
Versioning Systems for Evolution Research

Romain Robbes
Faculty of Informatics

University of Lugano, Switzerland
romain.robbes@lu.unisi.ch

Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland
michele.lanza@unisi.ch

Abstract

Research in evolution goes on par with the use of ver-
sioning systems by developers of the case studies. There
is a great diversity of versioning systems with advantages
and disadvantages both from the technical as well as from
the conceptual point of view. In this paper we analyze the
currently used versioning systems from the point of view
of a software evolution researcher. Thus we do not focus
on whether a certain versioning system is technically bet-
ter than another one, but rather on what kind of informa-
tion it offers for software evolution research. We present a
non-exhaustive list of dimensions that are important for per-
forming research in software evolution, do a survey on the
current main-stream versioning systems and discuss what
is actually needed for future versioning systems to support
both software evolution and the related research field.

1 Introduction

The first software versioning systems appeared more
than thirty years ago. Since then, the software industry has
recognized the importance of versioning systems and is us-
ing them extensively since more than two decades now [14]
[15] [10]. The importance of recording the history of a soft-
ware system during its development has the advantage of
allowing to reconstruct the original design intentions of the
developers, as well as their subsequent variations in time. In
this domain, versioning systems offers a set of functionali-
ties that standard backup means such as tapes or CDs/DVDs
can not offer, e.g., the ease to quickly recover any version at
any time, and the presence of meta-data which can be anal-
ysed and inspected with tools such as ViewCVS1. Example
meta-data is the exact timestamp of a commit operation on
the system, the identity of the person who performed it, etc.

Versioning systems also allow efficient sharing of a
project, and hence ease team software development. The fa-

1See http://viewcvs.sourceforge.net/ for more information.

cilities in software management and the amount of data re-
trieved fostered the research field of software evolution[12],
whose goal is to analyze the history of a software system
and infer causes to its current problems, and possibly pre-
dict its future.

Recently, the primary source of information for soft-
ware evolution research has been the open-source commu-
nity, and some of its biggest software projects such as the
Mozilla software suite [4, 9], or the Linux Kernel [8]. The
open-source movement is indeed a very good opportunity
for software evolution research, as such projects usually
make their source code public, and grant anyone access to
their CVS repositories. Obtaining such unrestricted access
from a private software company is much more difficult.
Since research in software evolution is very sensible to the
quality and the quantity of information recovered, studies
of such large-scale and open projects is very useful due to
the amount of information contained here.

The problem we discuss in this paper is that the type and
quality of evolution research that can be performed is con-
strained by the versioning system used by the developers
of a system, as each versioning system generates only cer-
tain types of information. We analyze and compare the fol-
lowing versioning systems, which constitute the state of the
practice:

• CVS (being the successor of SCCS2 and RCS3, actu-
ally the most used versioning system),

• Subversion (said to be the “next generation” CVS),

• and SourceSafe (a widely used commercial systems).

These versioning systems all have in common that the
level of granularity is given by files, i.e., the systems record
file versions. As opposed to these we then compare them
with an entity-based versioning system called StORE4:
StORE records versions of program entities like packages,
classes, methods, etc.

2See http://cssc.sourceforge.net/manual/cssc.html for more details.
3See http://www.gnu.org/software/rcs/rcs.html.
4See http://www.cimcomsmalltalk.com.

1



Our comparison is from the point of view of a software
evolution researcher and not from the point of view of a
software developer5. On a sidenote, those interests should at
least partially match, since researchers are ultimately work-
ing to support development, and need data from the devel-
opers to achieve their studies, so they should be able to com-
municate with the most widely used versioning systems.
Conversely, developers might be interested in versioning
systems researchers are using or recommending, as it opens
the possibility to use tools developed by researchers as well
as their expertise to their full extent.

The comparison between several file-based versioning
systems and an entity-based versioning system leads us to
deduce key aspects that a future versioning system should
possess to not only allow for a more fine-grained history
recording but also to permit high quality research in soft-
ware evolution.

Structure of the paper. We start by describing the di-
mensions of interest for performing research in software
evolution. We then compare a set of versioning systems
with respect to these dimensions, and discuss their short-
comings. Afterwards, we present a versioning system
which takes a quite different stance by recording the his-
tory of program entities, not mere files. We then highlight
some of the future trends in versioning systems to ease soft-
ware evolution and the related research. We conclude by
discussing related work and give an outlook on our future
work in this field.

2 Versioning Systems Dimensions

Each versioning systems has its strengths and weak-
nesses, as well as its technical particularities. The dimen-
sions we compare are divided in three main groups:

• Availabity describes factors which influence the adop-
tion of a versioning systems by people. A widely-used
versioning systems provides much more data to work
with.

• Technical features groups particular features of some
versioning systems that are relevant to evolution re-
searchers, as they allow to retreive more information,
or to retreive it in an easy way.

• Usability describes more high-level characteristics of
each versioning systems that makes them easier or
harder to use for software evolution research.

We do not take into account all characteristics of the
systems, but are only interested in those that impact
software evolution research. Nevertheless, the following

5See http://better-scm.berlios.de/comparison/comparison.html for such
a study.

list has to be considered non-exhaustive:

2.1 Availability

Usage: Since we need to analyse the evolution of real-
world software, we should base ourselves on the most used
versioning systems to have a wider panel of software to
choose from, i.e., performing evolution research based on
a little known versioning system is of limited impact and
allows for little generalization of the results.

License: It is now common to study open-source soft-
ware, as it allows a complete access to the application’s
history. Since open-source software tends to use open-
source versioning tools, their license models must be taken
into account. Having access to the source code or the e-
mail archives of a system, which is commonplace for open-
source, can also partly make up for a lack of formal docu-
mentation.

Portability: For which operating systems do the ver-
sioning systems exist? Once again this points to the ap-
plicability and the influence of evolution research, i.e., per-
forming evolution research on a single-platform versioning
system is of limited impact.

Generality: What kind of information can the version-
ing system handle? The most prominent one, CVS, has for
example problems in handling binary files such as docu-
mentation or diagrams which are usually images, PDFs or
other non human-readable files. Moreover, most large sys-
tems are written in more than one language and the version-
ing system must allow to handle such a case as well. The
most generic versioning systems can handle virtually any
kind of file, so they can also be used to version design doc-
uments. Genericity, and especially programming-language
agnosticity is also a factor influencing widespread use of
the versioning system, but also imposes a least common de-
nominator on the operations the system is able to perform
on the program’s source.

2.2 Technical features

Refactoring support: The most used refactoring that
poses problems to current versioning systems is the renam-
ing of files. Is the versioning system capable of keeping
track of such refactorings and can it consider the renamed
file as the same item or will it consider them as two differ-
ent ones? If it considers these as two different entities, we
must either find a way to link them, which can be compu-
tationally expensive [16], or have the history of one entity
split in two parts, resulting in a rather important loss of in-
formation.

Changeset support: Can a versioning system group re-
lated changes, so that they appear as a single logical entity,

2



even if they affect different files? An example of this is the
duality often found between .cc and .h files in C++. The de-
veloper frequently needs to modify both the header and the
implementation file at the same time, so having them fit-
ting in the same changeset groups them logically. Change-
set support allows to group in the same way changes whose
relationship is not obvious (e.g., modification of a method
signature, and of all its references for example). Further-
more, changesets allow to separate changes happening in
the same file but who are ultimately unrelated to each other
(such as two distinct bug fixes). Thoroughly using change-
sets could help tracking such logical groups of changes, if
used by the developers.

Line-wise history: Does the versioning system allow to
recover the complete evolution of one single item, i.e., down
to the line level? Even if most versioning system are not
tracking the evolution of software entities, some can track
the evolution of single lines of code. This allows to operate
at a finer-grained level than files.

Release tagging: How easy is it to tag a particular set
of files to identify a release? Is it just a “good practice” or
is it enforced by the system? Another question here is if
the information can be used for analysis, and if it is actu-
ally used by the system. Support for such meta-data can be
useful for evolution analysis, as we can draw different hy-
pothesis for a “stable” part of the system, compared with an
“experimental” part of it.

Branching and Merging: Is it natural when using the
system under study to make a new branch of the program,
and to merge changes later on? This facility has an effect
on the development style of the application. Easy branching
might render the navigation between versions more difficult
(the path between versions becomes a graph, and no longer
a line), but it might on the other hand help to pinpoint par-
ticular sets of changes in combination with tagging. For ex-
ample, it is highly probable that changes to a branch tagged
as “stable” are bug fixes, and that changes applied to other
branches are belonging to a particular set of features, each
specific to a branch (if there are several of them). Having
changeset support in conjunction to branching is useful: If
branching is not commonplace, most feature additions or
bug fixes will be added to the main branch, making it diffi-
cult to tell them apart.

Collaboration Style: Versioning systems were devel-
oped out of the need to handle concurrent modifications of a
system by several developers. Thus the collaboration policy
enforced by the versioning system has an influence on the
development style of applications, in the same way merg-
ing or branching does. There are two main collaboration
strategies: concurrent development and file locking. One al-
lows any developer to make changes to any file, while the
other imposes the developer to first check out a file, change
it, and commit it again. In the meantime, nobody else can

check the same file out. Of course, these are general rules,
and some systems allow both strategies but put the accent on
one in particular. If a locking policy is in place, developers
will have a tendency to hold back their changes, and com-
mit all changes on a specific file at the same time, rather than
contributing them to the system on the fly. Some other phe-
nomenoms, such as code ownership, might also affect the
development of the system in some way (this being good or
bad is out of the scope of the paper). Moreover, code own-
ership is more probable in the presence of a locking policy.

2.3 Usability

File-based vs. Entity-based: The fundamental question
here is what to analyze. If a versioning system only versions
files (as most of them do) then we can only perform research
based on the file versions. If we want to perform research on
the evolution of the software artifacts, e.g., classes or meth-
ods, we must reconstruct those artifacts and their evolution.

Documentation: How much documentation is there for
a given versioning system? A researcher in software evolu-
tion needs to retrieve information from the documentation
to be able to exploit the available information as much as
possible. The focus of the documentation should also be
taken into account: a researcher needs different kinds of in-
formation than the one commonly found in user manuals.

Underlying technology: Is the versioning system using
a database or plain text files? A database approach allows to
perform research techniques such as data mining without re-
quiring a preprocessing step. In the case of a file-based ap-
proach a researcher must first reconstruct the needed infor-
mation and store it in an appropriate format, i.e., a database.
Furthermore, a database allows more complex queries and
probably better performance, but is more sensible to data
loss, so both have distinct pros and cons.

Required infrastructure: What kind of tools does the
versioning system provide? We want to know what tools a
researcher must use (or build) in addition to the versioning
system to be able to use it effectively. The needs are vastly
different than those of developers in this case. For exam-
ple to use CVS a researcher might need to build his own
database, or parse the source code with his own or a third-
party parser. Having this provided by the versioning system
would tremendously reduce the overhead faced by scientists
when they have to build new tools [11]. Reduced overhead
would allow in turn scientists to focus on the important as-
pects of their research.

Evolution information: What kind of information
about the evolution (as opposed to the versions) of the items
is provided by the versioning system? This varies from
when a file has been modified and in which proportions,
to retrieving accurate versions of each program entity, and
allowing to compute or retrieve various kinds of high-level

3



or lower level metrics of the system. These metrics can be
about a specific system version, or they can characterise the
evolution process itself[6, 7].

Information browsing: A comparison dimension re-
lated to the previous one is the complexity of the navigation
between successive versions of the software entities under
analysis. We seek to evaluate whether we have access to
a lot of versions, and if some of this information is lost or
needs to be processed to find history links. If browsing is
easy, we can formulate time-based queries on some specific
entities and hence exploit the available information.

3 A Partial Comparison of Versioning Sys-
tems

Table 1 shows how well the three systems are faring on
the dimensions considered, alongside StORE which will be
discussed later on. When appropriate, qualitative grades are
used. The following paragraphs detail the findings for each
dimension and each examined versioning systems.

3.1 Availability

Usage: CVS is the current standard, and is free soft-
ware. It is hence very widely used, both in the open source
community and in the industrial world. Subversion arrived
recently (version 1.0 was issued in 2004), but it is already
considered the successor of CVS, as it fixes some of CVS’s
most glaring technical flaws. Hence it will probably be the
open source standard in a few years. SourceSafe is the so-
lution provided by Microsoft, and is a natural choice for
enterprises using Microsoft’s IDEs and solutions.

License: CVS and Subversion are open-source, and are
hence widely used for cost and ideological reasons. Source-
Safe on the other hand is closed-source and is pay-per-use.
It will thus only be used in a professional context, thus lim-
iting its overall usage.

Portability: CVS and Subversion are multi-platform
and well supported by the open-source community. For ex-
ample, some people wrote GUIs for them, even if they were
not designed for this at start. On the other hand, SourceSafe
was mainly developed for the Windows family of operating
systems. Nevertheless, several third-parties provide some
support for it on Unix and Macintosh platforms, but their
use is quite anecdotic.

Generality: The three systems considered can handle
any kind of files, from Ascii source code to binary docu-
ments. But the quality of support varies. Subversion sup-
ports file directories, which eases file-level refactoring sup-
port. CVS is also less performant than the others at handling
binary files (a manual option must be provided when such a
file is added).

3.2 Technical features

Refactoring support: CVS does not support basic
refactorings such as moving and renaming of files. These
split the history of the file. Since Subversion versions direc-
tories as well as files, it can detect when a file or directory
is moved or renamed, so it supports file-level refactorings.
SourceSafe is in-between, as it can support both refactor-
ings, but not in automatic way. The procedure seems a bit
complicated, and has been described by some as a “kludge”,
this is due to the fact that Sourcesafe does not support ver-
sioning of directories (or projects, as they are called in the
SourceSafe terminology).

Changesets: Subversion provides a partial support for
changesets. One changeset is implicitly produced on each
commit, so that changes on separate files can be linked to-
gether, but different changes in the same file can not be sep-
arated using this approach. Neither CVS nor SourceSafe
have changeset support.

Line-wise history: Both CVS and SubVersion can do
this easily. It is less direct using SourceSafe and involves
using a visual differentiation tool, so this may not be of
use for evolution research, being difficult to use programat-
ically.

Release tagging: All systems support tagging in some
ways. Still, it seems a bit more difficult to rename a label
(which is the SourceSafe term for tagging) in SourceSafe
than in the other two systems. Subversion has an advantage
due to changeset support (i.e., tagging an entire change set
is possible and useful).

Branching and Merging: CVS and Subversion support
branching and merging quite well. It is based on a varia-
tion of tagging for them. SourceSafe is more difficult to use
with branching (SourceSafe’s branching and merging sup-
port is qualified by some as “weak”), and is also unrelated
to labelling. Subversion again has an advantage because of
changesets, as they version a group of files rather than sep-
arated files.

Collaboration Style: Sourcesafe is the only studied sys-
tem which enforces file locking rather than concurrent de-
velopment. Therefore projects developed using Sourcesafe
will have a tendency to have a more linear style of develop-
ment, especially if we consider branching abilities too.

3.3 Usability

File vs Entities: None of the versioning systems stud-
ied is entity-based. They only rely on files. This is one of
the major obstacles to performing high-quality evolution re-
search, as the entities and higher-level artifacts such as sub-
systems or modules must be painfully reconstructed, lead-
ing to data loss. We later on compare this three systems
with an entity-based one to underline the differences. It is

4



Dimension CVS Subversion SourceSafe StORE
Usage + + + + -
License + + + + - +/-
Portability + + + + + + +
Generality + + + + + - -
Refactoring support - + + + + +
Changeset support - + - + +
Line-wise history + + + + +/- +
Release tagging +/- + - + +
Branching and Merging + + + +/- + +
Collaboration Style Concurrent Concurrent Locking Concurrent
File/Entity based file-based file-based file-based entity-based
Documentation + + +/- +
Underlying technology - + + +/- + +
Required infrastructure - - - - - + +
Evolution information - +/- -/? +
Information browsing - +/- - + +

Table 1. Comparing major versioning systems according to the discussed dimensions.

also worth noting that Subversion supports versioning of di-
rectories in addition to versioning files. Depending on the
used language, e.g., Java, this may actually directly map to
entities, e.g., Java packages. Note that this is only a conve-
nience.

Documentation: CVS is wery well documented [1] [5],
and there is a great body of learning material on the web.
Subversion is well documented too [2], as for example an
online book is available on Subversion’s website. Source-
safe’s documentation [13] is less developed but still decent.
Being primarily a GUI application is one of the reason why
it is less needed. However, the documentation for the three
versioning systems are very developer-oriented (many tu-
torials and user manuals, rather than information about the
files formats, for example), so they are not fully useful in
an evolution research context. However, CVS and Subver-
sion are open-source, which facilitates access to implemen-
tations details.

Underlying Technology: CVS is still based on the RCS
format, which relies on simple files scattered around the
repository (typically one history file per file considered).
Both Subversion and SourceSafe are using a database, but
Subversion’s one seems better: Based on the Berkeley DB,
Subversion’s database appears to be reliable, and supports
atomic commits (meaning all the commited files are added
to the repository at the same time, which improves relia-
bility as it is impossible to have a partial commit in case
of a crashing client). On the other hand, it is considered a
good practice to run a repair utility regularly (analyse.exe,
once per week), on SourceSafe’s database. Subversion be-
ing open-source, it is at least possible to access the database

programatically (Subversion and the underlying Berkeley
DB provides some APIs for that 6).

Required Infrastructure: To perform some analysis at
a finer level than the one of files, all three systems require
parsing the actual source code of the provided version(s).
Therefore the additional infrastructure required to use these
versioning systems varies from low (if the researcher works
at the file-level and the database is already built) to very
high (if he works at a finer-grained conceptual level). In the
latter case, he has to parse the source code of the different
versions, then build a model of the system at its various
states, and to relate the entities from state X to state Y if a
relationship can be made. Most of this work is already done
in an entity-based versioning system, but this work remains
to be done with file-based versioning systems.

Evolution recovered: As said above, if no additional
work is performed, the evolution information extracted is
rather poor. CVS logs can be analysed to know who did a
commit on a particular file, and when. We can also know
the number of added and deleted lines in the file. Note
that changed lines count for one added and one deleted line.
Subversion has a notion of changeset, which is more use-
ful than keeping track of individual files and their distinct
version numbers. Hence Subversion allows one to easily
detect related changes on a set of files. We were not able to
explore this dimension for SourceSafe as we do not have its

6See http://www.linuxdevcenter.com/pub/a/linux/2003/04/24/libsvn1.html,
http://www.linuxdevcenter.com/pub/a/linux/2003/05/15/libsvn2.html and
http://www.cs.sunysb.edu/documentation/BerkeleyDB/ for more informa-
tion.

5



license7. The other kind of information that can be easily re-
trieved are high-level software metrics, such as the number
of lines of a file across each version, or the number of files
in each directories, being an indication of the module’s size.
Metrics such as the number of methods per class require a
parsing for each considered versioning systems.

Information browsing: In this area Subversion has an
advantage since it keeps the history of renamed or removed
files. Therefore navigation is more complete than in the two
other systems, as less history information is lost. Otherwise
fine-grained entities are still not considered for each system,
if no extra processing work is done on each of the versions
of the program under analysis.

4 Major shortcomings of these systems

This sections outlines the major shortcomings of the
three studied systems, keeping in mind that they also ap-
ply to most versioning systems available. There are two
shortcomings which have major consequences, and are the
cause of most of the other ones: (1) Most systems are file-
based, rather than entity-based, and (2) the fact that they
are snapshot-based, not change-based, i.e., the program is
frozen as a snapshot with a particular time stamp without
recording the actual changes that happen in between two
subsequent snapshots.

4.1 Entities versioned

Several shortcomings of the surveyed systems can be
traced back to one in particular: All of the commonly used
versioning systems are file-based. The only item they ver-
sion are files, and to some extent lines. While files are too
coarse-grained for detailled analysis, lines seem to be too
fine-grained, as virtually nobody uses this information in
evolution research because of scalability issues.

Three important problems are at least partially caused by
the fact that the three systems are file-based: (1) Difficulties
in browsing the extracted information, (2) loss of evolution
information, and (3) high costs of infrastructure.

Browsing the information in a precise way is not possi-
ble if one is stuck at the file level, as classes themselves,
and even methods, won’t be part of the navigation 8. Infor-
mation about these entities is lost too, as it is most of the
time not considered at all, due to parsing difficulties. The
information considered is only the number of files and di-
rectories and their relationships, as well as developer infor-
mation and the amount of line added, deleted or modified
for each commit.

7Note that this problem is one of the dimensions described.
8With the exception of Java for classes. However, inner classes are also

lost.

The reason for this lack of information and its sparse or-
ganization which hampers navigation is the sheer difficulty
of extracting it from the software and to establish relevant
links between successive version of program elements. The
infrastructure needed besides the version control system is
too expensive (both in time and human effort involved) to
justify the cost [11]. This three reasons combined (infor-
mation loss, cost of retrieval, and difficult exploitation) ex-
plains why a good part of the community is doing research
at the file and directories level.

If the infrastructure to obtain more information is im-
plemented, the results obtained are relevant and focused on
different aspects of the software evolution, such as the evo-
lution of classes or class hierarchies [6, 7].

An entity-based versioning system on the contrary ver-
sions the software in much finer-grained ways. It can ver-
sion packages, classes, and even individual methods of a
complete system, during its entire lifespan. These objects
can hence be queried directly, without needing a costly
parsing step and the building and definition of domain ob-
jects. Thus the infrastructure needed is much lighter, and
researchers can focus on more precise relationships. So the
information extracted for each entity is much more com-
plete and precise, and the number of entities built is much
higher. It becomes possible to exploit the information to the
point were the researcher can evaluate the variation of the
lines of code of a single method over an extended period of
time without an excessive cost.

We will see in the next section an example of such an
entity-based versioning system, called StORE, and the pos-
sibilities it opens for software evolution research.

4.2 Limits of the snapshot concepts

Another shortcoming that neither of the versioning sys-
tems surveyed do solve, including StORE and most other
entity-based versioning systems, is at the source of an im-
portant part of the loss of the software evolution informa-
tion.

The problem we are describing here is that nearly all ver-
sioning systems are based on the concept of snapshots. A
snapshot is a “frozen” version of the program at a given mo-
ment of time: it can not evolve anymore. The way people
use versioning systems is by commiting changes from time
to time to the system, when they feel that they have com-
pleted a feature, or done some significant work towards it,
which they believe to be bug-free. For example, we will
probably commit this paper in our repository once the writ-
ing of this section is finished, but no sooner, thus leading to
a loss of all intermediate changes.

What happens between two commits is a mystery. We
can only make some hypothesis about it by considering the
two successive states at hand. Continuing our example, al-

6



though we might have written some words and sentences in
a specific order, and deleted some, none of these operations
will appear in any versions stored in the (CVS) repository.
In this respect, all these operations are completely lost.

While preventing further evolution of a program snap-
shot is good to ensure stability of releases, the fact that
most modifications happening between two snapshots is not
recorded represents a great loss of information. Developers
tend to spend quite a lot of time between commits, because
they are not confortable if they commit their changes every
5 minutes, fearing having too much revisions or commiting
code in an imperfect state (which is not a problem, if the
changes commited are tagged appropriately). Some com-
putations based on the cvs logs of mozilla show that the
mean time between two commits by the same developer on
the project is in the order of several hours. Some devel-
opers commit their changes in even larger chunks, such as
several days or weeks. In these extreme cases, the history
of entire classes or modules may be reduced to a handful of
snapshots.

Analysing information such as CVS logs is qualified as
being “software archeology”[3] , whereas what is really
needed is software history: we need much more informa-
tion about the software under study than what is currently
offered by snapshot-based approches.

Having more evolution information at hand would allow
one to be much more precise in linking the evolution of re-
lated program elements. We could infer that some methods
are linked if they are modified regularly in a comparatively
short period of time. We feel that such a rich level of in-
formation gives us an important set of new problems to ex-
plore.

5 An example of an entity-based versioning
system: StORE

StORE is the versioning system used by the Cincom
VisualWorks Smaltalk programming environment. StORE
uses a centralized server and a database acting as a reposi-
tory for versions of programs. Developers have accounts on
the server, and can publish packages as they see fit.

StORE versions program-level entities, such as classes,
methods, packages and bundles (a bundle being a kind of
package able to contain packages and other bundles). It is
thus easier to version programs with StORE, as most of the
infrastructural needs are being taken care of by the frame-
work. This is true for both from the researcher’s and the de-
veloper’s point of view. Developer can for example merge
different versions of entities since they can think in terms of
packages, classes and methods rather than files. As a side-
note, some common cases such as formatting problems and
changes in comments, which do not have a significance for
the system, can be dealt with automatically, since StORE

works at the programming language level. The cost for
this ability is a decrease in genericity of the versioning sys-
tem. The same kind of reasoning is possible for researchers:
They can track down classes or methods with ease, and eas-
ily define metrics on them ignoring irrelevant changes such
as formatting issues. This partly addresses the problems of
infrastructure, information extraction and information navi-
gation mentioned earlier.

StORE also features blessing levels, which are special
kind of tags whose use is enforced by the system. Com-
mon tags are: Broken, Work in Progress, Development,
Integration-ready, Merged, and Release. They allow devel-
oper to pick particular branches and versions to base their
work on, and ease merging. They can also be used as indica-
tors by the software evolution researcher. Before commiting
(publishing in the StORE terminology) some changes to the
StORE repository, a developer must give it a blessing level
that is recorded in the repository and can be used later on.
The blessing level can be used for access control for exam-
ple, and can be useful for software evolution research too.
Changes to a release tagged as “Stable” should be mostly
bug-fixes for example.

However, there are still some shortcomings: StORE is
smalltalk-specific, as it is working only on smallltalk code.
It is not widespread at all. Of course, being restricted
to a language which is not really widespread is not posi-
tive either. Still, since the emergence of StORE practically
all industrial-level and open-source applications written in
VisualWorks are versioned with it, thus leaving a fertile
ground for software evolution research.

Another shortcoming is that it is still snapshot-based, as
CVS and Subversion are, which means that information loss
is still inevitable, depending on how often developers pub-
lish their changes to the repository.

Table 1 shows a comparison of the three versioning sys-
tems analysed in this paper, along with StORE. We will
from now on focus on the comparison of StORE as an ex-
ample of an entity-based versioning system with respect to
file-based versioning systems, showing the strenghts of both
kinds of systems. The reader should keep in mind that some
of these items are specific to StORE and the other compared
systems, and are not relevant to every file or entity-based
versioning systems.

Usage: StORE is used by a niche of users, so it is
not widespread. This is a characteristic shared by all
entity-based versioning systems, as they ideally have to be
widespread to be relevant for software evolution research.

Generality: Since all entity-based versioning sys-
tems record program entities, they are to a certain extent
programming-language specific. This reduces their gener-
ality, as they can not handle any kind of file. Other ver-
sioning systems might be needed to store the documenta-
tion or the design documents living alongside the project.

7



This is a factor which could hamper their widespread usage
to a certain degree. On the other hand, being programming
language specific allows for example to tell the difference
between simple reformating of the code and changes at a
deeper level involving modifications of the abstract syntax
trees of methods.

Refactoring support: Entity-based systems typically
support higer-level refactorings than file and directories
level refactoring such as move or renames. They can sup-
port renaming of program entities, and are thus much more
focused. StORE is an extreme case here, as it does not even
support file-level refactorings (this is due to the particular
nature of Smalltalk, which is not a file-based programming
language).

Changeset support: This is orthogonal to the notion of
being file or entity-based.

Line-wise history: This level is often replaced by
higher-level entities histories, such as methods and classes.
Line-level history is less important in the long term as one
might lose sight of the forest because of all the trees stand-
ing in the way.

Branching and merging: Since entity-based systems
can work on a finer-grained level of abstraction, their merg-
ing and branching capabilities are higher, hence the devel-
opment style of the application will be affected. 9.

Collaboration style: StORE enforces concurrency, but
ENVY (another entity-based versioning system) enforces
ownership of classes by developers, which means the con-
currency policy is orthogonal.

Required infrastructure: Since entity-based version-
ing systems store program entities directly, it is much easier
to reflect on them without requiring a parsing step. There-
fore they can be used with a far lighter extra infrastructure.

Evolution information: The infrastructure being lighter
to use, less information is lost.

Information browsing: For the same reason, such sys-
tems tend to link successive versions of entities at each
level, making navigation between successive versions eas-
ier.

To sum it up, we could say that entity-based version-
ing systems reduce the work needed by both researchers
(to analyse software systems) and developers (to maintain
and develop those systems), as they operate on several lev-
els of abstraction (class, method, package). They are most
of the time language-dependent, and are more powerful for
this, as they don’t have to deal with the “lowest common
denominator” between a great number of different files. On
the other hand, they are usually much less generic, and they
are currently still experimental.

9Another entity-based versioning system named Monticello uses a sim-
ple yet effective merging algorithm which takes only methods in account.

6 Future trends in versioning systems easing
software evolution

The following discussion is both from the point of view
of a developer as well as of a researcher in software evolu-
tion. The main driver of evolution research is the exploita-
tion of the history of a software system to help assessing its
current state and predict its future. To do so, we must be
able to perform research at a conceptual level: The systems
as a whole is evolving, i.e., all of its components down to
the finest-grained level are changed. Therefore we must be
able to track the evolution of entities such as classes, meth-
ods, variables, packages, etc.

Even more than that we must be able to track the life-
time of these entities even if they have undergone “identity
changes”, i.e., renaming or moving.

The trends we would like to see would be to adress the
two major shortcomings mentioned in the Section 4 and
some other ones that we will list briefly.

We need to see entity-based versioning systems being
more mainstream to reduce the work involved by both
the developer and the researcher. We also think version-
ing systems experimenting with a change-based and not a
snapshot-based approach would help in solving the second
issue, which causes an important loss of the software’s his-
tory.

Entity-based versioning systems are already a good basis
for addressing the first concern, but they need to be widely
used. Work still needs to be done in the area of change cap-
ture, which is the second major shortcoming, to minimize
the loss of history information. The way to solve this prob-
lem could be to store each modification to the program as it
happens, thus enforcing automatic “commits” in opposition
to manual and irregular ones.

Another area where progress could be made is in increas-
ing support for changesets, as they allow to group changes
in a logical way. A set of changes can indeed span several
physical entities, and is harder (if not impossible) to track
down if entities are considered separately. This can be com-
bined with a better support by the system of labelling, e.g.,
set of changes can be tagged as bug fixes for example.

Increasing support for refactorings is also an important
trend (Subversion supporting refactorings at the file level is
a sign of this). Having a better support for more advanced
refactorings would help to locate and characterize precisely
when a given software system enters distinct parts of its life
such as feature addition, bug fixing and refactoring.

7 Related Work

Many versioning systems are in existence, particularly
in the open-source world. Since we were studying the most
widespread ones, we did not consider all of them. Still,

8



some of them are worth mentioning, such as Arch 10, Darcs
11 Codeville 12 and Monotone 13.

Arch is entirely based on changesets, so it provides an
interesting case for software evolution researchers. Its use
is also growing, and may very well attain the critical mass
to become really significant.

Darcs is based on a formal patch theory, which seems
interesting from the technical point of view, but is rarely
used.

Codeville uses a distincts and rather powerfull merge al-
gorithm, and uses changesets, whereas Monotone does not
use version numbers but rather hashes of the file contents to
version them.

All these versioning systems use distributed repositories,
which are useful to developers (a developer can work of-
fline and commit to a local repository, and then merge his
changes later on into another repository). Distributed repos-
itories might make it harder to track down all versions of a
software system, and hence be a cause of information loss
if some details are not taken care of.

Other entity-based versioning systems exists, such as
Monticello 14 and ENVY.

Monticello is the de-facto standard for the Squeak
Smalltalk community, whereas ENVY is now considered
as “dead technology”.

ENVY was originally designed for Visual Age
Smalltalk, and later on ported for Visual Age Java15.

The concept of a change-based (as opposed to version
or snapshot-based) versioning system is partly implemented
by Smalltalk changesets, which were the way to man-
age source code in Smalltalk from the start. A Smalltalk
changeset records every compilation of methods, and every
evaluation of code in the Smaltalk environment (as evalu-
ated code must be compiled first). Since addition or mod-
ification of classes is ultimately done by evalutiong code,
changesets can effectively reconstruct the state of a program
in a very fine-grained way.

The problem is that Smalltalk changesets are low-level
information, being merely a succession of commands to ex-
ecute (commands who as a side effect are compiling meth-
ods or modifying classes), and can not really be used out-
side of their particular area. It is not really possible to use
them as a tool for program comprehension, for example, as
this involves computationally heavy processing.

Smalltalk changesets have now been superceded by
StORE (in the VisualWorks Smalltalk environment) for

10See http://www.gnu.org/software/gnu-arch/ for more information.
11http://abridgegame.org/darcs/.
12http://codeville.org
13http://www.venge.net/monotone/.
14See http://www.wiresong.ca/Monticello/ for more information.
15Is is interesting to notice that most entity-based versioning systems

were pioneered in the Smalltalk community. This is probably due to the
fact that Smalltalk is not a file-based programming language.

packaging, storing, versioning, sharing and distributing pro-
gram code, but they are still used alongside StORE as of
today. Their main use now is crash recovery (in the form
of change lists and change files, who can be executed to
rebuild the program after a crash). A Smalltalk changeset
could be seen as an incremental regular versioning system.
The problem here is that every program was more or less
one single changeset, or several changesets, but semanti-
cally unrelated. Managing them was done in a manual way,
as well as merging of several changesets.

Last but not least, the main problem of the change sets is
that they represent a niche technology with limited spread.

8 Conclusion and Future Work

Versioning systems currently used by software develop-
ers are not plainly satisfactory for evolution research, as
they restrain the amount of evolution information we can
work with. There is hence a trade-of to make between us-
ing more advanced versioning systems, and being able to
make convincing case studies.

Our advice to researchers willing to study evolving sys-
tems is to base themselves on open-source products ver-
sioned using CVS, are they are the most common, and to an-
ticipate at the same time that projects will eventually move
to Subversion, which is very certainly the next standard
to come, at least in the open-source world. Several ma-
jor open source projects have already done that: Apache,
the most widely used web server, the KDE project, and a
great number of projects from the Debian distribution16. It
fixes some of CVS’s flaws, such as properly handling file
and directory-level refactorings, and provides some use-
ful information by its use of changesets. Keeping an eye
on versioning systems such as Arch could be worthwhile
too. Closed-source versioning systems such as SourceSafe
will probably not be used by open-source developer any-
time soon, especially if we consider what happened to the
Linux kernel, which was using BitKeeper recently 17. Since
open-source software includes as of now the biggest and
most information-rich systems that we can analyse, work-
ing with open-source versioning software seems to be the
most sensible choice.

Our claim that better versioning systems are needed still
hold, and we think that an entity-based versioning system
for a widespread language would be a great step forward
for both software developers and researchers, as these sys-
tems handles a lot of parsing task for themselves. They
hence ease the merging of conflict for developer as they ab-
stract away the file level, allowing developers to concentrate
on conflicts at the package, class and method level. They

16Apache has more than 190,000 revisions, and KDE more than 400,000
17BitKeeper is a proprietary system which had a free license for the linux

kernel, but decided to cancel it.

9



also allow researcher to find information at those levels, un-
covering relations which might not be findable using other
ways.

Our future works lies in devising a system going away
from the snapshot metaphor, to adopt the change metaphor,
in an attempt to move from software archeology to real soft-
ware history, by attempting to lose as less information as
possible. We also wish to adress other shortcoming men-
tioned in the “future trends” section, such as being able to
track phases of refactoring, debugging and feature addition
in the software life cycle.

References

[1] P. Cederqvist. Version management with CVS. Technical
report, 1993.

[2] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.
Version Control with Subversion. O’Reilly Media, 2003.

[3] M. D’Ambros. Software archaeology - reconstructing the
evolution of software systems. Master Thesis, Politecnico
di Milano, Apr. 2005.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings of the International Conference on
Software Maintenance (ICSM 2003), pages 23–32, Sept.
2003.

[5] K. F. Fogel and M. Bar. Open Source Development with
CVS. Coriolis Group Books, Scottsdale, AZ, USA, 2001.

[6] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding Early Reverse Engineering Efforts by Summariz-
ing the Evolution of Changes. In Proceedings of ICSM ’04
(International Conference on Software Maintenance), pages
40–49. IEEE Computer Society Press, 2004.

[7] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the evo-
lution of class hierarchies. In Proceedings of European Con-
ference on Software Maintenance (CSMR 2005), 2005.

[8] M. Godfrey and Q. Tu. Evolution in open source software:
A case study. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM 2000), pages 131–
142. IEEE Computer Society, 2000.

[9] M. W. Godfrey and E. H. S. Lee. Secrets from the mon-
ster: Extracting Mozilla’s software architecture. In Proc. of
the Second Intl. Symposium on Constructing Software Engi-
neering Tools (CoSET-00), June 2000.

[10] D. Grune. Concurrent Versions system, a method for inde-
pendent cooperation. Technical report, Vrije Universiteit,
Amsterdam, Netherlands, 1986.

[11] A. Hassan and R. Holt. Studying the evolution of software
systems using evolutionary code extractors. In IEEE Inter-
national Workshop on Principles of Software Evolution (IW-
PSE04), pages 76–81, Sept. 2004.

[12] M. M. Lehman and L. Belady. Program Evolution – Pro-
cesses of Software Change. London Academic Press, 1985.

[13] T. Roche. Essential SourceSafe. Hentzenerke, Whitefish
Bay, Wis, 2001.

[14] M. J. Rochkind. The Source Code Control System. Trans-
actions on Software Engineering, 1(4):364–370, 1975.

[15] W. F. Tichy. RCS — a system for version control. Software
— Practice and Experience, 15(7):637–654, 1985.

[16] Q. Tu and M. W. Godfrey. An integrated approach for study-
ing architectural evolution. In 10th International Workshop
on Program Comprehension (IWPC’02), pages 127–136.
IEEE Computer Society Press, June 2002.

10


