
On how often code is cloned across repositories
Niko Schwarz

University of Bern
Mircea Lungu

University of Bern
Romain Robbes

University of Chile

Abstract—Detecting code duplication in large code bases, or
even across project boundaries, is problematic due to the massive
amount of data involved. Large-scale clone detection also opens
new challenges beyond asking for the provenance of a single clone
fragment, such as assessing the prevalence of code clones on the
entire code base, and their evolution.

We propose a set of lightweight techniques that may scale up
to very large amounts of source code in the presence of multiple
versions. The common idea behind these techniques is to use bad
hashing to get a quick answer. We report on a case study, the
Squeaksource ecosystem, which features thousands of software
projects, with more than 40 million versions of methods, across
more than seven years of evolution. We provide estimates for the
prevalence of type-1, type-2, and type-3 clones in Squeaksource.

Index Terms—Clone detection; Software ecosystems

I. INTRODUCTION

Detecting clones in source code is computationally expensive
and does not easily scale up to massive amounts of data such
as when analyzing entire software ecosystems [?]. On the other
hand, counting identical duplicates, even in large amounts of
data, is computationally less expensive. It has been shown that
indexing source code fragments based on the result of a hashing
function, is a promising approach to achieve good performance
when large amounts of source code must be handled [1]: The
problem of finding snippets of similar source code can be
reduced to finding identical hashes, if the hash function is
“bad”—generates collisions on similar documents.

The literature defines three types of clones: type-1—identical
source code duplication; type-2 clones may feature renames
of identifiers; type-3 clones may feature more extensive
changes [2]. Current hash-based approaches to clone detection
handle only type-1 and type-2. In this paper, we provide hash
functions for type-1, type-2, and type-3 clones which exhibit
reasonable detection accuracy.

Beyond mere clone detection, exploiting the results is a
challenge. Most approaches focus on finding the clones of
a given code fragment efficiently. In contrast, we store all
hashes of the analyzed corpus in one database. This dedicated
infrastructure handles large quantities of clone groups, and
allows us to answer cloning-related questions at the level of
ecosystems, such as “how much cloning exists between different
projects?”, in contrast to simply searching for the clones related
to one fragment. Similar holistic queries include analyzing the
successive versions of a given piece of code to detect the origin
of a clone among several copies: the version that appeared the
first in a software repository is likely the original clone [3].

In this paper, we show how bad hashes, i.e., hashes where
similar items collide on the same hash, can identify clones

corresponding to each criterion (type-1, type-2, and type-3
clones), and how the analysis must be tailored to the versioning
system in use. We use it on the entire history of an open source
software ecosystem, Squeaksource which features thousands
of projects and tens of thousands of versions in a total of
47 GB of uncompressed source code, or 579 MLOC, to answer
holistic queries about clones.

Contributions. The contributions of this paper are threefold:

1) Three lightweight, language-independent, clone detection
techniques. Each defines a clone type (1, 2, and 3) which
can be detected by bad hashes on source code. The
presented techniques scale to entire ecosystems.

2) An evaluation of the three detection techniques in terms
of performance on a real-world software ecosystem which
demonstrates their scalability

3) Preliminary ecosystem-level results, showing that a large
amount of code is duplicated, and that clone groups can
feature hundreds of members accross many projects.

II. RELATED WORK

There are two fundamentally different approaches to clone-
detection: clustering approaches, and index-based approaches.
Traditional clone detection tools compute all pairwise distances
of code fragments and then cluster all code fragments based
on these distances. A popular example is CCFinder [4]. Livieri
et al. [5] present an extension of the popular clone detector
that is distributed over several machines to improve its scaling,
named D-CCFinder, which they used to have 80 machines find
all clones in 10.8 GB of source code in 51 hours.

Uddin et al. [6] show how hashes can speed the computation
of all pairwise distances. In their approach, in a first step, all
source code is first hashed, and then in a second step, all
pairwise distances are computed from the hashes only. Their
approach still requires a third clustering step.

Krinke et al. [7] investigated cloned code in 30 projects of
the Gnome suite of programs. They found 3096 clone groups
(8003 clones in total), and that the probability of clones being
copied between systems increased with the size of the clones.

On the other hand, index-based approaches, first suggested
by Hummel et al. [8], save computation by not having a
clustering phase. In their paper, Hummel et al. describe how
they implemented their own tables that could be queried in
parallel using MapReduce. This is a much more complex and
demanding approach than using off-the-shelf databases, which
are built for the express purpose of querying and keeping
indexes and data in sync. In the absence of a query planner,

all queries must be written as parallel MapReduce programs.
Their approach does not tackle type-3 clones.

The idea of using bad hashes for clone detection was
proposed by Baxter et al. [9]. Their approach creates bad
hashes for sub-trees of the ASTs of classes, and thus requires
full parsing of the source code in question.

Keivanloo et al. [1] show that the index-based approach
scales to entire ecosystems. They build up a database of
hashes for 18,000 Java programs. Their hashes are created
for 3 consecutive lines while our hashes are created based
on tokens. As a result we can detect type 3 clones that are
generated by removing, adding, or changing a single token
whereas their approach requires that three lines are exactly
the same. Further, they use their own storage of the index,
whereas we use an off-the-shelf database, Postgresql. This
enables us to run elaborate queries, like “how much cloning
exists between different projects” within hours, even without
the use of parallelization.

III. LIGHTWEIGHT APPROACHES

To handle large amounts of data, we took Broder’s [10]
similarity metric and modified it towards greater speed. Instead
of a distance metric, we compute bad hashes of the source
code of each method. We compute three hashes: one for type-1
clone detection, another for type-2 clones, and one for type-3
clones. Detecting code duplication in an index is fast, because
it does not involve cluster editing—and allows us to do without
approximating algorithms.

To allow our algorithms to work independent of the program-
ming language we use working definitions which slightly differ
from the canonical ones. We feel this deviation is permissible
since the canonical definitions emerge solely from ontological
reasoning, rather than from empirical evidence.

A. Type 1: Hashes of source code

Type-1 clones are defined as “identical code fragments
except for variations in whitespace, layout and comments” [11].
However, identifying comments is language specific and
requires full parsing of the source code in most instances.
In our approach, we do not ignore comments for this reason.
As we show later in section §IV-B, even including comments,
we detect a large number of type-1 clones across repositories.
In our work we define type-1 clones as such:

Working Definition: Two documents are type-1 clones iff
they differ in nothing but white-space.

The charm of this definition is that to find type-1 clones, it
is enough to tokenize the input using the regular expression
/s+/, concatenate the resulting tokens delimited by a separator,
and then compute the SHA1 hash of the resulting string. Then,
two snippets are type-1 clones iff they produce the same hash.

B. Type 2: Hashes of source code with renames

Type-2 clones are defined as “syntactically identical frag-
ments except for variations in identifiers, literals, types,
whitespace, layout and comments” [11]. We use the following
definition of type-2 clones, which should not be in conflict
with the canonical one:

Working Definition: Two documents are type-2 clones iff
they are type-1 clones after every sequence of alphabetical
letters is replaced by the letter “t”, and all sequences of digits
are replaced with the number “1”. For an example, see Table I.

Table I – Example normalization of type-2 clones.

Source Normalized

myGetProv ide rFor : aSymbol
| bound |
bound := b i n d i n g s a t : aSymbol

i f A b s e n t : [^ n i l] .
s e l f a s s e r t : bound n o t N i l .
^ bound

t : t | t | t := t
t : t t : [^ t] . t
t : t t . ^ t

This is the same definition that has been successfully
employed in detecting plagiarism [12] and it is computationally
inexpensive. While this definition appears to be inclusive, as
we will see in Table III, it catches barely more clones than
there are type-1 clones.

C. Type 3: Shingles

Type-3 clones are defined as “Copied fragments with further
modifications such as changed, added or removed statements, in
addition to variations in identifiers, literals, types, whitespace,
layout and comments” [11]. This definition leaves open just
how much “further modification” is tolerable; clearly, it appeals
to the intuitive sense of similarity. Broder [10] reports that
defining resemblance based on shingles matches the intuitive
sense of similarity in examining their data. We use this shingles-
resemblance, which works as follows:

Let a “shingle” be a consecutive sequence of w tokens in a
document, after the document has been transformed according
to the rules of type-2 clones. The “sketch” of a document is a
subset of its shingles.

Working Definition: Two documents are type-3 clones if and
only if they share the same sketch.

By selecting only a subset of all the shingles two methods
can be detected as similar even if they do not share all shingles.
Also, their shingles do not need to appear in the same order to
be detected as similar. While the selection should be random
so as to not favor certain shingles over others, a document
should also be equal to itself. Selecting shingles based on the
bit representation of their hashes achieves just that.

In our implementation, shingles are sequences of four tokens
(w=4), the hashes for the shingles are computed with SHA-
1, and the subset constituting the sketch contains only those
shingles whose hashes binary representation ends in “11”. This
selects an expected quarter of all shingles, since the digits of
the binary representation of a hash each have an independent
chance of 1{2 to be ‘1’. Table II presents an example.

Note that it is not necessary to keep the shingles that make up
the sketch. Rather, we can XOR them into one hash, which is
a measure for whether or not two sketches are equivalent. This
allows us to compute whether or not two documents are type-3
clones by checking whether their hashes are equal. Since clones
that are too short are meaningless, we consider only documents
that are at least 16 tokens long in our implementation.

2

Table II – Example normalization of type 3 clones. The under-
lined shingles are selected, because their binary representation
ends in ‘11’. We only show the last 4 hex digits of hashes.

Normalized Shingles hashes

t: t |t| t
:= t t: t
t: [^t]. t
t: t t. ^
t

t: t |t| t, t |t| t :=,
|t| t := t, t := t t:,
:= t t: t, t t: t t:,
t: t t: [^]., t t: [^].
t, t: [^]. t t:, [^]. t
t: t, t t: t t, t: t t.
^, t t. ^ t

bd2d, c80b,
a3f8, 11b5,
6951, 4f55,
a43b, 8f58,
f7d2, d549,
bcee, fbe7,
84f4

While our definition of a type-3 clone is equivalent to
Broder’s Option B predictor with parameters w � 4, m � 4 [10,
Theorem 1], it works out differently. Choosing only hashes
that end in a certain bit pattern is proposed by Broder in an
attempt to estimate the true resemblance, for which it is an
unbiased estimate. Thus, he selects a subset of all shingles to
improve performance and not, like us, to allow for deviation
between similar code snippets.

IV. EMPIRICAL STUDY: SQUEAKSOURCE

We used our approach to detect code duplication across
repositories on Squeaksource (http://www.squeaksource.com);
Squeaksource is the de-facto standard code repository in the
Smalltalk ecosystem. As of June 2011, Squeaksource contains
2705 projects created by 3188 contributors over 7 years.

Each Squeaksource project is an individual repository. The
version control system Squeaksource uses, called Monticello,
creates a snapshot of the program (or package, depending on
coding conventions) at every commit. The snapshot contains
all of the program source code in a zipped text file, as a
sequence of method definitions; this makes the method the
natural granularity for our approach. Squeaksource amounts to
a grand total of 47 GB of uncompressed data.

Projects in Squeaksource often include complete duplications
of packages from other projects they depend on in their own
repositories. The duplicated package has the same name as
the original. This happens whenever a developer marks his
own repository to depend on another repository. However,
once stored, one cannot distinguish anymore between packages
that directly belong to a project and those that come from
the outside. Whether this inclusion of dependencies qualifies
for code duplication or not may well be discussed. However,
measuring it would report on the workings of Monticello more
than on the behavior of developers. Therefore, while we stored
all packages, regardless of origin, we tweaked our analysis to
consider two methods to be cloned only if they were found
both in different projects, and in differently named packages.

We compute and store all hashes of all versions of all
methods and classes published on SqueakSource. We obtain
a table in which each every hash is stored together with the
clone-type it represents, and the places where it was found
(a place is a tuple consisting of project, version, class, and
method).

Table III – Percentage of cloned methods and classes out of
560,842 methods and 74,026 classes on SqueakSource.

Type 1 type-2 Type 3
Percentage of cloned methods 14.55 % 16.33 % 17.85 %

Percentage of cloned classes 0.16 % 0.19 % 0.21 %

A. Space and time performance

We read a total of 22,641,865 method strings, which boil
down to 560,842 different methods and 74,026 classes. For our
purposes, similar to how Monticello stores class definitions,
a class is merely the set of its methods, thus ignoring the
inheritance hierarchy. For each method string, as well as for
every class, we compute three hashes, one for each clone
type. The data weighs in at merely 3.2 GB. However, due to
alignment issues, they take significantly more space in memory.
We store all hashes and method descriptors in a Postgresql
database, where the data occupies 20 GB of space.1

Computing and storing all the hashes for the three techniques
took 4:45 hours for all of Squeaksource (47 GB), on an 8
core Xeon at 2.3 GHz with 16 GB of RAM, using the Ruby
1.9.1 interpreter. Creating database indexes for every column
took another 3 hours in total. Detecting code duplication
across all projects then took only 2 hours. However, this also
counted code duplication caused by the automated copying
of Monticello, rather than willful code duplication. Removing
these uninteresting clones was done with a database query that
took another 10 hours of computation time. In contrast, the
D-CCFinder experiment ran a single clone detection technique
on 7.5GB of data for 51 hours, on 80 machines [5].

Since on more than twice the amount of data, and on ten
times fewer cores, all three techniques together ran seven times
faster, we can conclude that our lightweight approaches kept
their promises regarding scalability.

B. Clones in the Squeaksource ecosystem

Table III shows the percentage of all methods across all
versions and projects that were cloned in another project. We
see that regardless of type, at least 14.5 % of all methods
are present in at least two distinct repositories. Classes are
cloned less frequently: only 0.16 %, or 115 classes in an entire
repository, of all classes of all versions are straight copies from
another package in another repository.

The table presents only a small increase in prevalence from
type-2 clones to type-3. This shows that our definition of type-3
clones is rather restrictive. The reason for this is the following:
if any one token changes, or is removed or added, then at
most 4 shingles are removed from the document, and at most
4 are added. The chance of each shingle’s hash to be part of
the sketch is 1{4. If none of the 4 removed shingles and none
of the 4 added shingles is part of the sketch, then the sketch
does not change. The chance of that happening is p3{4q8 � .1.
This is somewhat balanced by the fact that the 4 added and
removed shingles don’t have to be different, and that at the start
and end of a document, changes involve fewer shingles. The

1The database can be accessed here: http://scg.unibe.ch/research/hot-clones.

3

high chance of the sketch changing explains why our working
definition of type-3 clones in section §III-C clones is much
more restrictive than it appears.

5 10 20 50 100

10

100

1000

104

Figure 1 – Distribution of clone group sizes for type 1 clones.
The x-axis is the size of the clone groups; the y-axis is the
number of clone groups of that size across the ecosystem.

Figure 1 shows the distribution of type 1 clone groups
according to their size. The distribution resembles a Pareto
distribution. The median number of projects a cloned method
is in is 3. There are large numbers of small clone groups, and
few large clone groups. Note that some clone groups are very
large, featuring hundreds of identical methods (in the case of
type-1 clones). This is evidence that there are massive amounts
of duplication in the ecosystem.

C. Multi-Version Analysis

We computed how many clones we would have missed using
our approach, had we only looked at the latest versions of
packages. Ignoring previous versions is plausible at first since
code in repositories usually grow continuously. Furthermore,
even if code changes after being cloned, type-3 clone detection
might still find it. Setting aside the issue that determining the
provenance of clones needs a version history anyways [3], this
approach underestimates cloning by more than 20%.

We queried our data set for every method of which we know
that it was cloned at some point in time, whether it is a type-3
clone in any latest version of any package. We found that when
looking at the latest versions of all packages 24.4 % of all
type-1 clones, 23.1 % of all type-2 clones, and 22.9 % of all
type-3 clones would have been missed.

Note that more type-1 clones than type-2 clones are missed,
and more type-2 clones than type-3 clones. Suppose that project
A changes a method that was previously cloned by project B.
Now, if we only look at latest versions, we may or may not
detect this duplication as a type-3 clone. If, however, we look
at all versions, we can detect the type-1 clone. Thus, more
type-1 clones are missed than type-3 clones.

D. Threats to validity

In order to scale to larger amounts of data, we adopted
slightly modified definitions of type 1, 2 and 3 clones. Thus
the results may differ if more orthodox definitions of these
clone groups are adopted. We have applied our techniques to a
single ecosystem, which is comprised of Smalltalk systems only.
Our findings may not generalize to other ecosystems, and other
programming languages. Squeaksource is also considerably

smaller than other ecosystems; if our techniques have been
successful so far, it remains to be determined whether they
scale to even larger code bases.

V. CONCLUSIONS

An index of bad hashes can detect type-1, type-2, and
type-3 clones on large amounts of source code such as entire
ecosystems—gigabytes of source code. Since bad hashing is
such a cheap approach to clone detection, we can afford to
index all versions, and thus detect clones that would otherwise
be missed. In Squeaksource, 22.9 % of all type-3 clones are
missed if only the latest versions of all packages are examined.

We found evidence for large amounts of duplication in the
Squeaksource ecosystem. More than 14 % of all methods are
copied from another package in another project. Regardless of
one’s opinion of code duplication: it is common.

Even though classes are meant to be modular, we have found
that methods are reused in new contexts far more frequently
than classes. Since projects on Squeaksource tend to stand
for themselves, this suggests to us that this number is a good
estimator of true duplication of source code, being used in
different contexts to different ends.

Future work. Whether our definition of type-1, type-2 and
type-3 clones is better or worse than the conventional one is
yet to be determined. So far, evidence for the usefulness of
clone type definitions is purely anecdotal. We will evaluate
our definition agains Bellon’s benchmark [11]. Furthermore,
we plan to put our techniques to the test by applying them to
other large ecosystems such as the Maven repository.

REFERENCES

[1] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code
clone search via multi-level indexing,” in WCRE, 2011, pp. 23–27.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,” Sci.
Comput. Program., vol. 74, pp. 470–495, May 2009.

[3] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of
code clone genealogies,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp.
187–196, September 2005.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Software Eng., vol. 28, no. 7, pp. 654–670, 2002.

[5] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed ccfinder: D-ccfinder,” in ICSE, 2007, pp. 106–115.

[6] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, “On the
effectiveness of simhash for detecting near-miss clones in large scale
software systems,” in WCRE, 2011, pp. 13–22.

[7] J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Cloning and copying between
gnome projects,” in MSR, 2010, pp. 98–101.

[8] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in ICSM, 2010,
pp. 1–9.

[9] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in ICSM, 1998, pp. 368–377.

[10] A. Z. Broder, “On the resemblance and containment of documents,” Jun.
1997, pp. 21–29.

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 577–591, Sep. 2007.

[12] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes, “Language-
Independent clone detection applied to plagiarism detection,” in SCAM,
2010, pp. 77–86.

4

