accuracy is slightly
lower that Enhanced Association Rules Mining for class-level predictions, and slightly better
for method-level predictions, each time by around one percentage point. It is encouraging
that the method prediction is increased, since it is arguably the most useful measure: Precise
indications are better than coarser ones. A possible improvement would be to use the com-
bined coupling metric we defined, which was more accurate than the time coupling alone.



182 9.4 Results

9.4.6 HITS

Description. Web search engines treat the web as a graph and feature very impressive re-
sults. Examples of search algorithms on the web are the HITS algorithm [Kle99] and Google’s
PageRank [PBMW98]. HITS gives a hub and a sink value to all nodes in a directed graph.
Good hub nodes point to many good sink nodes, and good sinks are referred to by many
good hubs. The algorithm starts with an initial value for each node which is adjusted at each
iteration of the algorithms, depending on the hub and sink values of its neighbors.

While the original HITS works on hyperlinked web pages, we build a graph from classes
and methods, linking them according to containment and message sends. The predictor has
two variants, respectively recommending the best hubs or the best sinks. Hubs are classes or
methods pointing to a large number of other classes or methods, while sinks are classes or
methods pointed at by a large number of other entities. To account for recent changes, we
maintain this graph for the entities and methods defined or changed in the 50 last changes.

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 40.8 48.8 55.8 15.9 17.1 17.9 48.3 17.2
A-F 44.7 55.7 65.1 20.9 23.5 25.2 57.6 22.6
SA 55.4 71.5 85.7 31.3 35.6 38.9 73.6 33.0
X 30.4 33.7 36.7 7.7 8.4 8.8 32.4 8.6
AVG 43.1 52.6 61.0 19.2 21.4 22.8 51.8 19.6

Table 9.8: Results for Hits, best hubs

Project C5 C7 C9 M5 M7 M9 CI7 MI7
SW 50.0 55.9 61.1 16.7 17.9 18.6 55.8 17.7
A-F 57.6 66.0 74.6 22.3 24.9 26.7 65.8 24.0
SA 60.6 74.6 87.5 32.1 36.2 39.0 76.2 33.5
X 34.0 38.1 40.8 8.0 8.6 9.0 37.3 8.5
AVG 51.0 58.8 65.8 20.1 22.1 23.4 58.0 20.1

Table 9.9: Results for Hits, best sinks

Results. The HITS algorithm proved to be the highest performer overall since it has a signif-
icantly higher method-level accuracy overall. We tested two variants, the first one returning
the best hubs in the HITS graph, and the second returning the best sinks. Of the two, recom-
mending sinks seems to consistently achieve a higher accuracy than recommending hubs. As
with the degree-of-interest, HITS tends to be more precise towards the end of a session. We
need to investigate ways to make the algorithm adapt faster to new contexts.



183 9.4 Results

9.4.7 Merging Approaches

Description. Kagdi et al. advocated merging history based approaches and impact analysis
based approaches [Kag07], arguing that combining the strong points of several approaches
can yield even more benefits. This strategy was successfully used by Poshyvanyk et al. in a
related problem, feature location [PGM+07]. We tried the following merging strategies:

Top: Returning the top picks of the combined approaches. This approaches assumes that the
first choices of an approach are the most probable ones. Given two predictors A and B,
it returns A’s first pick, then B’s first pick, then A’s second pick, etc..

Common: Returning entities nominated by several approaches, followed by the remaining
picks from the first approach. This approach assumes that the first predictor is the
most accurate, and that the other predictors are supporting it. The approach returns all
the predictions in common between at least two predictors, followed by the remaining
predictions of the first predictor.

Rank addition: This approach favors low ranks in the result lists and entities nominated by
several predictors. An interest value is computed for each prediction. Each time the
prediction is encountered, its interest is increased by a value proportional to its rank in
the prediction list it is in. If it is encountered several times, its interest value will thus
be higher. The predictions are then sorted by their interest value.

Predictor 1 Predictor 2 Strategy Score Increase
Hits-Sinks Coupling Common 40.6 +0.1
Hits-Hubs Interest Common 37.8 +0.8
Hits-Hubs Coupling Common 37.3 +0.3
Rule Mining Interest Common 27.4 +1.2
Rule Mining Time Coupling Top 27.3 +1.1
Rule Mining Coupling Rank 26.3 +0.1
Time Coupling Coupling Rank 26.1 +0.2
Interest Coupling Rank 22.6 +0.5

Table 9.10: Results when merging two prediction approaches

Results. We tried these merging approaches on each possible combination of two and three
predictors. In the following table we report on the successful ones, where the accuracy of the
merging was greater than the best of the merged approaches. If several merging strategies
were successful with the same pair of predictors, we only report the best performing one. We
only report one accuracy figure, which is the average of C7 and M7. The results are shown in
Table 9.10.



184 9.4 Results

We see that merging is successful in some cases, although the effect is limited. The predic-
tions based on the HITS algorithm see some improvement only with the “Common” strategy,
which favors the first predictor. This is to be expected, since these algorithms are significantly
more accurate than the other ones. Systematically merging their top candidates with the ones
of a less accurate approach automatically decreases their efficiency.

With other predictors, merging strategies becomes more viable. The “Top” strategy is
the less successful, as it appears only once. This strategy is the only one not rewarding
the presence of common recommendations in the two predictors. In the case where “Top”
yielded an improvement of 1.1%, using “Rank” instead gave a slightly smaller increase of
0.9%. Overall, merging strategies favoring common predictions work best, since “Rank”
appears three times, and “Common” four.

Perhaps the most important fact is that Coupling appears in five of the eight successful
mergings. This supports the idea that coupling based on the structure of the system proposes
different predictions than history-based ones. Our result provide initial support to Kagdi’s
proposition of merging impact-analysis approaches (some of them using coupling measure-
ments) with history-based approaches.

Surprisingly, merging three predictors instead of two yielded few benefits. Only in one
instance was it better than merging two. Merging Association Rule Mining, Degree of Interest
and Coupling had a score of 27.9, a 0.5% increase over merging only Association Rule Mining
and Degree of Interest. Of note, only Rank and Common were successful in merging three
predictors. The higher the number of predictors, the more important it is to favor common
predictions.

9.4.8 Discussion of the results

The results of all the predictors are summed up in Table 9.11, and graphically in Figure 9.1.
Note that the coupling results were not run on all the projects, and should as such be taken
with a grain of salt. The last two columns represent an overview value for each predictor: O7
is the average of C7 and M7, while MO7 is another average of C7 and M7, favoring method
accuracy (C7 counts for a third and M7 for the two remaining thirds).

Predictor C5 C7 C9 M5 M7 M9 CI7 MI7 O7 MO7
Association Rules Mining 14.4 17.2 19.6 3.1 3.5 3.9 18.5 4.6 10.35 8.06
Enhanced Rules Mining 29.9 35.8 40.8 13.7 16.6 19.0 39.7 24.5 26.20 23.00
Degree of Interest 21.9 27.6 32.5 13.2 16.6 19.1 25.7 14.9 22.10 20.26
Coupling-based* 21.0 26.6 31.3 9.9 12.3 14.0 26.1 12.1 19.45 17.06
Rules Mining & Time Coupling 29.0 34.7 39.7 14.0 17.2 19.7 36.6 22.6 25.95 23.03
Hits, best Hubs 43.1 52.6 61.0 19.2 21.4 22.8 51.8 19.6 37.00 31.80
Hits, best Sinks 51.0 58.8 65.8 20.1 22.1 23.4 58.0 20.1 40.45 34.33

Table 9.11: Comprehensive results for each predictor



185 9.4 Results

(Enhanced) Association Rules Mining

Taking into account recent changes to predict the very next changes in the system is impor-
tant, as shown by the difference between association rules mining and enhanced association
rules mining. The only addition to enhanced association rules mining is to also mine for rules
in the current session. However the results are drastic, since its accuracy more than doubles.

We tried to alter the importance of the rule based on the changes in the sessions. We
found that taking into account the timing of the changes when they occurred in a session
decreased the accuracy at the class level, but increased it at the method level. This may
be because classes are interacted with on longer portions of a development session, while
method interactions are much more localized in time, and usually worked at only for brief
periods of time. Hence the measure is much more useful for predicting method changes.

Degree of Interest

Considering only recent changes is sometimes not enough. We expected the degree of interest
to perform better than association rules mining. Although their accuracy is comparable,
association rules mining is a more accurate prediction approach. This is due both to the
adaptation factor of the degree of interest when switching tasks (its initial accuracy is lower),
and the fact that the association rules look in the entire past and can thus find old patterns
that are still relevant. The Mylyn tool, which uses a degree of interest, has a built-in notion
of tasks [KM06], that alleviate these two problems: A degree of interest is maintained for
each task, and is manually recalled by the developer. Task switching recalls another degree
of interest model, which may also contain information from the further past. Therefore, we
need to evaluate the accuracy of combining several degrees of interest and selecting the one
best adapted to the task at hand.

Coupling

Coupling based on the system structure is overall less accurate than other approaches. This
is to be expected this is does not take into account recent or past changes at all. However, it
proved to be an efficient alternative when prediction approaches were combined. Using it as
a second opinion significantly raised the accuracy of some approaches.

HITS

Overall, as Figure 9.1 illustrates, the best performing approach we found is the HITS algo-
rithm, using a graph describing the structure of the system among the recent changes (in our
case the last 50 changes). The HITS algorithm can be applied to any graph, so alternative
definitions of the graph based on the same data may yield even better results. Our graph
definition considers both recent changes and some structural information about the system.
It is a trade-off between a pure change-based and a pure structure-based approach, which is
a reason why it performs well. A possible improvement would be to incorporate change data



186 9.5 Discussion

Figure 9.1: Prediction Results

from the further past. Since HITS is –as the Degree of Interest– sensible to task switching, in
the future we need to evaluate the accuracy of several HITS graphs combined.

9.5 Discussion

Replication of Approaches in The Literature

We did not reproduce the NavTracks approach as it relies only on navigation data, which we
do not have. Ying and Shirabad’s approaches are very close to Zimmermann’s association
rule mining. DeLine et al.’s Teamtrack is based on a DOI and is as such close to the Mylyn
DOI. Kagdi’s approach was not fully described at this time of writing. Finally, we chose only
one coupling measure to reproduce, while many exist. The one we chose was the one best
adapted to our systems as PIM takes polymorphism into account. In Briand et al.’s study, PIM
was one of the metrics with the best correlation with actual changes, hence we deem it to be
a good representative.



187 9.5 Discussion

Size of The Dataset

Our dataset is fairly small compared to the ones available with versioning system data. An
advantage of the benchmark approach is that it is easy to solve this problem by adding other
development histories. On the other hand, our benchmark is already larger than the systems
used in previous studies by Briand, Wilkie or Tsantalis. Their evaluations were done on one
or two systems, on a small number of transactions.

Generalizability

We do not claim that our results are generalizable. However, some of the results we found
were in line with results found by other researchers. Hassan and Holt found that coupling-
based approaches are less precise than history based approaches, and so do we. Similarly,
Zimmermann et al. find a precision of 4% for method change prediction during active devel-
opment. Reproducing the approach with our data yields comparable results. We also found
evidence supporting Kagdi’s proposal of merging association rule mining and coupling-based
impact analysis. A simple merging strategy performed better than the individual strategies.
A more developed merging strategy may produce improved results.

Absent Data

Our data does not include navigation data, which is used in approaches such as NavTracks.
Mylyn’s Degree of Interest also includes navigation data. We started recording navigation
data after recording changes. As such, we only have navigation data for a portion of Spy-
Ware’s history. The lack of navigation data needs to be investigated, in order to see if it
impacts the accuracy of our implementation of Degree of Interest.

Evolving The Benchmark

Our benchmark still needs to evolve. As said earlier, the dataset should be larger for the
results to be more generalizable. Another possible enhancement to the benchmark would
be to evaluate if a tool is able to predict a change’s content and not only its location. Some
possibilities would be to evaluate the size of the change, i.e., whether a small or a large
change is expected, or the actual content. The latter could be possible and useful to evaluate
automatized code clone management approaches.



188 9.6 Summary

9.6 Summary

In this chapter, we evaluated the usefulness of Change-based Software Evolution for bench-
marking change prediction. Change prediction was previously evaluated by benchmarks, but
these relied on data originating from SCM archives. These have limitations: They depend
on the size of the transactions to be accurate, while these may be too large and noisy. SCM
transaction also lose the order in which changes were performed, an additional source of
noise. Thus SCM-based benchmarks are not adapted to usage in active development or in an
IDE setting. This prevents change predictors based on IDE monitoring to be evaluated with a
benchmarking approach. These relied on human subject studies for their evaluations, which
are more expensive to set up and harder to reproduce.

We showed that benchmarks built on top of Change-based Software Evolution have a finer
granularity of results thanks to the sequential nature of the changes. This translates in a more
realistic setting to test the recommenders. As a result, we could include in the comparison
algorithms that relied on IDE monitoring and evaluate them with the same settings as other
approaches, allowing a more direct comparison. In total we evaluated and compared seven
different approaches to change prediction.

The change information was also useful to improve the accuracy of the recommenders.
The most striking example was that including information about the session that is currently
being built in the association mining algorithm drastically improved it results, more than
doubling its accuracy. This shows that recent usage is a very good indicator of the context a
developer is building. Our best performing predictor incorporates recent change information
with structural information, using this data to build a graph which it queries using the HITS
algorithm.

Finally, our benchmark allowed us to systematically experiment in combining prediction
strategies. We came up with conclusions as to what kind of merging strategy is best (strategies
emphasizing common results among several predictors), and which change predictor is best
combined with other predictors (predictors using very different selection criteria).



Part IV

First-class Changes: So What?

189





Chapter 10

Perspectives

As software evolution takes up a larger and larger part of the life cycle of software systems, it
becomes more and more important to streamline its process. In this dissertation, we argued
that representing change as a first-class entity allows us to assist several aspects of a system’s
evolution, in the context of both reverse and forward engineering. To validate our thesis, we
designed and implemented such a change-based model of software evolution. We validated it by
applying it to representative tasks in software evolution.

191



192 10.1 Contributions

10.1 Contributions

During the course of this dissertation, we made the following major contributions:

10.1.1 Defining Change-based Software Evolution

We argued that current models of software evolution are incomplete, and that the limitations
they have can be addressed with a change-based model of software evolution.

Gathering requirements. In Chapter 2 we gathered requirements for a better support of
software evolution through an analysis of state of the art software evolution models and
approaches. The key shortcomings we identified were that a model of software informa-
tion should be accurate enough to support fine-grained analyses, be abstractable to support
coarse-grained ones, and should not depend on versioning systems, prone to information
loss.

Change model design. In Chapter 3 we designed a change-based model of software evo-
lution fulfilling the requirements we identified. It models the evolution of fine-grained pro-
grams (ASTs), through first-class changes which are recorded from an IDE rather than being
recovered from SCM archives. The changes our model support are executable, undoable, and
composable.

10.1.2 Change-based Software Evolution in Reverse Engineering

Before performing actual changes, developers spend more than half of their time reading
and understanding the systems they maintain. We investigated how Change-based Software
Evolution supports the understanding of systems at several levels of granularity:

High-level reverse engineering. In Chapter 4 we showed that fine-grained changes can be
abstracted to uncover high-level relationships between entities in a software system. Through
a comprehensive visualization of a system’s evolution, we identified several visual patterns
characterizing the relationships between entities. From this, we demonstrated how one can
reconstruct an evolution scenario of the system. We showed that without the fine-grained
data provided by Change-based Software Evolution, the quality of the analysis is significantly
degraded.

Low-level program comprehension. In Chapter 5 we showed how understanding a piece of
code was eased by following the footsteps of the one who implemented it. Reviewing changes
in a development session highlights relationships between entities, orders the changes in a
logical way, and contextualizes the changes. To give additional context, we also defined a
characterization of sessions based on several change-based metrics qualifying several aspects



193 10.1 Contributions

of a given session. Both session characterization and incremental program understanding are
unique to our approach.

Accurate metric definition. Metrics are widely used to summarize a large amount of data.
Change-based Software Evolution supports a wide array of metrics, since it supports metrics
relying on a fine-grained system representation, and metrics based on a fine-grained change
representation. These qualities allowed for the definition of more accurate evolutionary met-
rics: Our alternative measurements of logical coupling, defined in Chapter 6, were able to
predict logically coupled entities with less history than the standard definition of logical cou-
pling.

10.1.3 Change-based Software Evolution in Forward Engineering

Beyond understanding systems, maintainers need assistance performing the actual changes
to the system. We investigated how Change-based Software Evolution supports automated
program transformations and recommender systems:

Program transformation. Program transformations automatize changes that would other-
wise be manual and error-prone. In Chapter 7, we extended Change-based Software Evolu-
tion with program transformations in a natural and unobtrusive way: Program transforma-
tions are simply change generators. We also showed how recorded changes can be used as
examples to ease the definition of program transformations. The structure of the recorded
change itself acts as a checklist of what need to be done to generalize the change in a transfor-
mation. Finally, we showed that our definition of program transformations is fully integrated
in the evolution: Changes generated to transformations can be traced back to them, easing
their comprehension and the evolution of the transformation itself if necessary.

Evaluating and improving recommender systems. Recommender systems assist program-
mers while they perform changes by indicating where they should focus their attention. They
must however be evaluated with care since inaccurate recommenders are harmful to the pro-
ductivity. Such an evaluation is difficult to do without expensive human subject studies, since
recommenders rely on real-world IDE usage. Through two examples, code completion (in
Chapter 8) and change prediction (in Chapter 9), we showed that recording development
histories with Change-based Software Evolution led to the definition of robust benchmarks to
evaluate recommender systems. When a benchmark based on SCM data previously existed,
we showed that the benchmark based on Change-based Software Evolution was more precise
and corresponded more to real-world IDE usage. Based on these benchmarks, we evaluated
several variants of completion engines and change predictors, and found that those using
fine-grained change data performed best.



194 10.2 Limitations

10.1.4 Additional Contributions

Implementing Change-based Software Evolution. As a technical contribution, we provide
an implementation of Change-based Software Evolution in the form of SpyWare for Smalltalk,
which we used to perform our evaluations. A proof-of-concept implementation for Java and
Eclipse was implemented by a student.

Populating a change-based software repository. We constituted an initial repository of
change-based development histories, composed so far of nine case studies: Our prototype
itself, monitored over a period of three years, a web-based project monitored over three
months, several week-long student projects, and one project monitored with the Java version
of Change-based Software Evolution, implemented over three months. All of the case studies
were used at one point or another in the validation of Change-based Software Evolution.

10.2 Limitations

Each validation step and its limitations have been discussed to a certain extent in the corre-
sponding chapter. In this section we discuss more general threats to the validity of the work
as a whole, or common to several of the validations. After that, we discuss some possible
technical threats to general adoption of the work and ideas to deal with them.

10.2.1 Threats to Validity

One major characteristic of using software repositories for evolution analysis is that the data
one uses is recorded and analyzed in a postmortem fashion. A further characteristic of
Change-based Software Evolution is that the changes are recorded as they happen in the
IDE instead of at the end of a task. We discuss threats to validity according to the type of
threat with a focus on these two particular aspects.

Internal Validity Internal validity refers to the validity of inferences in an experimental
setting. Several of the threats in this category (such as testing, maturation, experimental
mortality) are alleviated by the fact that the developer interactions are recorded, sidestepping
these threats related to the adaptation of subjects to the experiments.

The largest threat to internal validity we observed is related to instrumentation, i.e., the
fact that we record interactions may modify the behavior of a developer. Since even changes
inducing errors are recorded, developers may be reluctant to perform changes as naturally
as they would without the monitoring of the changes, adopting a more careful approach. We
made our recording as unobtrusive as possible but some developers may still be wary of it.
Hence we cannot guarantee that recording does not affect a developer’s behavior.

A possible threat is the usage of our own tool for evolution analysis, as being its imple-
mentor would potentially give us an unfair advantage. We do not consider it as a threat for



195 10.2 Limitations

two reasons. First, this would apply only to the case studies related to understanding a system
(Chapters 4 and 5). The automated validations are too systematic and undiscriminating for
it to make a difference. We only used SpyWare as a case study in Chapter 5, along with an-
other case study, project X. We reported on 3 sessions from project X, and one from SpyWare.
Hence a large majority of the case studies did not involve understanding our own system.
Second, a developer trying to understand his own past changes is actually a use case of our
tool in the case of continuous reverse engineering activities. In such a case, there would be
an advantage, but it can hardly be considered unfair.

External Validity Threats to external validity are related to how generalizable the results
are beyond the projects they were applied to. Empirical studies of systems are difficult to
generalize to other systems and our studies are no exception. Development styles, practices
and conditions vary between projects, so a large number of variables can have a potential
impact. In this work we intentionally restricted our focus to changes in order to better isolate
their effects. Indeed, changes to a developing system may be the least common denominator
across a large variety of systems.

Potential threats to the generalizability of our results are that we used a limited number
of projects (12) for our analyses. These projects were of small to medium sizes and primarily
in active development, making the generalization to large systems and/or in maintenance
mode, non trivial.

Further, the projects we considered were single user, and for the most part in a single
programming language, Smalltalk. However, one of the projects we monitored was a Java
project, indicating that some of our results are at least partly applicable to Java. In addition,
we monitored developer with various programming experience (from 6 months to several
years) and styles. We found consistent improvements overall, especially in the validations
employing benchmarking approaches, for which the results are easier to compare: If an
algorithm performed better on one project, it did too on the others.

The best way to address this issue is to replicate our validation experiments on other sys-
tems, of different size, programming styles and maintenance life-cycle phases. The original
information gathering effort will be rather costly, but once the history of one or more sys-
tems of this kind is recorded, the other validations can be replicated at will on their change
histories.

Construction Validity Construct validity tests whether the collected data is adequate for
the tasks we intend to experiment with.

Since software evolution is primarily about changing existing systems, collecting change
information about systems is natural. In addition, the change data we collect is more fine-
grained and accurate than existing approaches, giving a more accurate view on the evolution
of systems. Since we record the changes through an automated process, data collection is
undiscriminating.

One could argue that the level of detail we record is too detailed. Erroneous changes such



196 10.2 Limitations

as unsuccessful attempts by developers are recorded, which would not appear in a versioning
system. These changes could be misleading. However, entities that are introduced to be
removed during the same development session could be easily filtered out. The effect of such
a filtering has to be evaluated as part of our future work.

In parts of our work, we use the assumption that a development session is equivalent to
a versioning system commit. This assumption may not be correct. In particular, it is easy
to imagine scenarios in which several sessions lead to a commit, or a single session leading
to several commits. The more general problem is the recovery of actual tasks. Indeed, SCM
commits do not always correspond to development tasks either. Finding how to recover
development tasks from the change history is an interesting future work area.

On the other hand, one could also argue that we do not use enough information. Addi-
tional information sources such as navigation in the source code, bug archives, mailing lists,
etc. complement the usage of change information by providing additional points of views
on the system’s evolution. In this work, we intentionally focused on changes to the system,
purposely ignoring other information sources. Since we focused on changes, we wanted to
restrict the number of variables to take into account (the development process is complex
enough as it is). These additional information sources could be used as part of future work.
In fact, SpyWare already records navigation information, but does not use it yet.

Reliability Reliability refers to the ability to consistently measure the effect of the approach.
One strength of Change-based Software Evolution is that being based on recorded interac-
tions, it eases the reproducibility of the results.

The changes are systematically recorded and can be reused easily to repeat an experi-
ment. We exploited this to the maximum in Chapters 6, 8 and 9, when we used automated
benchmarks to evaluate metrics and recommendation systems. These approaches are very
easily repeated. Approaches in Chapter 4, 5 and 7 are more expensive to reproduce and
subject to more variability since they involve human interaction. This is especially the case
with our example-based approach in Chapter 7 which was evaluated on few individual exam-
ples. We consider this exploratory validation the first step in our evaluation of example-based
transformation and plan a further evaluation increasing the amount of automation if possible.

Another aspect is replication on other case studies. The first step to this is to gather
additional information in the form of new recorded change histories. This step is the hardest
since it involves the most user interaction. Once a new history is available, it can conceivably
be used for each of the techniques we introduced, increasing the level of confidence for every
one of them.

10.2.2 Adoption Issues

We identified several issues that may hamper the widespread usage of Change-based Software
Evolution. We describe these problems and propose possible solutions to them.



197 10.2 Limitations

Technical Issues For now, our system supports only single user development and has been
used for small to medium scale projects. To adapt to the realities of industrial development,
a multi-user version has to be developed. Tests have to be performed to identify potential
bottlenecks related to larger-scale systems.

Beyond this, an important aspect is to reduce the barrier to entry by providing a seam-
less and unintrusive experience to users, as they will be reluctant to change their habits. We
kept this aspect in mind when implementing our prototype and to this aim kept the record-
ing of the changes as unobtrusive as possible. Recording changes while coding causes no
interruptions for the developer.

A second way to reduce the barrier to entry is to complement, rather than replace, stan-
dard SCM systems. Versioning systems are very slow to be replaced, due to migration issues,
process habits, and the general unwillingness to learn a new tool. Versioning systems gen-
erally also store more than the system’s source code, making a language-specific versioning
system a hard sell. Hence we view our system as a layer on top of a standard versioning
system rather than a versioning system replacement. Our current change format being very
simple, it is easy to store as text files or in a database.

A final concern is performance and space requirements. Currently, the change history of
3 years of SpyWare’s development is measured in the low tens of megabytes, making it very
reasonable considering that a standard machine’s hard drive contains hundreds of gigabytes.
Space in memory (when the actual system representation is built) is higher at the moment,
but we have done very few optimizations. This is part of the work needed to adapt SpyWare
to larger-scale systems. An optimization already done is that it is not necessary to have the
entire system’s AST in memory all the time. Parts of it can be built from subsets of the change
history on request. This considerably reduces runtime memory requirements. Based on this,
accessing the state of any entity at any point in time is a matter of seconds.

Ethical Issues There are ethical issues related to monitoring the activity of developers as
they work. Developers may be unwilling to be monitored in such a way, and the information
could be used to make unethical decisions.

However, the problem exists in a latent form with SCM systems. An SCM system also
monitors a developer’s changes and activity in the system. The information in an SCM system
could be used for the same purposes, and this has not been a major problem for SCM. If
anything, the information we record is a more accurate summary of one’s activity. As such,
it is less error-prone than recovering information from a versioning system and would be
more fair to any user of the system. Steps towards ensuring the anonymity of the recorded
changes could be imagined. In such a case, one would have to evaluate the trade-off between
increased anonymity and decreased usefulness of the information. Recommender evaluation
and program comprehension would still be possible, but contacting the responsible of a given
change would be harder.



198 10.3 Lessons Learned

10.2.3 Conclusions

In this work, we focused on a specific kind of evolutionary information, the changes per-
formed on an evolving system in the single-user case. To ensure that this work is valid on
larger domains, the studies we performed need to be replicated on several other systems in
order to verify if our findings hold in other contexts. Additional sources of information and
analyses need to be integrated. To ensure that Change-based Software Evolution has an im-
pact on everyday programmers, it needs to be extended to handle multiple users, ensuring
that the technical and ethical issues we described are addressed correctly.

10.3 Lessons Learned

During the four years in which we completed this work, we learned a tremendous amount.
Some of the most valuable lessons we learned follow.

On taking a clean slate approach. This decision was the riskiest we took, and in the end
the most gratifying. A significant part of our work is based on mining software repositories,
where the quality of the data is paramount. Hence our initial decision to discard all the
available data seemed at times a choice no sane person would make. This had an impact on
the generalization of our results. At the end of these four years, we have a bigger amount of
data, but still no large project which could be deemed representative of software evolution in
general. Then again, we are not sure any project is.

On the other hand, the clean slate approach allowed us to freely choose the data we
needed and as a result gave us higher quality data. We in essence traded quantity for quality.
It is now time to consolidate by gathering more data.

On model simplicity and flexibility. The accuracy of our model is directly tied to how
domain-specific it is and inversely tied to how adaptable it is to other domains. To minimize
portability issues, we kept the core data definitions as generic as possible and defined domain-
specific problems as extensions/

We think we succeeded in this aspect since we managed to implement an initial version of
our model for Java, with which we recorded the evolution of a project over several months.
This does not mean that porting the approach to a new platform is easy. There will always be
a minimal cost to achieve this.

On multiple validations. We validated our thesis piecewise, by validating each application
on its own. We used several validation techniques during this work. We first used visual-
ization as it is a good way to familiarize oneself with the data. We then worked on pro-
gram transformations and undertook a feasibility study to assess if our model was expressive
enough to support these. Finally, we took a more empirical approach by defining benchmarks
to measure and improve specific tasks.



199 10.4 Future Work

We think that this strategy allowed us to gain a better understanding of the data, by first
considering it at a high level before diving into details, in order to finally be able to isolate
variables in a measurable manner.

10.4 Future Work

We have only scratched the surface of what can be done with accurate evolutionary data of
systems. We plan to follow the following lines of work:

Gathering more data. Our data set is still restricted. To have more confidence in our results
we need to replicate them on a wider sample of projects. We will record the development his-
tories of more programmers in both the Smalltalk and Java versions of our systems. It would
be ideal to have a public-access repository supporting automated application of benchmarks
to new case studies.

Expanding the model with navigation and defect data. We have recorded additional IDE
usage data such as navigation and execution data for an extended period of time, but have
not used it yet. We envision enriching our model with this data and determine if this supports
evolutionary tasks better.

Change documentation and task reconstruction. So far we have made the assumption
that one development session is a development task. This is of course only an approximation:
Some tasks span multiple sessions, while some sessions are made of several tasks. Tasks are
also hierarchical and composed of subtasks. We plan to investigate how to automatically or
semi-automatically split a development history in several distinct tasks.

Related to this, we plan to allow a developer to annotate changes for documentation
purposes. During this process a developer could also specify the tasks in the development
history he is documenting.

Clone detection and evolution. We want to use our data for the problem of clone detection
and test whether it allows to detect clones more efficiently. Once this is done, we want to
automatize the co-evolution of clones based on the program transformations that are at the
moment done manually by the developer. Ideally we would define a benchmark for this task.

Example-based aspects. Continuing our work on program transformations, we want to
deepen the idea of informal aspects we shown in Chapter 7, in particular to ease their tran-
sitions into more formal aspects, and to analyze their relationship with Hon and Kiczales’s
Fluid AOP [HK06].



200 10.5 Closing Words

Continuous reverse engineering. During the last two ICSE “Future Of Software Engineer-
ing” tracks, invited papers on the future of reverse engineering both mentioned continuous
reverse engineering, i.e., merging forward and reverse engineering in one smooth process.
Our change-recording approach provides the immediacy (changes are gathered as they hap-
pen) and the interactivity (all tools are integrated in an IDE) necessary to fulfill such a vision.
One first step towards this would be to devise an “Evolution Dashboard”, allowing easy access
to quick evolutionary facts about an entity as it is browsed.

Instant awareness. Several awareness systems exist, most working at the level of SCM trans-
actions. With our approach, one can broadcast changes to all the developers of a system as
soon as they are performed. Each development site could then check that the changes per-
formed by other user do not break the code base. This could be done when merging changes,
looking for conflicts while taking into account the semantics of the language, or at a higher
level, checking if changes done by another developer break the tests of the code. If a conflict
is found, a notification would be sent to conflicting parties so that they work together to fix
the problem. In some cases, if the problem is repeatable, a transformation could be devised
and stored to semi-automatically fix the following occurrences of the conflicts.

Repository-level conflict monitoring. Taking the previous idea to the next level, we envi-
sion a source code repository performing the same conflict checks, either at coding time or at
checkin time if commits also include a change list. Conflicts would be checked automatically
when libraries used by a project are changed. The author of a change would be informed of
how many users have their code broken by it, while users of a library could easily see what
they need to fix when upgrading to the next version of the library.

10.5 Closing Words

On impact. This work started with a radical idea which put us somewhat at odds with
the software evolution community. It was hence recomforting to see that several approaches
arrived to the same conclusions as ours, and even more so to see some of those were directly
influenced by our approach.

In the field of model-driven engineering, Blanc et al. have shown that a change-based rep-
resentation of models (without taking their history into account) allows for efficient checking
of model validity [BMMM08]. Sriplakich et al. [SBG08] implemented a concept of update
commands for collaborative model editing. Finally, Kögel described a change-based SCM sys-
tem for models [K0̈8].

Fluri recognizes the need for a more detailed view of software evolution, and does so at
by recovering fine-grained changes from SCM archives [FWPG07].

Several approaches are now recording changes in the IDE. Chan et al. [CCB07] record
source code changes in Eclipse in a language-independent manner. Zumkher [Zum07] and
Ebraert et al. [EVC+07] record first-class changes in Smalltalk IDEs to provide dynamic



201 10.5 Closing Words

software evolution, a scenario we have not tackled. Ebraert uses our model of first-class
changes as a base for their change model. Lastly, Omori and Maruyama record Java-specific
changes in Eclipse [OM08], and acknowledge our work as a direct inspiration.

Is it all worth it? The objective of this dissertation was to show that recording first-class
changes is worthwhile. We think that the advantages (recording an accurate evolution with a
model versatile enough to support several evolutionary tasks), outweighs the drawbacks (an
approach requiring a lot of tool support and discarding data already available). Our results
are significant improvements in several distinct areas that justify a further implementation of
our approach.

Several researchers are working on the same or related problems. This makes us confident
that the problem we address and its solution are on the right track.

Several factors have to be considered to make the approach practical:

• During this work we made sure the recording was as non-intrusive as possible. Tools
soliciting the attention of developers when they want to focus on something else are
problematic. This tradition needs to be continued.

• To further lower the barrier to entry, we need to fully integrate our approach with a
standard versioning system. The changes we record can be exported in a simple text
format, which could be simply put under version control.

• So far, we steered clear of optimizations. Experiments must be made to evaluate the
requirements for large systems, and what are the costlier operations.

We are strongly convinced that Change-based Software Evolution provides a model of
software integrating development and evolution tasks in a harmonious process. In the process
we envision, reverse engineering and program comprehension tools are available in the IDE,
merely a click away. The entire history is accessible, shared between developers, and contains
all kinds of changes, from straightforward development and bug fixes to aspects and program
transformations. Individual and shared recommenders continuously analyze the incoming
stream of changes to extract valuable information and connect people.



202 10.5 Closing Words



Part V

Appendix

203





Appendix A

Inside the Change-based Repository

During the four yours we took to conclude this work, we recorded the history of 12 case
studies, with large variations in size and style. We list them for reference, with some of their
high-level characteristics, in Table A.1.

Project Name Days Classes Methods Lines of Code Sessions Developer Actions Atomic Changes
SpyWare 1,095 697 7,243 37,347 496 23,227 548,384
Project X 98 498 2,280 14,109 121 5,513 141,580
Software Animator 62 605 1,682 8,418 133 15,723 108,940
Project A 7 17 228 687 17 903 23,512
Project B 7 35 340 1,450 19 1,595 38,168
Project C 7 41 357 1,537 22 1,326 38,818
Project D 8 20 260 1,931 19 757 26,789
Project E 7 16 117 760 10 311 8,672
Project F 8 15 142 1,191 17 511 19,522
Project G 6 23 197 580 10 842 12,851
Project H 7 10 159 1,347 22 597 18,237
Project I 7 50 454 1,952 22 1,326 25,965
Total 1,319 2,027 13,459 71,309 908 52,631 1,011,168

Table A.1: The case studies in our change repository

SpyWare is the research prototype we built to implement our vision of Change-based Soft-
ware Evolution. SpyWare has been self-monitoring for more than three years. Included
in the count are all the tools that we built to validate all approaches we presented, and
the core of the platform itself. In this thesis, we used SpyWare’s history in chapters 5,
6, 7, 8 and 9.

Project X contains the change history of a smalltalk developer working on a web application
for a duration of three months. Of interest, the application was built using a preexisting
web framework, implying a different usage pattern from other applications. We used
project X’s history in chapters 5 and 9.

205



206

Software Animator is a summer student project, developed over a duration of two months.
It visualizes the change-based history of software systems in the form of a 3D animation,
which can be played in real-time, or faster. It was implemented in Java, and monitored
by EclipseEye, the Java version of our change recording framework. Software Animator
was used in chapters 6 and 9.

Projects A to I are several student projects built in the course of a week. The students
had the choice between three subjects, a virtual store (smaller projects), a geometry
program (intermediate size) and a text-based role-playing game (larger projects). All
projects were used in chapter 4, but only project I was reported on in detail. We also
used the six largest of the nine projects (projects A, B, D, F, H and I) in our benchmarks
in chapters 8 and 9, renumbering them A to F for clarity.



Bibliography

[ABF04] Erik Arisholm, Lionel C. Briand, and Audun Føyen. Dynamic coupling measure-
ment for object-oriented software. IEEE Transactions on Software Engineering,
30(8):491–506, 2004.

[ABM+05] Robert L. Akers, Ira D. Baxter, Michael Mehlich, Brian J. Ellis, and Kenn R.
Luecke. Reengineering c++ component models via automatic program trans-
formation. In WCRE ’05: Proceedings of the 12th Working Conference on Reverse
Engineering, pages 13–22, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[AGDS07] Erik Arisholm, Hans Gallis, Tore Dybå, and Dag I. K. Sjøberg. Evaluating pair
programming with respect to system complexity and programmer expertise.
IEEE Transactions on Software Engineering, 33(2):65–86, 2007.

[AK07] Eytan Adar and Miryung Kim. Softguess: Visualization and exploration of code
clones in context. In ICSE ’07: Proceedings of the 29th international conference
on Software Engineering, pages 762–766, Washington, DC, USA, 2007. IEEE
Computer Society.

[BAY03] James M. Bieman, Anneliese A. Andrews, and Helen J. Yang. Understanding
change-proneness in oo software through visualization. In IWPC ’03: Pro-
ceedings of the 11th IEEE International Workshop on Program Comprehension,
page 44, Washington, DC, USA, 2003. IEEE Computer Society.

[BCH+05] Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo
Tonella. Automated refactoring of object oriented code into aspects. In ICSM
’05: Proceedings of the 21st IEEE International Conference on Software Mainte-
nance, pages 27–36, Washington, DC, USA, 2005. IEEE Computer Society.

[BDW99] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A unified framework
for coupling measurement in object-oriented systems. IEEE Transactions on
Software Engineering, 25(1):91–121, 1999.

207



208 Bibliography

[BEJWKG05] Jennifer Bevan, Jr. E. James Whitehead, Sunghun Kim, and Michael Godfrey.
Facilitating software evolution research with kenyon. SIGSOFT Software Engi-
neering Notes, 30(5):177–186, 2005.

[BGD+06] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
Swaminathan. Mining email social networks. In MSR ’06: Proceedings of the
2006 international workshop on Mining software repositories, pages 137–143,
New York, NY, USA, 2006. ACM.

[BGH07] Marat Boshernitsan, Susan L. Graham, and Marti A. Hearst. Aligning develop-
ment tools with the way programmers think about code changes. In CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 567–576, New York, NY, USA, 2007. ACM.

[BMMM08] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting
model inconsistency through operation-based model construction. In ICSE ’08:
Proceedings of the 30th international conference on Software engineering, pages
511–520, New York, NY, USA, 2008. ACM.

[Bra94] Stewart Brand. How Buildings Learn - What Happens After They’re Built. Pen-
guin Books, 1994.

[BvDT05] Magiel Bruntink, Arie van Deursen, and Tom Tourwe. Isolating idiomatic cross-
cutting concerns. In ICSM ’05: Proceedings of the 21st IEEE International Con-
ference on Software Maintenance, pages 37–46, Washington, DC, USA, 2005.
IEEE Computer Society.

[BWL99] Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using coupling measure-
ment for impact analysis in object-oriented systems. In ICSM ’99: Proceedings
of the IEEE International Conference on Software Maintenance, page 475, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[CCB07] Jacky Chan, Alan Chu, and Elisa Baniassad. Supporting empirical studies by
non-intrusive collection and visualization of fine-grained revision history. In
eclipse ’07: Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, pages 60–64, New York, NY, USA, 2007. ACM.

[CCP07] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying
changed source code lines from version repositories. In MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software Repositories, page 14,
Washington, DC, USA, 2007. IEEE Computer Society.

[CMR04] Andrea Capiluppi, Maurizio Morisio, and Juan F. Ramil. The evolution of
source folder structure in actively evolved open source systems. In METRICS
’04: Proceedings of the Software Metrics, 10th International Symposium, pages
2–13, Washington, DC, USA, 2004. IEEE Computer Society.



209 Bibliography

[Cor89] Thomas A. Corbi. Program understanding: challenge for the 1990’s. IBM
Systems Journal, 28(2):294–306, 1989.

[CP07] Gerardo Canfora and Massimiliano Di Penta. New frontiers of reverse engi-
neering. In FOSE ’07: Proceedings of the 2nd Conference on the Future of Soft-
ware Engineering, pages 326–341, Washington, DC, USA, 2007. IEEE Computer
Society.

[CSY+04] Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt, and Gillian Z. Heller. Open-
source change logs. Empirical Software Engineering, 9(3):197–210, 2004.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for software config-
uration management. ACM Computing Surveys, 30(2):232–282, 1998.

[DB06] Saeed Dehnadi and Richard Bornat. The camel has two humps (working title).
2006.

[DCMJ06] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated
detection of refactorings in evolving components. In Springer, editor, ECOOP
’06:ECOOP ’06: Proceedings of the 20th European Conference on Object Oriented
Programming, Lecture Notes in Computer Science, pages 404–428, 2006.

[DCR05] Robert DeLine, Mary Czerwinski, and George Robertson. Easing program com-
prehension by sharing navigation data. In VLHCC ’05: Proceedings of the 2005
IEEE Symposium on Visual Languages and Human-Centric Computing, pages
241–248, Washington, DC, USA, 2005. IEEE Computer Society.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings
via change metrics. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications,
pages 166–177, New York, NY, USA, 2000. ACM.

[DDT99] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why unified is not
universal. uml shortcomings for coping with round-trip engineering. In UML
’99: Proceedings of The Second International Conference on The Unified Modeling
Language, Lecture Notes in Computer Science, pages 630–645. Springer, 1999.

[DER07] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving
software. In ICSE ’07: Proceedings of the 29th international conference on Soft-
ware Engineering, pages 158–167, Washington, DC, USA, 2007. IEEE Computer
Society.

[DGL+07] Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli,
and Pascal Zumkehr. Encapsulating and exploiting change with changeboxes.
In ICDL ’07: Proceedings of the 2007 international conference on Dynamic lan-
guages, pages 25–49, New York, NY, USA, 2007. ACM.



210 Bibliography

[DJ05] Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In
ICSM ’05: Proceedings of the 21st IEEE International Conference on Software
Maintenance, pages 389–398, Washington, DC, USA, 2005. IEEE Computer
Society.

[DL06a] Marco D’Ambros and Michele Lanza. Reverse engineering with logical cou-
pling. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse
Engineering, pages 189–198, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[DL06b] Marco D’Ambros and Michele Lanza. Software bugs and evolution: A visual
approach to uncover their relationship. In CSMR ’06: Proceedings of the Confer-
ence on Software Maintenance and Reengineering, pages 229–238, Washington,
DC, USA, 2006. IEEE Computer Society.

[DLG05] Marco D’Ambros, Michele Lanza, and Harald Gall. Fractal figures: Visualizing
development effort for cvs entities. In VISSOFT ’05: Proceedings of the 3rd IEEE
International Workshop on Visualizing Software for Understanding and Analysis,
page 16, Washington, DC, USA, 2005. IEEE Computer Society.

[DMJN07] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. Refactoring-
aware configuration management for object-oriented programs. In ICSE ’07:
Proceedings of the 29th international conference on Software Engineering, pages
427–436, Washington, DC, USA, 2007. IEEE Computer Society.

[DNMJ08] Danny Dig, Stas Negara, Vibhu Mohindra, and Ralph Johnson. Reba:
refactoring-aware binary adaptation of evolving libraries. In ICSE ’08: Pro-
ceedings of the 30th international conference on Software engineering, pages
441–450, New York, NY, USA, 2008. ACM.

[DR08] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive
changes for framework evolution. In ICSE ’08: Proceedings of the 30th in-
ternational conference on Software engineering, pages 481–490, New York, NY,
USA, 2008. ACM.

[EA04] Torbjörn Ekman and Ulf Asklund. Refactoring-aware versioning in eclipse.
Electronic Notes in Theoritical Computer Science, 107:57–69, 2004.

[EG05] Jacky Estublier and Sergio Garcia. Process model and awareness in scm. In
SCM ’05: Proceedings of the 12th international workshop on Software configura-
tion management, pages 59–74, New York, NY, USA, 2005. ACM.

[EG06] Jacky Estublier and Sergio Garcia. Concurrent engineering support in software
engineering. In ASE ’06: Proceedings of the 21st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 209–220, Washington, DC,
USA, 2006. IEEE Computer Society.



211 Bibliography

[EGK+01] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does code decay? assessing the evidence from change management data. IEEE
Transactions on Software Engineering, 27(1):1–12, 2001.

[ELvdH+05] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geof-
frey Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of software engi-
neering research on the practice of software configuration management. ACM
Transactions on Software Engineering and Methodology, 14(4):383–430, 2005.

[Erl00] Len Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23, 2000.

[ES98] Katalin Erdös and Harry M. Sneed. Partial comprehension of complex pro-
grams (enough to perform maintenance). In IWPC ’98: Proceedings of the 6th
International Workshop on Program Comprehension, page 98, Washington, DC,
USA, 1998. IEEE Computer Society.

[Est95] Jacky Estublier. The Adele configuration manager, pages 99–133. John Wiley &
Sons, Inc., New York, NY, USA, 1995.

[EVC+07] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and Theo
D’Hondt. Change-oriented software engineering. In ICDL ’07: Proceedings
of the 2007 international conference on Dynamic languages, pages 3–24, New
York, NY, USA, 2007. ACM.

[EZS+08] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.
Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns
cause defects? IEEE Transactions on Software Engineering, 34(4):497–515,
2008.

[FG06] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change
couplings. In ICPC ’06: Proceedings of the 14th IEEE International Conference
on Program Comprehension, pages 35–45, Washington, DC, USA, 2006. IEEE
Computer Society.

[Fow02] Martin Fowler. Refactoring: Improving the Design of Existing Code. Springer-
Verlag, London, UK, 2002.

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release his-
tory database from version control and bug tracking systems. In ICSM ’03:
Proceedings of the International Conference on Software Maintenance, page 23,
Washington, DC, USA, 2003. IEEE Computer Society.

[Fre07] Tammo Freese. Operation-based merging of development histories. In WRT
’07: Proceedings of the 1st ECOOP Workshop on Refactoring Tools, 2007.



212 Bibliography

[FWPG07] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change dis-
tilling: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743, 2007.

[GB80] Ira P. Goldstein and Daniel G. Bobrow. A layered approach to software design.
Technical Report CSL-80-5, Xerox PARC, December 1980.

[GDL04] Tudor Gîrba, Stéphane Ducasse, and Michele Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing the evolution of
changes. In ICSM ’04: Proceedings of the 20th IEEE International Conference on
Software Maintenance, pages 40–49, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling
based on product release history. In ICSM ’98: Proceedings of the International
Conference on Software Maintenance, page 190, Washington, DC, USA, 1998.
IEEE Computer Society.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[Gîr05] Tudor Gîrba. Modeling History to Understand Software Evolution. PhD thesis,
University of Berne, Berne, November 2005.

[GJK03] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for
detecting logical couplings. In IWPSE ’03: Proceedings of the 6th International
Workshop on Principles of Software Evolution, page 13, Washington, DC, USA,
2003. IEEE Computer Society.

[GJKT97] Harald Gall, Mehdi Jazayeri, René Klösch, and Georg Trausmuth. Software
evolution observations based on product release history. In ICSM ’97: Pro-
ceedings of the International Conference on Software Maintenance, page 160,
Washington, DC, USA, 1997. IEEE Computer Society.

[GKSD05] Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How
developers drive software evolution. In IWPSE ’05: Proceedings of the Eighth
International Workshop on Principles of Software Evolution, pages 113–122,
Washington, DC, USA, 2005. IEEE Computer Society.

[GKY91] Bjørn Gulla, Even-André Karlsson, and Dashing Yeh. Change-oriented version
descriptions in epos. Software Engineering Journal, 6(6):378–386, 1991.

[GLD05] Tudor Gîrba, Michele Lanza, and Stéphane Ducasse. Characterizing the evo-
lution of class hierarchies. In CSMR ’05: Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering, pages 2–11, Washing-
ton, DC, USA, 2005. IEEE Computer Society.



213 Bibliography

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case
study. In ICSM ’00: Proceedings of the International Conference on Software
Maintenance (ICSM’00), page 131, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[GZ05] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and
splitting of source code entities. IEEE Transactions on Software Engineering,
31(2):166–181, 2005.

[HD05] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refac-
torings to support api evolution. In ICSE ’05: Proceedings of the 27th interna-
tional conference on Software engineering, pages 274–283, New York, NY, USA,
2005. ACM.

[HGBR08] Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles. Determin-
ism and evolution. In MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pages 1–10, New York, NY, USA,
2008. ACM.

[HH06] Ahmed E. Hassan and Richard C. Holt. Replaying development history to as-
sess the effectiveness of change propagation tools. Empirical Software Engi-
neering, 11(3):335–367, 2006.

[HK06] Terry Hon and Gregor Kiczales. Fluid aop join point models. In OOPSLA ’06:
Companion to the 21st ACM SIGPLAN symposium on Object-oriented program-
ming systems, languages, and applications, pages 712–713, New York, NY, USA,
2006. ACM.

[HN86] A. Nico Habermann and David Notkin. Gandalf: software development en-
vironments. IEEE Transactions on Software Engineering, 12(12):1117–1127,
1986.

[HP96] Richard C. Holt and J. Y. Pak. Gase: visualizing software evolution-in-the-large.
In WCRE ’96: Proceedings of the 3rd Working Conference on Reverse Engineering
(WCRE ’96), page 163, Washington, DC, USA, 1996. IEEE Computer Society.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In MoDELS
Satellite Events, pages 128–138, 2005.

[K0̈8] Maximilian Kögel. Towards software configuration management for unified
models. In CVSM ’08: Proceedings of the 2008 international workshop on Com-
parison and versioning of software models, pages 19–24, New York, NY, USA,
2008. ACM.



214 Bibliography

[Kag07] Huzefa Kagdi. Improving change prediction with fine-grained source code
mining. In ASE ’07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 559–562, New York, NY,
USA, 2007. ACM.

[KG06] Cory Kapser and Michael W. Godfrey. "cloning considered harmful" considered
harmful. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse
Engineering, pages 19–28, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In ECOOP ’97: Proceedings of the 11th European Conference on
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Sci-
ence, pages 220–242. Springer, 1997.

[KM05] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides.
In AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 159–168, New York, NY, USA, 2005. ACM.

[KM06] Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 1–11,
New York, NY, USA, 2006. ACM.

[KNG07] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of struc-
tural changes for matching across program versions. In ICSE ’07: Proceedings
of the 29th international conference on Software Engineering, pages 333–343,
Washington, DC, USA, 2007. IEEE Computer Society.

[KPEJW05] Sunghun Kim, Kai Pan, and Jr. E. James Whitehead. When functions change
their names: Automatic detection of origin relationships. In WCRE ’05: Pro-
ceedings of the 12th Working Conference on Reverse Engineering, pages 143–152,
Washington, DC, USA, 2005. IEEE Computer Society.

[KSB08] Marouane Kessentini, Houari A. Sahraoui, and Mounir Boukadoum. Model
transformation as an optimization problem. In MoDELS ’08: Proceedings of
the 11th international conference on Model Driven Engineering Languages and
Systems, Lecture Notes in Computer Science, pages 159–173. Springer, 2008.

[KSNM05] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empir-
ical study of code clone genealogies. SIGSOFT Software Engineering Notes,
30(5):187–196, 2005.



215 Bibliography

[LAEW08] Jonathan Lung, Jorge Aranda, Steve M. Easterbrook, and Gregory V. Wilson.
On the difficulty of replicating human subjects studies in software engineer-
ing. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 191–200, New York, NY, USA, 2008. ACM.

[Lan01] Michele Lanza. The evolution matrix: recovering software evolution using
software visualization techniques. In IWPSE ’01: Proceedings of the 4th Inter-
national Workshop on Principles of Software Evolution, pages 37–42, New York,
NY, USA, 2001. ACM.

[LB85] Meir M. Lehman and Laszlo A. Belady, editors. Program evolution: processes of
software change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[Lip92] Ernst Lippe. CAMERA – Support for distributed cooperative work. PhD thesis,
University of Utrecht, 1992.

[LL07] Mircea Lungu and Michele Lanza. Exploring inter-module relationships in
evolving software systems. In CSMR ’07: Proceedings of the 11th European
Conference on Software Maintenance and Reengineering, pages 91–102, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[LLG06] Mircea Lungu, Michele Lanza, and Tudor Gîrba. Package patterns for visual
architecture recovery. In CSMR ’06: Proceedings of the Conference on Software
Maintenance and Reengineering, pages 185–196, Washington, DC, USA, 2006.
IEEE Computer Society.

[LM05] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[LRW+97] Meir M. Lehman, Juan F. Ramil, Paul Wernick, Dewayne E. Perry, and Wla-
dyslaw M. Turski. Metrics and laws of software evolution - the nineties view.
In METRICS ’97: Proceedings of the 4th International Symposium on Software
Metrics, page 20, Washington, DC, USA, 1997. IEEE Computer Society.

[LvO92] Ernst Lippe and Norbert van Oosterom. Operation-based merging. In SDE
5: Proceedings of the fifth ACM SIGSOFT symposium on Software development
environments, pages 78–87, New York, NY, USA, 1992. ACM Press.

[LW07] Jacob Lehraum and Bill Weinberg. Ide evolution continues be-
yond eclipse. http://www.eetimes.com/article/showArticle.jhtml?
articleId=21400991, 2007.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection. SIGPLAN
Notices, 22(12):147–155, 1987.

http://www.eetimes.com/article/showArticle.jhtml?articleId=21400991
http://www.eetimes.com/article/showArticle.jhtml?articleId=21400991


216 Bibliography

[Mar04] Radu Marinescu. Detection strategies: Metrics-based rules for detecting de-
sign flaws. In ICSM ’04: Proceedings of the 20th IEEE International Conference
on Software Maintenance, pages 350–359, Washington, DC, USA, 2004. IEEE
Computer Society.

[MFV+05] Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet,
Frédéric Fondement, Philippe Studer, and Jean-Marc Jézéquel. On executable
meta-languages applied to model transformations. Model Transformations In
Practice Workshop, 2005.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey,
Scott R. Tilley, and Kenny Wong. Reverse engineering: a roadmap. In FOSE
’00: Proceedings of the 1st Conference on The future of Software engineering,
pages 47–60. ACM Press, 2000.

[MKF06] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are java software de-
velopers using the eclipse ide? IEEE Software, 23(4):76–83, 2006.

[NMBT05] Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao. An in-
frastructure for development of object-oriented, multi-level configuration man-
agement services. In ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 215–224, New York, NY, USA, 2005. ACM.

[OM08] Takayuki Omori and Katsuhisa Maruyama. A change-aware development en-
vironment by recording editing operations of source code. In MSR ’08: Pro-
ceedings of the 2008 international working conference on Mining software repos-
itories, pages 31–34, New York, NY, USA, 2008. ACM.

[Ost87] Leon J. Osterweil. Software processes are software too. In ICSE ’87: Proceed-
ings of the 9th international conference on Software Engineering, pages 2–13,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 15(12):1053–1058, 1972.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford
Digital Library Technologies Project, 1998.

[Per87] Dewayne E. Perry. Version control in the inscape environment. In ICSE ’87:
Proceedings of the 9th international conference on Software Engineering, pages
142–149, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[PG06] Chris Parnin and Carsten Gorg. Building usage contexts during program com-
prehension. In ICPC ’06: Proceedings of the 14th IEEE International Conference
on Program Comprehension, pages 13–22, Washington, DC, USA, 2006. IEEE
Computer Society.



217 Bibliography

[PGM+07] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Václav Rajlich. Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval. IEEE Transactions on
Software Engineering, 33(6):420–432, 2007.

[PGR06] Chris Parnin, Carsten Görg, and Spencer Rugaber. Enriching revision history
with interactions. In MSR ’06: Proceedings of the 2006 international workshop
on Mining software repositories, pages 155–158, New York, NY, USA, 2006.
ACM.

[Pin99] Steven Pinker. How the mind works. Penguin Books, Harmondsworth, Middles-
sex (UK), 1999.

[Pin05] Martin Pinzger. ArchView – Analyzing Evolutionary Aspects of Complex Software
Systems. PhD thesis, Vienna University of Technology, 2005.

[PM06] Denys Poshyvanyk and Andrian Marcus. The conceptual coupling metrics for
object-oriented systems. In ICSM ’06: Proceedings of the 22nd IEEE Interna-
tional Conference on Software Maintenance, pages 469–478, Washington, DC,
USA, 2006. IEEE Computer Society.

[PP05] Ranjith Purushothaman and Dewayne E. Perry. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software Engi-
neering, 31(6):511–526, 2005.

[RAGBH05] Gregorio Robles, Juan Jose Amor, Jesus M. Gonzalez-Barahona, and Israel Her-
raiz. Evolution and growth in large libre software projects. In IWPSE ’05:
Proceedings of the Eighth International Workshop on Principles of Software Evo-
lution, pages 165–174, Washington, DC, USA, 2005. IEEE Computer Society.

[RB04] Don Roberts and John Brant. Tools for making impossible changes - experi-
ences with a tool for transforming large smalltalk programs. IEE Proceedings -
Software, 152(2):49–56, April 2004.

[RDB+07] Coen De Roover, Theo D’Hondt, Johan Brichau, Carlos Noguera, and Laurence
Duchien. Behavioral similarity matching using concrete source code templates
in logic queries. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pages 92–
101, New York, NY, USA, 2007. ACM.

[RDGM04] Daniel Ratiu, Stéphane Ducasse, Tudor Gîrba, and Radu Marinescu. Using
history information to improve design flaws detection. In CSMR ’04: Proceed-
ings of the Eighth Euromicro Working Conference on Software Maintenance and
Reengineering (CSMR’04), page 223, Washington, DC, USA, 2004. IEEE Com-
puter Society.



218 Bibliography

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[RL05] Romain Robbes and Michele Lanza. Versioning systems for evolution research.
In IWPSE ’05: Proceedings of the 8th International Workshop on Principles of
Software Evolution, pages 155–164. IEEE CS Press, 2005.

[RL06] Romain Robbes and Michele Lanza. Change-based software evolution. In EVOL
’06: Proceedings of the 2nd International ERCIM Workshop on Challenges in
Software Evolution, pages 159–164, 2006.

[RL07a] Romain Robbes and Michele Lanza. A change-based approach to software evo-
lution. Electronic Notes in Theoretical Computer Science, 166:93–109, January
2007.

[RL07b] Romain Robbes and Michele Lanza. Characterizing and understanding de-
velopment sessions. In ICPC ’07: Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 155–166, Washington, DC, USA,
2007. IEEE Computer Society.

[RL07c] Romain Robbes and Michele Lanza. Towards change-aware development tools.
Technical Report 6, Faculty of Informatics, Università della Svizzerra Italiana,
Lugano, Switzerland, may 2007.

[RL08a] Romain Robbes and Michele Lanza. Example-based program transformation.
In MoDELS ’08: Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems, Lecture Notes in Computer Science, pages
174–188. Springer, 2008.

[RL08b] Romain Robbes and Michele Lanza. How program history can improve code
completion. In ASE 08: Proceedings of the 23rd ACM/IEEE International Con-
ference on Automated Software Engineering, pages 317–326. ACM Press, 2008.

[RL08c] Romain Robbes and Michele Lanza. Spyware: A change-aware development
toolset. In ICSE ’08: Proceedings of the 30th International Conference in Software
Engineering, pages 847–850. ACM Press, 2008.

[RLL07] Romain Robbes, Michele Lanza, and Mircea Lungu. An approach to software
evolution based on semantic change. In FASE ’07: Proceedings of 10th Interna-
tional Conference on the Fundamentals of Software Engineerings, Lecture Notes
in Computer Science, pages 27–41. Springer, 2007.

[RLP08] Romain Robbes, Michele Lanza, and Damien Pollet. A benchmark for change
prediction. Technical Report 06, Faculty of Informatics, Università della
Svizzerra Italiana, Lugano, Switzerland, October 2008.



219 Bibliography

[Rob07] Romain Robbes. Mining a change-based software repository. In MSR ’07: Pro-
ceedings of the Fourth International Workshop on Mining Software Repositories,
page 15, Washington, DC, USA, 2007. IEEE Computer Society.

[Roc75] Marc J. Rochkind. The Source Code Control System. IEEE Transactions on
Software Engineering, 1(4):364–370, 1975.

[RPL08] Romain Robbes, Damien Pollet, and Michele Lanza. Logical coupling based on
fine-grained change information. In WCRE ’08: Proceedings of the 15th IEEE
International Working Conference on Reverse Engineering, pages 42–46. IEEE
Press, 2008.

[SBG08] Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervals. Collaborative soft-
ware engineering on large-scale models: requirements and experience in mod-
elbus. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied comput-
ing, pages 674–681, New York, NY, USA, 2008. ACM.

[SEH03] Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using benchmark-
ing to advance research: a challenge to software engineering. In ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering, pages
74–83, Washington, DC, USA, 2003. IEEE Computer Society.

[SES05] Janice Singer, Robert Elves, and Margaret-Anne Storey. Navtracks: Supporting
navigation in software maintenance. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 325–334, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[SGPP04] Kevin A. Schneider, Carl Gutwin, Reagan Penner, and David Paquette. Mining
a software developer’s local interaction history. In MSR ’04: Proceedings of the
1st international workshop on Mining Software Repositories, pages 106–110,
Los Alamitos CA, 2004. IEEE Computer Society Press.

[SH01] Till Schümmer and Jörg M. Haake. Supporting distributed software devel-
opment by modes of collaboration. In ECSCW’01: Proceedings of the seventh
conference on European Conference on Computer Supported Cooperative Work,
pages 79–98, Norwell, MA, USA, 2001. Kluwer Academic Publishers.

[Sha07] Yuval Sharon. Eclipseye - spying on eclipse. Bachelor’s thesis, University of
Lugano, June 2007.

[SHE02] Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook. On using a bench-
mark to evaluate c++ extractors. In IWPC ’02: Proceedings of the 10th Interna-
tional Workshop on Program Comprehension, page 114, Washington, DC, USA,
2002. IEEE Computer Society.



220 Bibliography

[SLM03] Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan Matwin. Mining the
maintenance history of a legacy software system. In ICSM ’03: Proceedings of
the International Conference on Software Maintenance, page 95, Washington,
DC, USA, 2003. IEEE Computer Society.

[Smi84] Brian Cantwell Smith. Reflection and semantics in lisp. In POPL ’84: Proceed-
ings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 23–35, New York, NY, USA, 1984. ACM.

[SNvdH03] Anita Sarma, Zahra Noroozi, and André van der Hoek. Palantír: raising aware-
ness among configuration management workspaces. In ICSE ’03: Proceedings
of the 25th International Conference on Software Engineering, pages 444–454,
Washington, DC, USA, 2003. IEEE Computer Society.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edition) (International
Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006.

[SRG08] Ilie Savga, Michael Rudolf, and Sebastian Goetz. Comeback!: a refactoring-
based tool for binary-compatible framework upgrade. In ICSE Companion ’08:
Companion of the 30th international conference on Software engineering, pages
941–942, New York, NY, USA, 2008. ACM.

[TBG04] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated
code with linked editing. In VLHCC ’04: Proceedings of the 2004 IEEE Sympo-
sium on Visual Languages - Human Centric Computing, pages 173–180, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[TCS05] Nikolaos Tsantalis, Alexander Chatzigeorgiou, and George Stephanides. Pre-
dicting the probability of change in object-oriented systems. IEEE Transactions
on Software Engineering, 31(7):601–614, 2005.

[TDD00] Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. Famix and xmi. In
WCRE ’00: Proceedings of the Seventh Working Conference on Reverse Engineer-
ing (WCRE’00), page 296, Washington, DC, USA, 2000. IEEE Computer Society.

[TDX07] Kunal Taneja, Danny Dig, and Tao Xie. Automated detection of api refactor-
ings in libraries. In ASE ’07: Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering, pages 377–380, New
York, NY, USA, 2007. ACM.

[TG02] Qiang Tu and Michael W. Godfrey. An integrated approach for studying archi-
tectural evolution. In IWPC ’02: Proceedings of the 10th International Workshop
on Program Comprehension, page 127, Washington, DC, USA, 2002. IEEE Com-
puter Society.



221 Bibliography

[Tic85] Walter F. Tichy. Rcs—a system for version control. Software Practice and Expe-
rience, 15(7):637–654, 1985.

[TM02] Christopher M. B. Taylor and Malcolm Munro. Revision towers. In VISSOFT
’02: Proceedings of the 1st International Workshop on Visualizing Software for
Understanding and Analysis, page 43, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[Tuf06] Edward R. Tufte. Beautiful Evidence. Graphis Pr, 2006.

[Var06] Dániel Varró. Model transformation by example. In Models ’06: Proceedings
of the 9th international conference on Model Driven Engineering Languages and
Systems, Lecture Notes in Computer Science, pages 410–424. Springer, 2006.

[Vis02] Eelco Visser. Meta-programming with concrete object syntax. In GPCE ’02:
Proceedings of the 1st ACM SIGPLAN/SIGSOFT conference on Generative Pro-
gramming and Component Engineering, pages 299–315, London, UK, 2002.
Springer-Verlag.

[vR79] C. J. van Rijsbergen. Information Retrieval. Butterworth, 2nd edition edition,
1979.

[WD06] Peter Weissgerber and Stephan Diehl. Identifying refactorings from source-
code changes. In ASE ’06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages 231–240, Washington,
DC, USA, 2006. IEEE Computer Society.

[WHH04] Jingwei Wu, Richard C. Holt, and Ahmed E. Hassan. Exploring software evo-
lution using spectrographs. In WCRE ’04: Proceedings of the 11th Working
Conference on Reverse Engineering, pages 80–89, Washington, DC, USA, 2004.
IEEE Computer Society.

[WK00] F. George Wilkie and Barbara A. Kitchenham. Coupling measures and change
ripples in c++ application software. Journal of Systems and Software, 52(2-
3):157–164, 2000.

[WL08] Richard Wettel and Michele Lanza. Visual exploration of large-scale system
evolution. In WCRE ’08: Proceedings of the 15th IEEE International Working
Conference on Reverse Engineering, pages 219–228. IEEE CS Press, 2008.

[WSKK07] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. To-
wards model transformation generation by-example. In HICSS ’07: Proceedings
of the 40th Annual Hawaii International Conference on System Sciences, page
285b, Washington, DC, USA, 2007. IEEE Computer Society.



222 Bibliography

[Wuy07] Roel Wuyts. Roeltyper. http://decomp.ulb.ac.be/roelwuyts/smalltalk/
roeltyper/, 2007.

[XS05] Zhenchang Xing and Eleni Stroulia. Analyzing the evolutionary history of the
logical design of object-oriented software. IEEE Transactions on Software Engi-
neering, 31(10):850–868, 2005.

[YMNCC04] Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, and Mark Chu-Carroll. Pre-
dicting source code changes by mining change history. IEEE Transactions Soft-
ware Engineering, 30(9):574–586, 2004.

[Zel07] Andreas Zeller. The future of programming environments: Integration, syn-
ergy, and assistance. In FOSE ’07: Proceedings of the 2nd Conference on The
Future of Software Engineering, pages 316–325, Washington, DC, USA, 2007.
IEEE Computer Society.

[ZGH07] Lijie Zou, Michael W. Godfrey, and Ahmed E. Hassan. Detecting interac-
tion coupling from task interaction histories. In ICPC ’07: Proceedings of the
15th IEEE International Conference on Program Comprehension, pages 135–144,
Washington, DC, USA, 2007. IEEE Computer Society.

[ZS95] Andreas Zeller and Gregor Snelting. Handling version sets through feature
logic. In Proceedings of the 5th European Software Engineering Conference, pages
191–204, London, UK, 1995. Springer-Verlag.

[Zum07] Pascal Zumkehr. Changeboxes — modeling change as a first-class entity. Mas-
ter’s thesis, University of Bern, February 2007.

[ZWDZ04] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, pages 563–572,
Washington, DC, USA, 2004. IEEE Computer Society.

http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/
http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/

	Contents
	List of Figures
	List of Tables
	Introduction
	The Challenges of Software Evolution
	Reification to The Rescue
	Change-based Software Evolution
	Roadmap

	I First-class Changes:  The Why, The What and The How
	Software Evolution Support in Research and Practice
	Introduction
	Change Representation in SCM
	How SCM Handles Versioning
	Interaction Models in SCM
	The State of the Practice in SCM

	Impact of SCM Practice on the Research of MSR
	The shortcomings of SCM for MSR
	High-level evolution analysis
	Full model evolution analysis
	Evolution reconstruction approaches

	Alternative Approaches
	IDE monitoring as an Alternative to SCM Archives
	Change-based approaches

	Summary

	Change-Based Software Evolution
	Introduction
	Principles of Change-based Software Evolution
	Program Representation
	Abstract Syntax Tree Format
	Language Independence
	Limitations

	The Change Metamodel
	Atomic Changes
	Composite Changes
	Change histories
	Generating a View of the System

	Recording and Storing Changes
	Uses of Change-based Software Evolution
	Example: Measuring the Evolution of Systems
	Validation Strategies
	What Is Used Where?

	Summary


	II How First-class Changes Support System Understanding
	Assessing System Evolution
	Introduction
	Assessing Systems with The Change Matrix
	Principles
	Patterns

	Evolution of Project I
	High-level Facts
	Reconstructing Project I's Evolution
	Recapitulation

	Impact of Data Degradation
	Discussion
	Summary

	Characterizing and Understanding Development Sessions
	Introduction
	Motivations for Session-based Program Understanding
	A Characterization of Development Sessions
	Primary Session Characterization
	Session Metrics
	Quantitative Analysis of the Characterization

	Incremental Session Understanding
	A Process for Incremental Session Understanding
	Browsing Sessions with the Session Sparkline
	Inspecting and Characterizing Sessions with The Session Inspector
	Viewing Changes in Context with The Session Explorer
	Understanding Individual Changes with The Change Reviewer

	Validation
	Decoration Session (Project X)
	Painting Session (Project X)
	Masonry & Restoration Session (Project X)
	Architecture & Restoration Session (SpyWare)

	Discussion
	Summary

	Measuring Evolution:  The Case of Logical Coupling
	Introduction
	Logical Coupling
	Usages of Logical Coupling
	Shortcomings of SCM Logical Coupling
	Alternatives to SCM Logical Coupling

	SCM Logical Coupling Prediction
	Motivation
	Procedure
	Evaluation
	Result Format
	Data Corpus

	Logical Coupling Measurements and Results
	SCM Logical Coupling
	Change-based Coupling
	Interaction Coupling
	Time-based Coupling
	Close Time-based Coupling
	Combined Coupling
	Discussion of the Results

	Discussion
	Summary


	III How First-Class Changes Support Software Evolution
	Program Transformation and Evolution
	Introduction
	Change-based Program Transformations
	Variables And Their Roles
	Generic Changes
	Instantiation and Application of Transformations
	Control Structures
	Wrap-up

	Transforming programs by examples
	The Program Transformation Spectrum
	Example-based Program Transformation in a Nutshell
	Does our approach fulfill the requirements?
	Running example

	The Six-step Program to Transformation Definition
	Recording the example
	Generalizing the example
	Editing the Example
	Composing Changes
	Testing the Transformation
	Applying the Transformation

	Additional Examples
	Defining informal aspects
	Clone Management

	Towards Transformation Integration and Evolution
	Transformation Integration
	Transformation Comprehension
	Transformation Evolution

	Discussion
	Change-based Program Transformation
	Example-based Program Transformation
	Integrating Transformations in The Evolution

	Summary

	Evaluating Recommendations for Code Completion
	Introduction
	The Cost of Human Subject Studies
	Current Approaches to Code Completion
	Code Completion in Eclipse
	Code Completion in VisualWorks
	Code Completion in Squeak
	Code Completion in Eclipse with Mylyn
	Optimistic and Pessimistic Code Completion

	A Benchmark For Code Completion
	Motivation
	Procedure
	Evaluation
	Result Format
	Data Corpus

	Code Completion Algorithms
	Default Untyped Strategy
	Default Typed Strategy
	Optimist Structure
	Recently Modified Method Names
	Recently Modified Method Bodies
	Recently Inserted Code
	Per-Session Vocabulary
	Typed Optimist Completion
	Discussion of the results

	Discussion
	Summary

	Improving Recommendations for Change Prediction
	Introduction
	Change Prediction Approaches
	Historical Approaches
	Impact Analysis Approaches
	IDE-based approaches

	A Benchmark for Change Prediction
	Motivation
	Procedure
	Evaluation
	Result Format
	Data Corpus

	Results
	Association Rules Mining
	Enhanced Association Rule Mining
	Degree of Interest
	Coupling-based
	Association Rules with Time Coupling
	HITS
	Merging Approaches
	Discussion of the results

	Discussion
	Summary


	IV First-class Changes: So What?
	Perspectives
	Contributions
	Defining Change-based Software Evolution
	Change-based Software Evolution in Reverse Engineering
	Change-based Software Evolution in Forward Engineering
	Additional Contributions

	Limitations
	Threats to Validity
	Adoption Issues
	Conclusions

	Lessons Learned
	Future Work
	Closing Words


	V Appendix
	Inside the Change-based Repository
	Bibliography


