
Lumière: a Novel Framework for Rendering 3D graphics in
Smalltalk

Fernando Olivero, Michele Lanza, Romain Robbes
REVEAL@ Faculty of Informatics - University of Lugano, Switzerland
{fernando.olivero, michele.lanza, romain.robbes}@usi.ch

ABSTRACT
To render 3D graphics there is a number of different frame-
works written in Smalltalk. While most of them provide
powerful facilities, many of them are outdated, abandoned,
undocumented or heavyweight.

In this paper we present Lumière, a novel lightweight
framework for rendering 3D graphics using OpenGL based
on a stage metaphor. Lumière is implemented using the
Pharo IDE. In its current state it supports basic and com-
posite shapes to populate 3D scenes, features a camera, and
a lighting model.

We illustrate the usage of Lumière with Gaucho, an envi-
ronment for visual programming we are currently building.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Graphical environ-
ments

Keywords
3D, Smalltalk, OpenGL

1. INTRODUCTION
Over the years, the Smalltalk language and its many di-

alects have featured many frameworks for rendering graph-
ics in 3D. Well-known examples include Alice[6] and Cro-
quet[8] for Squeak, ST3D for Dolphin Smalltalk, and the
Jun1 framework for VisualWorks.

However many of the existing frameworks are affected by
problems such obselence, complexity, and licensing. Squeak
Alice is no longer maintained and therefore lacks support
for features present in most modern renderers (for example
multi-texturing, Vertex buffer objects, vertex shaders, etc.).
Croquet, while it is still maintained, has become a complex
full-fledged collaborative environment that runs on top of

1http://www.cc.kyoto-su.ac.jp/~atsushi/Jun/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWST’09 August 31, 2009, Brest, France.
Copyright 2009 ACM 978-1-60558-899-5 ...$10.00.

Squeak, and has thus long left the status of being a frame-
work that is easy to get into. Jun is less complex than Cro-
quet, but is affected by the licensing policy of VisualWorks,
despite the fact that Jun itself is free and open.

Indeed, the Smalltalk community is missing a lightweight
and open source 3D framework. To fulfill this need, using
Pharo2, we are developing a novel framework for rendering
3D graphics in Smalltalk called Lumière .

One of the cornerstones of Lumière is to hinge on the
metaphor of a stage. We believe this helps to make the
framework and its usage more intuitive, as metaphors are
powerful tools to assist the usage of abstract concepts: If
a framework is built around an intuitive metaphor which
maps abstracts concepts to real-world objects, programmers
can obtain an immediate mental model of the framework’s
domain model, thus easing the understanding and usage of
the framework.

To apply this concept to 3D graphics, Lumière’s stage
metaphor implies that all graphics are produced by cameras
taking pictures of 3D shapes lit by the lights of the stage. A
stage provides the setting for taking pictures of a composi-
tion of visual objects we call micro-worlds. With Lumière a
Pharo programmer can produce 3D graphics using high level
abstractions (cameras, lights, stages and shapes) instead of
low-level graphic instructions.

We want Lumière to be fully integrated in the Pharo en-
vironment to provide a seamless user experience. Thus Lu-
mière’s rendered stages are integrated with the windows and
browsers of the Pharo environment, and makes interactions
with a stage possible through the use of the mouse and the
keyboard.

In this paper we describe Lumière, the reasons that led
to its implementation, the metaphor behind it, its key char-
acteristics and capabilities. To illustrate its usage and po-
tential we describe Gaucho, a 3D environment for visual
programming we are currently building.

Structure of the paper.
In Section 2 we describe existing 3D frameworks developed

in Smalltalk. In Section 3 we explain the motivation for de-
veloping Lumière instead of using an existing framework. In
Section 4 we detail the design and the implementation of
this novel framework, while in Section 5 we demonstrate the
extensibility of Lumière and in Section 6 we briefly discuss
the performance of Lumière. Section 7 describes our 3D vi-
sual programming environment named Gaucho, built on top
of Lumière. Finally, in Section 8 we conclude this paper.

2http://www.pharo-project.org/home

18

http://www.cc.kyoto-su.ac.jp/~atsushi/Jun/
http://www.pharo-project.org/home

2. RELATED WORK
Smalltalk has several frameworks and tools for producing

3D graphics; these have distinct approaches to the problem
of rendering graphics. In this section we categorize the ex-
isting frameworks and compare them according to relevant
properties.

The frameworks or tools for producing 3D graphics in
Smalltalk can be categorized into two groups, grouped by
the level of abstraction they provide over graphics instruc-
tions. The first group contains low level library interfaces
solely providing communication with a 3D library written in
another language, while the higher level frameworks abstract
over the graphic libraries in order to ease graphic program-
ming.

2.1 Low level library interfaces
Several Smalltalk dialects have interfaces to hardware ac-

celerated libraries such as OpenGL and DirectX.
Examples are the OpenGL interfaces provided by Smalltalk

X3 and Squeak4 (see Figure 1, B), and Smalltalk MT5 (which
also features a DirectX interface).

While these interfaces allow the programmers to produce
3D graphics in Smalltalk, they only provide glue code for
calling graphics primitives. Programmers are forced to think
in terms of primitive elements such as vertices, normals and
polygons. Worse, data structures are underused. For in-
stance, the primitives to use a vertex has three floating
point parameters instead of a dedicated vertex data struc-
ture. The data structure used for more complex shapes is
a simple array of floating-point values. This violates the
basic principles of object-oriented programming and forces
developers to deal with painstaking low-level details.

The decision to have a low level interface is a sound deci-
sion for efficiency purposes, in order to render large numbers
of polygons. However, abstractions are needed for modeling
purposes, which these libraries do not provide. It is up to
the programmer to implement them.

2.2 High level frameworks
These frameworks, built on top of graphic libraries, pro-

vide high level abstractions for modeling 3D objects and pro-
ducing graphics. They provide facilities for describing a 3D
scene in terms of objects, promoting separation of concerns
(and reuse) for the lighting model, the transformations that
define spatial relationships between shapes, the camera, and
the viewing volume of the scene. Examples are Balloon3D,
Squeak Alice[6], ST3D, Croquet[8] and Jun.

We compare the frameworks using several properties listed
in Table 1. The relevant properties we distinguish are ab-
stractions, size, loadable, free commercial usage, and main-
tained.

• Abstractions refers to the amount of high level con-
cepts that the framework provides, promoting reusabil-
ity and separation of concerns.

• The size is considered because smaller frameworks are
easier to understand and maintain.

• Loadable refers to the modularity of the framework,

3http://live.exept.de/doc/
4http://www.cosmocows.com/OpenGL
5http://www.huv.com/smalltalk/opengl.html

i.e.., whether it is easily loadable (in the best case with
just one click) into a Smalltalk image.

• Free commercial usage: this property describes if the
framework can be used in a commercial context with-
out any license problems. In Smalltalk this is far from
being an irrelevant issue, since deployed applications
are inseparable from the virtual machine and the im-
age containing the language library.

• Finally, the framework status is considered, whether it
is still being maintained or has become obsolete.

Balloon3D.
This is a renderer for Squeak written entirely in Smalltalk.

It provides lighting, shading, texturing, meshes and ma-
trix transformations in an object oriented framework. Bal-
loon3D does not provide animations, only rendering a single
frame at a time. The framework is not maintained anymore
and has become outdated, thus it lacks several modern fea-
tures (such as pixel and vertex shaders; multi texturing,
etc.).

We considered maintaining and enhancing Balloon3D in-
stead of building Lumière, but found several problems with
this approach. For example Balloon3D was designed as ren-
derer written entirely in Smalltalk, and the hardware accel-
eration using OpenGL was added later, so we preferred to
build a renderer designed from scratch to take full advantage
of the performance and scalability of OpenGL. Moreover the
lack of documentation, usage and maintenance of Balloon3D
made us discard the idea of maintaing and enhancing it.

Squeak Alice.
It is an implementation of Alice[2] for Squeak. It is basi-

cally a scene graph based renderer. A scene graph is a hi-
erarchical structure for modeling the relationships between
objects in the scene. It also features a scripting environ-
ment for 3D objects that allows for the creation of animated
worlds through time (see Figure 1, C). Squeak Alice uses
Balloon3D for rendering the scenes[3]. This framework is
also not maintained, and because it uses Ballon3D it also
lacks modern features.

ST3D.
This is a framework for creating 3D applications such as

games, simulations and modelers, with an OpenGL inter-
face. It runs on the Dolphin Smalltalk dialect. This commer-
cial framework was abandoned by the company that created
it and it cannot be loaded into the latest Dolphin version.

Jun.
This is a framework for handling multimedia, 2D and 3D

graphics (see Figure 1, E). Jun is object-oriented and pro-
vides good abstractions for modeling 2D and 3D graphics.
For example the CodeCity[?, 9] tool has been built using
Jun. It runs on the VisualWorks Smalltalk dialect and uses
OpenGL as a base renderer. Using it in a commercial con-
text for free is not possible because Jun is affected by the
licensing policy of Visual Works.

Croquet.
This is a full-fledged open source Smalltalk environment

that allows for the creation of collaborative 3D applications

19

http://live.exept.de/doc/
http://www.cosmocows.com/OpenGL
http://www.huv.com/smalltalk/opengl.html

A B C

D E
Figure 1: Screen captures of existing 3D frameworks. A: Balloon 3D; B: Squeak OpenGL wrapper; C: Squeak
Alice; D: Croquet; E: Jun

(see Figure 1, D). For the actual rendering it uses the TeaPot
framework, which is based on OpenGL. Croquet provides
a rich set of abstractions for modeling hierarchical scenes,
and for defining the material, texture and geometry of its
elements. Croquet is a large and complex system with good
abstractions, but its usage is far from being immediate, and
due to its complexity it fails to load into a standard Squeak
image. To make up for this, the Croquet developers offer
ready-made images.

3. MOTIVATION
As we see from the brief, and certainly not exhaustive,

survey we conducted in the previous section there seems to
be no ideal solution for a Smalltalker who wants to to delve
into the domain of 3D graphics.

Our goal is to develop a modern, efficient and lightweight
open source 3D framework for Smalltalk, that provides an in-
terface to OpenGL, high level abstractions for modeling the
scenes, features detailed documentation and supports the
latest features of modern renderers. The framework should
also be one-click loadable into a standard Pharo image.

For rendering the graphics we could either build a new
renderer using Balloon3D, DirectX or OpenGL. Building a
new engine implies providing maintenance and keeping up
with all the new features and extensions of the others. For

example since 2004 Balloon3D has not been maintained and
presently lacks several modern features. For convenience,
scalability and efficiency we chose to use an existing, mod-
ern, powerful and hardware accelerated renderer. Because
we require the framework to be open source and cross plat-
form we settled on OpenGL (instead of Microsoft DirectX,
which is commercial and only available on Windows).

None of the existing frameworks satisfy our needs. Squeak
Alice and ST3D are high level 3D frameworks that are no
longer maintained and have become obsolete. Croquet is
overly complex and does not even cleanly load into a stan-
dard Squeak or Pharo image. Jun is affected by the licensing
policy of VisualWorks, despite the fact that Jun itself is free
and open, it is also poorly documented and does not support
many of the latest OpenGL features.

In short, it is time to reinvent the wheel with Pharo and
Lumière.

4. Lumière
Lumière within Pharo is depicted in Figure 2. In this

section we describe Lumière’s characteristics, features and
implementation.

4.1 Characteristics
Lumière is an object oriented framework that provides

20

Name Dialect Abstractions Size Loadable Free Commercial Usage Maintained

Balloon3D Squeak Low Small Yes Yes No
OpenGLMorph Squeak None Small Yes Yes No
SqueakAlice Squeak Medium Small Yes Yes No
ST3D Dolphin N/A N/A Yes No No
Jun VisualWorks High Medium Yes No Yes
Croquet Squeak High Large No Yes Yes

Table 1: Features and characteristics of existing frameworks and tools

programmers with facilities to model micro-worlds and pro-
duce graphics using high level abstractions such as cameras,
lights, stages and shapes. It provides a layer of abstraction
over graphical primitives and low level rendering. Lumière
hinges on a stage metaphor, while rendering is accomplished
by a camera taking pictures of the micro-worlds, illuminated
by the stage lights. For populating the worlds programmers
deal with shapes and their visual properties (like scale, ma-
terials and textures), instead of low-level constructs such
as vertices and normals that specify polygons and lighting
models.

Lumière is currently composed of 71 classes, including
tests and examples. Its reduced size makes it easier to un-
derstand than more complex frameworks such as Croquet.

The framework is one-click loadable into the latest Pharo
image, i.e., we developed a loader that downloads the pack-
ages and dependencies from an http repository and installs
them into the image. To load Lumière one can evaluate the
following script:

ScriptLoader

loadLatestPackage: ’LumiereLoader’

from: ’http://www.squeaksource.com/Lumiere’.

LumiereLoader load.

The framework uses OpenGL as the base renderer, the in-
dustry standard system for doing high performance graph-
ics. Scalability is achieved because the objects in the scenes
and their relationships are modeled with a scene graph, an
approach that is based on one of the most renowned frame-
works for producing 3D graphics in the industry called Open
Scene Graph6.

Lumière has support for modern OpenGL features, such
as Vertex Arrays and Vertex Buffer Objects7 (efficient tech-
niques to specify polygons and their visual properties, allow-
ing for improved performance when rendering a large num-
ber of polygons). Many modern features are still missing
(vertex and fragment shaders, procedural texture mapping),
but the framework has the required infrastructure for easily
adding them, as we detail in Section 5.

4.2 Features
Lumière currently features a stage metaphor, the concept

of a micro-world, a set of basic shapes, and provides the
means to view and manipulate the stages. In Figure 3 we
display an UML diagram with the core classes of the stage
metaphor. In Figure 4 we present the model entity diagram
of a stage and the collaborators.

6http://www.openscenegraph.org/projects/osg
7http://www.opengl.org/wiki/GL_ARB_vertex_buffer_
object

The stage metaphor.
Lumière produces 3D graphics by using cameras taking

pictures of micro-worlds illuminated by the lights of the
stage. With the stage metaphor Lumière attempts to sim-
ulate the real world, providing a layer of abstraction over
OpenGL.

The facade to the rendering framework is the stage, an
instance of LStage. This object contains a micro-world,
cameras and lights. Besides serving as an interface to the
rendering system, the stage also models environmental prop-
erties such as ambient lights and fog. A stage is not a visible
object, it is an object that provides the setting for taking
pictures of a micro-world that can be visualized as a regular
morph in the environment.

The lights are objects with the responsibility of illuminat-
ing the scenes, there are several types of lights in Lumière,
based on OpenGL lighting model (see Section 4.3). These
objects are located anywhere in the stage, and directly in-
fluence the final appearance of the shapes in the scenes.

The cameras are objects with the responsibility of taking
pictures of micro-worlds on a canvas. They dictate the dis-
tance, orientation and angle of sight from which the picture
is taken, and the visible portion of the 3D graphic that will
appear on the rendered image (see Section 4.3).

Micro-worlds and shapes.
Shapes are the visual entities of the framework, and they

populate Lumière micro-worlds. In Figure 5 we present a
Lumière stage displaying some shapes. Lumière currently
provides primitive shapes, such as spheres, cubes, cylinders
and disks, that are instances of LShape. Shapes have geo-
metric and other visual properties, like color, scale, material
and textures.

Shapes can also be composed (see Figure 6), created pro-
gramatically from other shapes by specifying the shapes that
conform the composition and the spatial relationships be-
tween them.

Micro-worlds are modeled internally as a scene graph (see
Section 4.3) enabling the construction of worlds using high
level language. The user can describe the spatial relation-
ships between shapes in a world (and in composite shapes)
with a high level protocol instead of issuing commands defin-
ing translation, rotation or scaling nodes of the scene graph
to achieve the same goal. In Appendix A we show the code
to generate Figure 6.

Viewing and manipulating the stages.
Our goal is to provide a seamless integration between Lu-

mière and the underlying environment, unifying Lumière
and Pharo GUI applications. A morph is the graphical el-
ement in a Pharo GUI, part of the Morphic framework (we

21

http://www.openscenegraph.org/projects/osg
http://www.opengl.org/wiki/GL_ARB_vertex_buffer_object
http://www.opengl.org/wiki/GL_ARB_vertex_buffer_object

Figure 2: Pharo and Lumière integration

provide more details in Section 4.3).
For visualizing the stages and their micro-worlds we cre-

ated a new morph called LStageMorph. A stage morph can
be integrated into a Pharo system window, supporting com-
mon operations such as minimizing and moving the window
containing the stage morph (see Figure 2).

Stage interaction is provided through the keyboard and
mouse. Clicking on the mouse anywhere on the stage selects
the shape underneath the cursor. Hovering around the scene
with the cursor updates a floating view, that displays infor-
mation about the shape beneath it. Different event handler
policies can be applied to a stage, customizing, adding or
removing interactions, e.g., the camera position and orien-
tation can be modified using the keyboard.

4.3 Implementation
In this section we explain how communicating from Smalltalk

to OpenGL is achieved and explain how Lumière renders
scenes.

OpenGL interface.
OpenGL is defined as a graphics system that is a soft-

ware interface to graphics hardware. For calling this foreign
library from Pharo we use the ALIEN FFI8 framework, de-
veloped by Cadence systems for their Newspeak enviroment,
also available in Pharo. We extended the framework with
a complete OpenGL interface, composed of a singleton in-

8http://www.squeaksource.com/Alien.html

stance of the LOpenGlLibrary and related classes like GLEnum
for reifying OpenGL data types.

Drawing primitive figures.
In Lumière the primitive figures are rendered to an OpenGl

canvas, that contains an OpenGL context which does the ac-
tual rendering. A canvas, instance of LOpenGLCanvas, is an
abstraction of a 3D surface where primitive figures can be
rendered. For example it knows how to answer the messages
#drawSphereScaled:, #drawCubeScaled: and #loadColor:.
The canvas forwards the messages requesting the rendering
of figures to the proper instance of LGeometry, and the mes-
sages that modify OpenGL state to its opengl context. The
LGeometry subclasses model the Lumière primitive shapes,
which understand the message #loadInto:, thus knowing
how to render a figure in the OpenGL context passed as
argument.

Lighting model.
The scene of the stage be can lit by different kinds of lights.

The stage has an ambient light, an omnipresent light that
hits all the shapes in the scene independently of their loca-
tion and orientation. It can also have up to eight additional
lights (This constraint is imposed by OpenGL), spotlight or
directional, and each light can have different values for the
ambient, diffuse and specular components. The final color of
the rendered figure is computed, by OpenGL, from the po-
sition, color and material properties of each shape and the

22

http://www.squeaksource.com/Alien.html

addChild:at:
openAsMorph

sceneGraph
boundingVolume

LMicroworld

addLight:
takePictureOn:
viewingVolumeWithAngle: angle aspect:
aspect zNear: near zFar:
openAsMorph

microworld
cameras
lights
lightingModel
selectionPolicy
selectedShapes
highlightedShapes

LStage

model
scale
fillStyle
material
textures

LShape
shapes
LCompositeShape

addAxes
addWindow

stage
viewport
drawable
announcer

LStageMorph

loadInto:
moveForward
strafeRight
beGroundMovement
takePictureOf:on
angle:aspect:zNear:zFar:

location
orientation
viewingVolume

LCamera

loadInto:
turnOn

ambient
diffuse
specular
location

LLight

Figure 3: Lumiere Stage UML Diagram

positions and values of each light of the stage (see Figure 6).
Using Lumière it is possible to take pictures of the scenes
without the lighting model (see Figure 5). In that case the
color of a rendered figure is equal to the color of the shape
that produced it. Figure 7 shows the same scene rendered
with and without the lighting model.

Clipping and projection of 3D scenes.
A viewing volume (instance of LViewingVolume) dictates

the portion of the scene that is visible and the kind of pro-
jection to be used by the camera, intervening directly on
the appearance of the final picture rendered. The clipping
is done when traversing the scene, testing bounding volumes
of the nodes against the viewing volume values. For a de-
tailed description of 3D projections see [10] and [7].

Scene graph.
A scene graph is the underlying implementation of how

objects are disposed on a micro-world. A scene graph is
a directed graph that holds the visual objects that form
a a world and their spatial relationships. Several different
types of nodes can be added to the graph. There are nodes
for performing a translation, rotation or scaling. Other
nodes group nodes together, and the remaining are draw-

aStage aMicroworld aShape

aCamera

aLight

aStageMorph

Figure 4: Lumiere Stage Model Entity Diagram

Figure 5: Lumiere primitive shapes

able nodes (nodes that when loaded produce a figure to be
rendered). These nodes can contain shapes or other render-
able constructs of OpenGL like display lists, vertex arrays
or vertex buffer objects (constructs for optimized rendering
of OpenGL commands and polygons).

A scene graph is a convenient structure for traversing the
micro-world to perform the culling and rendering. Travers-
ing the scene graph is performed by different visitors, each
one of which traverses the scene with a particular goal, im-
plemented using the Visitor design pattern [4]. This ap-
proach eases extending the scene with additional functional-
ity. Currently Lumière features rendering, culling and pick-
ing visitors. Culling is the process of identifying and remov-
ing all the shapes in the scene that do not appear in the final
image, like for example shapes that are outside the viewing
volume or occluded behind visible objects. A rendering vis-
itor traverses the tree with a given canvas, and loads the
culled nodes as they are visited. The nodes know how to
load themselves into the canvas answering the polymorphic
message #loadInto:.

Morph and Window integration.
The low level rendering is done in an opengl drawable

surface, that is created and managed by the operating sys-
tem. Lumière uses the Morphic framework[5] for integrating
the opengl drawables into Pharo. An instance of LDrawable
creates and manages the communication with the low level
drawable, and provides access to it. A Lumière stage is
visualized with a morph, an instance of LStageMorph. Fig-

23

Figure 6: Lumiere composite shape

Figure 7: The effect of using a lighting model

ure 7 shows two stage morphs. A stage morph can be in-
tegrated into a Pharo system window. Common operations
such as minimizing and moving the window containing the
stage morph are supported.

4.4 Framework comparison
In the related work we briefly described other high level

3D frameworks in Smalltalk, then we presented Lumière. In
this section we compare Lumière with Croquet and Jun, two
of the most powerful and modern frameworks in Smalltalk.

Croquet is a complex 3D collaborative framework that al-
lows the creation of rich, replicated and synchronized worlds.
Croquet replaces the underlying system with an interactive
3D world. This makes Croquet hard to use it only for pro-
ducing 3D graphics integrated with the rest of the system,
which is the main feature that Lumière provides to program-
mers. Lumière is lightweight compared to Croquet, but has
less features due to the different objectives of both frame-
works. For example Lumière lacks the portal navigation
between worlds that Croquet provides, but using Lumière is
straightforward to dynamically create and visualize a world

with some shapes, tasks that requires subclassing a new
world in Croquet and coding an initialization method. Sev-
eral abstractions present in Croquet are incorporated into
Lumière, for example texture and material reification.

Jun is a powerful framework for producing 2D and 3D
graphics, available in Visual Works. Jun supports an older
version of OpenGL (version 1.0), and is lacking some mod-
ern features of the latest versions (which brings performance
issues). Jun has licensing problems for using it in a com-
mercial context, because it runs on Visual Works. However
Jun provides good abstractions and a rich set of features
to the programmer, that Lumière should incorporate. For
example 2D text rendering in 3D graphics. Currently Lu-
mière incorporates the feature of quickly opening any visual
shape (called OpenGLCompoundObject in Jun and Shape
in Lumière) by sending the message #open.

5. EXTENDING THE FRAMEWORK
Extending the framework can be easily be done because

of the modular design of Lumière, the stage metaphor and
the reification of several concepts such as textures, cameras
and lights.

For example adding multi-textures capabilities –applying
more than one texture to a shape– to Lumière shapes, would
involve extending only one class, LTexture, creating a new
polymorphic class whose instances can be associated to any
shape, and know how to load themselves into the canvas
during the rendering process.

Adding offscreen rendering support, such as OpenGL Frame
Buffer Object, could easily be accomplished because of the
rendering process of Lumière is performed by taking pic-
tures of micro-worlds onto a canvas, and this canvas could
have different destinations, like for example a Frame Buffer
Object instead of normal OpenGL buffers.

A further example of the extensibility of Lumière is the
visitor infrastructure through which one can easily traverse
the scene graph, as shown in the previous section.

6. PERFORMANCE
Lumière uses efficient techniques, such as Display List,

Vertex Array and Vertex Buffer Object, for describing and
loading into OpenGL the vertices, normals and colors that
define the primitives shapes. The rendering process achieves
good performance because the usage of this techniques min-
imizes the uploading and exchange of data between Lumière
and the hardware.

Lumière also performs frustum culling -culling is the pro-
cess of identifying and removing all the shapes in the scene
that do not appear in the final image- thus the base renderer,
OpenGL, is relieved from performing futile computations on
invisible polygons.

In Figure 9 a stage with a micro-world containing 10000
cubes is displayed. Lumière does not yet provide anima-
tions, so we cannot compare the performance against other
framework measured in terms of FPS (frames per second).
However we scripted a camera zooming behavior, from the
camera original location moving closer to the grid of cubes
8 times, and it took 11 seconds to run in average. Though
performance measurements of 3D renderers heavily depends
on the kind of graphics the programmer desires to produce,
we believe that in its current state Lumière allows produc-
ing interactive complex micro-worlds. Moreover, the per-

24

Figure 8: A Gaucho-Glamour browser

formance can be further improved, for example the test we
performed could be improved by implementing different soft-
ware culling techniques such as quad tree9 for modeling and
traversing the micro-world.

7. APPLICATION: GAUCHO
In this section we present Gaucho, a visual programing

environment we are currently building. Gaucho uses Lu-
mière for producing an interactive 3D integrated develop-
ment environment. We devised it to research alternative
ways of browsing and writing programs, through direct ma-
nipulation of 3D visual objects that represent programming
language constructs like packages, classes and methods.

7.1 The City Metaphor
Gaucho employs a city metaphor, where packages rep-

resent districts, classes represent buildings, and methods
appartments. This metaphor and the implementation are
based on CodeCity[9], a tool for visual exploration of large
scale evolving software built by Wettel and Lanza, using Jun
and Visual Works.

Gaucho creates a city that represents a collection of pack-
ages in the image. This city is converted to a Lumière scene
for 3D visualization.

To visualize the city we created particular shapes for build-
ings, neighborhoods and districts by subclassing
LCompositeShape, creating classes named BuildingShape,

9A quad tree is a structure for implementing a scene graph
that allows discarding bigger portions of the scene on each
intersection test

DistrictShape, and NeighbourhoodShape. The newly cre-
ated shapes represent language constructs (such as pack-
ages, classes and messages), and programatically generate
the composite figures to render according to certain metrics
of the concrete language construct they represent. For ex-
ample the height and width of a building are proportional to
the number of methods and instance variables of its model,
a class. The depth and width of the districts, representing
packages, depend on the number and size of the classes they
contain. This approach is identical to the one of CodeCity.

7.2 Navigating through the city and browsing
the code

Providing 3D visualizations of the models is only one of
the goals of Gaucho, the other one is allowing to browse and
modify programs by direct manipulation of its visualization.

Using Lumière mouse hovering event handling and floating
information morph, Gaucho is able to present the properties
of the language construct that is under the cursor, providing
detailed information of every shape in the city whenever the
user moves the mouse. Using Lumière mouse down event
handling, we can select shapes in Gaucho scenes.

To produce interactive cities for browsing the programs,
we integrated Gaucho cities (and therefore Lumière scenes)
into a scriptable browser framework called Glamour [1]. Us-
ing Glamour we created a customized browser, similar to
the standard browsers of Pharo, that provides full duplex
synchronization between Gaucho scenes of cities and Glam-
our code browsers. When a shape is selected in Gaucho,
the corresponding object is selected in the Glamour code

25

Figure 9: 10000 cubes rendered with Lumière

browser, and the same occurs while selecting an object in
the browser: the corresponding city element is highlighted.
In Figure 8 we show a Gaucho-Glamour browser visualizing
three packages in the system.

Building a Gaucho prototype environment using Lumière,
for performing the rendering and providing interaction with
shapes was straightforward. The framework is simple to use
and extensible enough to create applications such as Gaucho,
and for integrating Lumière scenes into the Pharo standard
windows, or the new scriptable Glamour browsers.

The work on Gaucho has just started, but the ease with
which we could build it in this still raw form is not only a
proof-of-concept for Lumière, but also serves another pur-
pose: understanding what functionality we must implement
in Lumière.

8. CONCLUSIONS
We surveyed several frameworks and tools for produc-

ing 3D graphics in Smalltalk, and showed that there is no

lightweight, open source, freely usable in a commercial con-
text and most of all modern alternative to existing frame-
works. To fulfill this need we developed Lumière, a 3D
framework with a stage metaphor and a scene graph im-
plementation, built it on top of Pharo and OpenGL. We
described its main features and characteristics, and detailed
its implementation.

To illustrate the usage and capabilities of Lumière, we pre-
sented Gaucho, a visual programming environment we are
building, that uses Lumière in order to produce interactive
3D cities for manipulating programs.

In its current state Lumière lacks several features such as
texturing and multi texturing, transparency, camera anima-
tions for flying around the scene, and better implementa-
tions of the scene graph for efficient culling algorithms such
as quad trees. All these features are part of the future work
we plan to implement.

In this sense, we are just at the beginning.

26

9. REFERENCES
[1] P. Bunge. Scripting browsers with glamour. Master’s

thesis, University of Bern, Apr. 2009.

[2] M. J. Conway. Alice: Interactive 3d scripting for
novices. Ph.d. dissertation, University of Virginia, may
1998.

[3] G. Dickie. A computer-aided music composition
application using 3d graphics - research and initial
design. Degree of master of science in computer
science, Department of Computer Science Montana
State University.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading,
Mass., 1995.

[5] J. H. Maloney and R. B. Smith. Directness and
liveness in the morphic user interface construction
environment. In In Proceedings of User Interface and
Software Technology (UIST 95) ACM, pages 21–28.
ACM Press, 1995.

[6] K. R. Mark Guzdial. Squeak: Open Personal
Computing and Multimedia. Prentice Hall, 2001.

[7] T. McReynolds and D. Blythe. Advanced Graphics
Programming Using OpenGL (The Morgan Kaufmann
Series in Computer Graphics). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[8] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet - a
collaboration system architecture, Jan. 2003.

[9] R. Wettel and M. Lanza. Codecity: 3d visualization of
large-scale software. In ICSE Companion ’08:
Companion of the 30th ACM/IEEE International
Conference on Software Engineering, pages 921–922.
ACM, 2008.

[10] R. Wright, B. Lipchak, and N. Haemel.
Opengl R©superbible: comprehensive tutorial and
reference, fourth edition. Addison-Wesley Professional,
2007.

APPENDIX
A. EXAMPLES OF Lumière SCENE CRE-

ATION
To further illustrate how to create Lumière scenes and

populate them with shapes we present two scripts of code.
The following script creates a minimal world similar to

the unlit scene cube of Figure 7. The world contains only
one node, which is a drawable node that will render a blue
cube.

cube := LShape cube.

cube color: Color blue.

cube openAsMorph.

The following script creates the scene in the Figure 5. The scene contains
only one composite shape, that has a translation-drawable node pair for each
primitive, except for the cylinder which is also rotated.

The composite is displayed as a morph sending the message #openAsMorph.

base := LShape cube.

base

color: Color brown;

scale: { 18.0. 0.2. 4.0 }.

cube := LShape cube.

cube

color: Color red lighter;

scale: {2.0. 2.0. 2.0}.

sphere := LShape sphere.

sphere

color: Color blue lighter;

scale: 3.0.

cappedCylinder := LShape cappedCylinder.

cappedCylinder

color: Color green;

scale: { 1.5. 1.5. 6.0 }.

pyramid := LShape pyramid.

pyramid

color: Color orange;

scale: { 3.0. 3.0. 3.0 }.

donut := LShape donut.

donut

color: Color yellow;

scale: {1.0. 3.0}.

primitives := LCompositeShape new.

primitives

addChild: base;

addChild: pyramid at: { -12.0. 3.2. 0.0 };

addChild: sphere at: { -4.0. 2.7. 0.0 };

addChild: cube at: { 2.0. 2.2. 0.0 };

addChild: cappedCylinder at:{8.0. 3.2. 0.0}

rotatedBy:{90.0. 1.0. 0.0. 0.0 };

addChild: donut at: { 14.0. 3.2. 0.0 }.

primitives openAsMorph.

27

	Introduction
	Related work
	Low level library interfaces
	High level frameworks

	Motivation
	Lumière
	Characteristics
	Features
	Implementation
	Framework comparison

	Extending the framework
	Performance
	Application: Gaucho
	The City Metaphor
	Navigating through the city and browsing the code

	Conclusions
	References
	Examples of Lumière scene creation

