
API Fluency
Romain Robbes

Faculty of Computer Science
Free University of Bozen-Bolzano, Italy

Mircea Lungu
Computer Science Department

IT University of Copenhagen, Denmark

Andrea Janes
Faculty of Computer Science

Free University of Bozen-Bolzano, Italy

Abstract—Application Programming Interfaces (APIs) are crit-
ical to improve developer productivity: developers can reuse a
significant amount of functionality instead of writing it them-
selves. The flip side of API popularity is that APIs are large and
numerous: developers often spend significant time searching for
the functionality they need. Worse, they may not even be aware
that an API exists for a given task and thus waste time reinventing
the wheel. We argue for API fluency: the ability for developers
to internalize how an API is used. The more developers have
internalized the APIs they need, the more productive they can
become. We propose an approach to improve API fluency, relying
on spaced repetition of recommended API elements.

Index Terms—APIs, MSR, Spaced Repetition

I. INTRODUCTION

Application Programming Interfaces (APIs) are everywhere.
By providing significant functionality to build upon, they en-
able developers to “stand on the shoulders of giants”: leverage
existing functionality to build novel applications efficiently.
For instance, a mobile app can rely on APIs to access sensors,
graphical components, or cloud services, while developers can
then focus on what makes their app truly unique.

APIs have to be learned and understood, before being used
effectively. However, several realities about APIs affect their
learning in practice. APIs can be large: while the core of
a programming language is small, APIs effectively constitute
its vocabulary, and they can grow very large. For instance,
the Java Development Kit (Version 9) API Specification con-
tains 6005 interfaces and classes1 and the Android Platform
API (API level 28) includes 4389 interfaces and classes2.
Moreover, APIs are numerous: modern package repositories
offer a constantly increasing number of reusable libraries (e.g.
Maven contains 12.6 million libraries and npm 700 thousand
packaged modules3), each such library introducing a new
API. As the number of available APIs increases, opportunities
and benefits of using them grow, but so does the associated
learning effort. Also, some APIs are seldom needed: APIs
which are used rarely are particularly problematic to learn and
thus, not revisited before the forgetting process takes its toll.
Especially frustrating are APIs that are recurrently needed,
but not frequently enough for the developer to commit them
to long term memory. Successful APIs change over time: an
API change will force developers to update their applications
[1] and many APIs are not well documented, making it hard
for the developer to find out where to even start learning.

1https://docs.oracle.com/javase/9/docs/api/allclasses-frame.html
2https://developer.android.com/reference/classes
3https://maven.apache.org and https://www.npmjs.com, respectively

II. MOTIVATING EXAMPLES

The lack of mastery over an API may lead to various kinds
of problems, three of which we illustrate in this section.

Wastefulness. Charlie is an intermediate JavaScript pro-
grammer working on a web front-end project. For a particular
feature, the application’s Python back-end expects dates to be
formatted according to the ISO 8601 standard. While browsing
the documentation of the Date class Charlie discovers the
getMonth(), getYear(), getDay() and similar meth-
ods. Using these methods he implements his own serialization
to JSON to communicate with the back-end. Since Python
months are 1-indexed and JavaScript months are 0-indexed,
Charlie introduces a bug that he will discover only six months
later – in January of the following year when the Python code
starts throwing exceptions. Until January however, the buggy
code will keep saving off-by-one dates to the database. Charlie
could have avoided a lot of extra work if he were aware of
the existence of Date.prototype.toJSON(), a library
function which converts dates to ISO 8601 format.

Loss of Focus. Bob is an experienced developer, who is
new to Android development. As part of a task he needs to
save some data on a mobile device. As he lacks a starting
point to implement this, he uses web searches to look for a
solution. Being somewhat unfamiliar with the domain and the
API needed, his first two search queries are not successful, but
his third attempt is. A StackOverflow power-user, Bob priori-
tizes StackOverflow results, and spends some time evaluating
several tentative solutions. While exploring an answer on the
platform he is further distracted by a request for clarification of
one of his past answers. The entire process is time-consuming,
and the steps make him lose focus from the original task,
causing him to lose further time to rebuild the context he lost.

Frustration. Ada is a software engineer working daily with
C#. For a small automation task she has to write a shell script,
however she does not remember the syntax for conditional
expressions in BASH. She searches online for “bash if file
exists” and finds the StackOverflow answer to “How do I tell
if a regular file exists?”, a very popular question with more
than 2 million views. She analyses the answer, copy-pastes the
relevant code snippet into her IDE, and modifies it accordingly.
Ada is frustrated since she remembers having had to search
for the same thing in the past and knows that she will have to
search for it again in the future.

The first scenario shows that lack of awareness about the

https://docs.oracle.com/javase/9/docs/api/allclasses-frame.html
https://developer.android.com/reference/classes
https://maven.apache.org
https://www.npmjs.com


existence of an API can lead to reinventing the wheel, an
approach which is drastically less productive, and much more
likely to introduce bugs, possibly with long term repercussions.

The next two examples show the impact of interruptions on
the satisfaction and efficiency of a developer. The cognitive
price of an interruption goes beyond the interruption: studies
show that information workers [2] and developers [3], [4]
see their productivity affected beyond the context switch, and
may need time to rebuild the context they lost during the
interruption. This also increases frustration and stress.

The root cause of all the scenarios described above is
insufficient API knowledge. While significant research effort
has been invested into making the search for API knowledge as
efficient as possible, we propose to investigate an alternative,
yet complementary, approach: supporting developers achieve
fluency faster.

III. API FLUENCY AND AWARENESS

A developer may have a varying degree of knowledge
for individual elements, which we delimit in three broad
categories.

Ignorance. A developer is the most inefficient when they
do not even know what they do not know. They may assume
that a functionality does not exist, and not search for it. Or,
they may search for it, but struggle to formulate a valid query
for the functionality as they may be unaware of the domain
terms they should use.

Awareness. At this level of knowledge, the developer knows
that a functionality exists, but has not internalized it, and needs
(varying degrees of) assistance to use it. This may lead to
increased reliance on external knowledge sources (textbooks,
search, or interrupting a colleague).

Search is the prevalent mechanism to consult external
sources. Studies have found that developers at Google search
several times a day [5] and that code-related searches are more
difficult than non-code queries [6]. At a larger scale, 80% of
StackOverflow users visit the site multiple times per week;
more than 30% visit it multiple times per day4. Anecdotal
evidence show some developer disproportionately rely on
search (e.g., once every third line of code5). While search is a
popular and effective strategy, it is not without issues: search
may be harmful to the development flow since it introduces
context switches in the cognitive process. Moreover, search
implies a choice among relevant results; there is always a
possibility to take a wrong decision, which is magnified if
a developer’s general knowledge about the API is incomplete.

Fluency. The developer has internalized the API, and is able
to use it with no or minimal help. Fluency is defined as the
capacity to conduct a task both correctly and rapidly [7]; the
concept has been quantified in software engineering, albeit at
a coarser level [8].

A developer having fluent knowledge of the API elements
needed for a given task has internalized their usage, and is

4https://insights.stackoverflow.com/survey/2018
5https://two-wrongs.com/how-much-does-an-experienced-programmer-u

se-google

able to recall from memory the correct calls or sequences of
calls necessary to achieve the task. This process takes mere
seconds, whereas consulting external resources for the correct
API to call can take several minutes (possibly more in cases
of complex queries where several solutions are available and
must be compared) and entails the extra cognitive penalty of
a context switch.

For tasks outside of their immediate knowledge, fluent
developers are more likely to rely on more efficient brows-
ing mechanisms, such as code completion, to refresh their
memory, rather than consulting external sources. This also
leads to an increase in productivity and satisfaction as the
context switch is much shorter. Fluent developers are also
more cognizant about specific API characteristics such as
exceptions, directives, and caveats.

Most developers are fluent with APIs that they use very
regularly, such as basic language APIs. However, for APIs
that they are not fluent in, they must rely on external sources
and at times they might not even be aware of the existence of
APIs that they could use.

Clearly, fluency is more efficient and satisfying than simple
awareness, which is, in turn, more efficient than re-inventing
the wheel due to ignorance. Yet, achieving complete API
fluency is unfeasible since APIs are too large to be internal-
ized: how can we balance API fluency, awareness, and time
constraints, so that developers can effectively use APIs?

IV. A NEW IDEA: AUTOMATED APPROACHES FOR
INCREASING FLUENCY AND AWARENESS

The new idea we propose is to stimulate developers to invest
a modest amount of time in API memory enhancement to:
1) extend their API fluency beyond what is implicitly learned
for APIs that they often need, and 2) increase their awareness
of existing APIs they might need in the future. The challenge
lies in doing this in a strategic manner.

Learning from Language Learners

We argue that a good starting point to build approaches to
increase fluency are the tools used by language learners, since
language study tools are often well grounded in learning prin-
ciples. Indeed, both learning a human language and learning
an API involve learning a significant amount of “vocabulary”,
i.e., words that have a semantic meaning and that are often
related to other items, as well as “syntax”, i.e., the correct
ways to combine vocabulary to obtain the desired meaning.

Ebbinghaus quantified the rate at which arbitrary items were
forgotten over time (the “forgetting curve”) [9], finding that the
decay was exponential over time. Ebbinghaus also observed
that periodically reviewing the items over time was a much
more effective strategy. Spaced repetition with exponential
time intervals is an established practice to retain concepts over
long period of times (i.e., years to decades).

In language learning, spaced repetition has been shown
to be very effective to learn—and retain—vocabulary that
is personalized for the learner. Successful recall of a word
will cause the word to be revisited farther in the future, with

https://insights.stackoverflow.com/survey/2018
https://two-wrongs.com/how-much-does-an-experienced-programmer-use-google
https://two-wrongs.com/how-much-does-an-experienced-programmer-use-google


increasing (exponential) delays the more times the word has
been recalled. A forgotten word will be scheduled much more
frequently in the next revision period, making the system adapt
to the learner’s knowledge.

Spaced repetition can be implemented with physical flash
cards, or in software (e.g. Anki6). The software manages the
spaced repetition algorithm; the user only needs to review
concepts and indicate whether the recall was successful or not.
Spaced repetition scales because cards that are successfully
recalled are shown less and less, making it possible to maintain
knowledge of thousands of cards in a modest amount time.
Anecdotally, Michael Nielsen, an avid Anki user, spends only
20 minutes a day reviewing flash cards, despite having more
than 10 thousand of them7. Furthermore, a mobile applica-
tion facilitates micro-learning: learners can use periods of
time when they would be waiting (public transport, queuing)
to schedule short personalized revision sessions, essentially
gaining and maintaining large quantities of knowledge while
investing minimal time (minutes, if done daily), that would be
hard to spend productively otherwise.

Limitations of Flash Cards for API Learning

We are aware of several attempts at increasing programming
fluency via spaced repetition: one can already, for instance,
buy physical flashcards to learn core concepts of the Elixir
programming language8; shared decks of Anki flash cards
describing APIs exist (e.g., for the C standard library9); and
in his essay, Nielsen describes such a use case as well. Thus,
there is clearly interest in using spaced repetition to learn (and
retain) the APIs and programming concepts with flash cards
and spaced repetition.

Unfortunately, several factors make the approach of simple
flash cards insufficient. Most of all, flash cards are created
manually, which requires a significant amount of effort. For
instance, the aforementioned Anki deck of the C standard
library has only 29 cards in it, thus it covers very little of
the C standard library, and does so at a very high level (one
card per header file). It is unlikely that developers would be
willing to do this upfront investment. Moreover, APIs can be
very large: Beyond being a immense manual effort, covering
the entirety of an API with thousands of classes, there is the
additional problem that it is overwhelming to assimilate such
a large amount of information. The information needs to be
prioritized and personalized. Finally, APIs are not quite like
vocabulary: An API element such as a method call may have
several parameters with a specific order and meaning, have
preconditions, exceptions, be thread-safe or not, side-effect
free or not, or may be part of a sequence of calls. There is a
lot of information to assimilate, beyond its functionality.

Design Considerations for an API-Fluency-Enhancing System

We intend to tackle the previously identified issues by:

6https://apps.ankiweb.net
7http://augmentingcognition.com/ltm.html
8https://www.elixircards.co.uk
9https://ankiweb.net/shared/info/3937203746

1) Personalizing learning to the context, stated needs,
interests, and rate of learning of every developer;

2) Providing developers with a manageable amount of
API elements to learn: based on the available time to
spend on API memory enhancement, the system should
optimally plan study sessions; mining software reposi-
tories (MSR) techniques can be used to prioritize API
elements; and

3) Tailoring spaced repetition concepts to effective learn-
ing of APIs, by automatically generating a variety of
exercises for the API elements that should be learned
and integrating them in the spaced repetition algorithm.

We advocate for a personalized approach, that should take
three aspects into account. First, the learner’s stated needs
are critical: a user might know that she will have to work with
a particular API, and ask the system to focus on it; or that
awareness of another API is sufficient at this tie. Second, the
learner’s rate of learning: studies show that everybody has
different forgetting curves. Third, the past usage patterns of
learners: learners who know nothing about the API landscape
they enter, cannot know what is most important to study. The
system, having seen similar users, can forecast their future
needs, and train them accordingly.

V. TOWARDS API FLUENCY

We expect to tackle the following six challenges.
Building an API Curriculum. Prioritizing and personal-

izing API recommendations is the first challenge to address.
The ordering of API elements to master over time defines
an API curriculum. We will use MSR techniques to build
such a curriculum, based on the observation that most of
the API usage follows a power law [10]. With large-scale
mining (e.g., tens of thousands of GitHub repositories), we can
determine the relative importance of API elements based on
usage frequency. We can also exploit co-occurrences to cluster
API elements in areas of interest to infer specializations and
relationships between APIs (e.g., 30% of camera API users
are also interested in a computer vision API). By modeling
software evolution (e.g. by mining commit sequences), we
can determine which API elements are used first (API base
classes), and which ones are used later (advanced APIs).
A temporal analysis also allows us to detect APIs that are
gaining or losing in popularity (e.g deprecated APIs), and
adjust recommendations accordingly. The end result will be
an ordering of API elements from the most basic ones to
the most advanced, complemented with co-use relationships
between APIs (and between API elements), that also includes
usage trends over time.

Placing the learner on the Curriculum: By mining an
individual developer’s repositories, the system will be able to
customize the API curriculum, based on the API elements
they already use, resulting in a personalized, evolving API
knowledge profile. This has been done in natural language
learning where past interactions with texts are used as input
in the exercise generation process [11]. In the case of devel-
oper learning, the goal is to predict which API elements a

https://apps.ankiweb.net
http://augmentingcognition.com/ltm.html
https://www.elixircards.co.uk
https://ankiweb.net/shared/info/3937203746


developer is likely to use in the future, as well as to reinforce
their knowledge of the API elements they already use and are
currently learning.

The knowledge profile will drive recommendations of new
API elements, as well as making sure that the knowledge of
the API elements developers have already use is maintained.
The system will gradually introduce new API elements, to
prevent the amount of recommendations overwhelming the
regular practice sessions.

Tailoring spaced repetition for APIs. We plan to tailor
spaced repetition to API learning by building a Degree of
Knowledge [12] model for API elements, and adapt the level
of detail and the exercises shown to that degree of knowledge.
The first level will simply be the awareness of interesting
API elements (e.g., Which API is needed to recognize objects
in photographs?). Subsequent levels could provide increasing
knowledge about specific parts of the API (e.g., Which are the
principal classes of the Collections package?).

For APIs where the developer expresses high interest, or
high interest is predicted, fine-grained information will be
provided (e.g., Which method of which class does JSON
serialization of dates?). At the finest level, exercises based on
source code examples (e.g., extracted from GitHub or code
previously written by the API learner), will be provided (e.g.,
Are there bugs in this code? or Fill in the appropriate method
calls). Independently of the level of detail, the difficulty of the
exercises will be varied, ranging from matching exercises, to
multiple choice, to free-form questions. The system will gen-
erate exercises, varying their types to maintain engagement in
a session, while observing the principles of spaced repetition.

Identifying API learning difficulties. The system can
be complemented by information coming from StackOver-
flow (e.g., the API elements with the most questions or the
most viewed questions), and from a social overlay of the
platform, that will allow to detect API elements that are
particularly difficult to master. The API documentation itself
can be leveraged here as well. Summarization approaches can
be used to provide a bird’s eye view of the API. In addition,
approaches to detect API directives, caveats, deprecations,
and changes, can be used to highlight those important facts,
making the API learner aware of them.

Monitoring API fluency. The proposed system could be
even complemented by an IDE plugin monitoring user in-
teractions [13], as well as a web browser plugin, to track
search queries. Developer drops in productivity before using
a given API call may be signs of a “knowledge gap”, or that
the developer is not fluent in this API element. Actual search
queries can point to failures in the model’s predictions or can
represent new elements to be learned.

Dealing with data scarcity. The approach described here
relies on significant API usage data. As such, it is appropriate
for popular APIs. A longer term goal is to investigate how the
approach can work with limited amounts of data. In this case,
we hope that the internal structure of the API can provide a
substitute to external usage (similar to [14]). Data from users
in the same team may be helpful as well in this case.

VI. CONCLUSION

In this paper we argue that the API fluency and awareness
of developers can be increased with the help of tools based
on source code repository mining and state of the art memory
techniques such as spaced repetition.

Increasing developer fluency requires (1) selecting API
elements that developers will likely use in the future and
(2) ensuring these elements are rehearsed such that they are
optimally internalized for the long term. To solve the first
problem, we intend to build a recommendation system that
selects a subset of the APIs to be learned, based on mining the
API documentation, API usage data, StackOverflow questions,
and a developer’s own coding history. This allows us to build a
personalized API curriculum. To solve the second problem, we
will provide developers with exercises based on the principle
of spaced repetition, a technique allowing practitioners to
memorize vast amounts of information effectively.

We expect that promoting API fluency will increase devel-
oper’s productivity and satisfaction: by increasing the speed
and correctness at which they perform tasks, their awareness of
existing APIs, as well as reducing interruptions and frustration.

REFERENCES

[1] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation?: The case of a Smalltalk ecosystem,” in Proceedings
of SIGSOFT FSE 2010. ACM, 2012, p. 56.

[2] V. M. González and G. Mark, “Constant, constant, multi-tasking crazi-
ness: managing multiple working spheres,” in Proceedings of CHI 2004.
ACM, 2004, pp. 113–120.

[3] L. C. Cruz, H. Sanchez, V. M. González, and R. Robbes, “Work frag-
mentation in developer interaction data,” Journal of Software: Evolution
and Process, vol. 29, no. 3, p. e1839, 2017.

[4] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 19–29.

[5] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: a case study,” in Proceedings of SIGSOFT FSE 2015. ACM,
2015, pp. 191–201.

[6] Masudur Rahman et al., “Evaluating how developers use general-purpose
web-search for code retrieval,” in Proceedings of MSR 2018, 2018.

[7] C. Binder, E. Haughton, and B. Bateman, “Fluency: Achieving true mas-
tery in the learning process,” Professional Papers in special education,
pp. 2–20, 2002.

[8] M. Zhou and A. Mockus, “Developer fluency: Achieving true mastery
in software projects,” in Proceedings of SIGSOFT FSE 2010. ACM,
2010, pp. 137–146.

[9] H. Ebbinghaus, “Memory: A contribution to experimental psychology,”
Annals of neurosciences, vol. 20, no. 4, p. 155, 2013.

[10] B. Spasojević, M. Lungu, and O. Nierstrasz, “Overthrowing the Tyranny
of Alphabetical Ordering in Documentation Systems,” in 2014 IEEE
International Conference on Software Maintenance and Evolution (ERA
Track), Sep. 2014, pp. 511–515.

[11] M. F. Lungu, L. van den Brand, D. Chirtoaca, and M. Avagyan, “As we
may study: Towards the web as a personalized language textbook,” in
Proceedings of the CHI 2018, Montreal, Canada, 2018, pp. 1–12.

[12] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-
knowledge: Modeling a developer’s knowledge of code,” ACM TOSEM,
vol. 23, no. 2, p. 14, 2014.

[13] W. Maalej, T. Fritz, and R. Robbes, “Collecting and processing interac-
tion data for recommendation systems,” in Recommendation Systems in
Software Engineering. Springer, 2014, pp. 173–197.

[14] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, p. 19, 2011.


	Introduction
	Motivating Examples
	API Fluency and Awareness
	A New Idea: Automated Approaches For Increasing Fluency And Awareness
	Towards API Fluency
	Conclusion
	References

