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ABSTRACT
When the Application Programming Interface (API) of a frame-
work or library changes, its clients must be adapted. This change
propagation—known as a ripple effect—is a problem that has gar-
nered interest: several approaches have been proposed in the litera-
ture to react to these changes.

Although studies of ripple effects exist at the single system level,
no study has been performed on the actual extent and impact of these
API changes in practice, on an entire software ecosystem associated
with a community of developers. This paper reports on an empirical
study of API deprecations that led to ripple effects across an entire
ecosystem. Our case study subject is the development community
gravitating around the Squeak and Pharo software ecosystems: seven
years of evolution, more than 3,000 contributors, and more than
2,600 distinct systems. We analyzed 577 methods and 186 classes
that were deprecated, and answer research questions regarding the
frequency, magnitude, duration, adaptation, and consistency of the
ripple effects triggered by API changes.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance and Enhancement]: Restruc-
turing, reverse engineering, and reengineering

Keywords
Ecosystems, Mining Software Repositories, Empirical Studies

1. INTRODUCTION
Most of the software engineering research focuses on tools and

techniques for analyzing individual systems: quality assessment,
defect prediction, automated test generation, impact analysis, all are
techniques that aim at supporting the developer and improving the
resulting software.

However, a software system does not exist in isolation, but instead,
it is frequently part of a bigger software ecosystem [21] in which it
usually depends on other systems and, sometimes, other systems are
dependent on it. Ecosystems usually exist in large companies, orga-
nizations, or open source communities. As more and more of our
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society infrastructure runs on software, the size and number of such
ecosystems increases. In this context, research should also focus
on designing tools and techniques to support developers working in
software ecosystems.

A number of problems that are relevant for individual system
analysis are likely to remain relevant at the ecosystem level; and the
importance of some problems might even augment. In this article
we set out to discover whether the problem of impact analysis and
prediction that has been studied already at the level of individual
systems is relevant also at the ecosystem level.

When a project that contains functionality reused by many others
in the ecosystem changes, this might trigger a wave of changes in
the ecosystem. At the moment there is no tool support for predicting
such changes, so the developers often do not know whether their
change will impact other systems or not. Two anecdotal examples
illustrate the problems and opportunities associated with the lack of
tool support for change impact analysis at the ecosystem level:

1. While discussing with developers of a large corporation, we
discovered that sometimes a developer would make a change
but he would only find out whether his change impacted some
other systems multiple days later. This was a result of a very
long build cycle.

2. While studying the mailinglist archives of the Seaside project,
part of the Squeak/Pharo ecosystem, we discovered an email
in which one developer was asking about several classes that
his application was depending on but he could not find in the
latest version of the framework. One of the Seaside maintain-
ers answers1:

They have been dropped. A mail went out to this
list if anybody still used them and nobody replied.
[...] Personally I don’t know of any application
that uses these dialogs.

But how often do such changes that impact other systems happen,
and how broad is their impact? Take the example of the following
event in the Squeak/Pharo ecosystem: at some point the FillInThe-
Blank class, a broadly used utility class was deprecated and its
responsibilities moved to the UIManager class. Figure 1 shows how
the usage of FillInTheBlank initially increased, and then abruptly de-
creased as all the clients were moving towards using the UIManager
instead. More than 35 projects were impacted by the deprecation.

These examples hint at the necessity of providing tool support
for maintaining a continuous awareness of the potential impact of a
change at the level of the ecosystem. However, they are only anecdo-
tal. To the best of our knowledge, there has been no large-scale study
1Entire exchange available at: http://bit.ly/gnwNfV.
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Figure 1: The usage over time of classes FillInTheBlank (left)
and UIManager (right) which takes over its responsibilities

that would quantify how severe is the problem of change impact
at the ecosystem level. The only studies available are performed
at smaller scales, studying frameworks in isolation without taking
their clients into account [7].

Research Goals
The goals of this article are to determine: (1) whether there is enough
evidence for the necessity of building automated support for impact
analysis at the ecosystem level; (2) if needed, provide a sketch of
a solution; and (3), whether we can provide immediate actionable
information to alleviate the problem. To do this we set out to find
out how often is it that a change in a system will trigger changes
in the other systems of the ecosystem. In this study, we focus on
the special case of deprecated entities, i.e., API elements that are
explicitly marked to indicate they are scheduled for later removal.

This paper reports on an empirical study on the impact of API
changes in the Squeak/Pharo software ecosystem. We analyzed 577
methods and 186 classes that were indicated as deprecated in various
frameworks and core libraries by Squeak and Pharo developers.
In each case, we recorded how projects in the ecosystem reacted
to the deprecation of the method; we determined that 80 method
deprecations and 13 class deprecations caused ripple effects in client
projects later on. We investigate the following research questions in
order to better characterize the ripple effect phenomenon:

• Frequency. RQ1. How often do deprecated API methods
cause ripple effects in the ecosystem?

• Magnitude. RQ2. How many projects react to the API
changes in the ecosystem and how many developers are in-
volved?

• Duration. RQ3. How long does it take for projects to notice
and adapt to a change to an API they use?

• Adaptations. RQ4. Do all the projects in the ecosystem
adapt to the API changes?

• Consistency. RQ5. Do the projects adapt to an API change
in the same way? RQ6. How helpful was the deprecation
message, if any?

Structure of the paper. We start with a review of related work
(Section 2). We then present a list of challenges for API change
analysis (Section 3) and the characteristics of our case study, the
Squeak/Pharo ecosystem (Section 4). We then introduce our ecosys-
tem model and the way we model API changes and ripple effects
(Section 5). We describe our methodology to detect ripple effects
triggered by deprecation (Section 6), before presenting our results
(Section 7). We close the paper with a presentation of the impli-
cations of our study (Section 8), a discussion of the threats to its
validity (Section 9), and conclude in Section 10.

2. RELATED WORK
Our work directly relates and builds on three research areas:

Analyses of software ecosystems and large collections of software
projects, studies about ripple effects and the evolution of APIs, and
approaches that assist developer confronted with API changes.

2.1 Software Ecosystems Analysis
The term software ecosystem has several meanings some focusing

on the business aspect [24, 18], some focusing on the analysis of
multiple software systems aspect [21, 19]. For the purpose of this
work we will use the latter meaning, and more precisely we will
consider an ecosystem to be “a collection of software projects which
are developed and co-evolve in the same environment” [21]. The
environment can be an organization, or an open-source community.
The focus is on analyzing multiple systems which have “common
underlying components, technology, and social norms” [19].

Ecosystem analysis research has two facets: the study of the so-
cial aspects, embodied in the developer collaboration, and the study
of the source code of the component systems. Jergensen et al. study
the way the developers migrate across the projects in an ecosystem
[19]. In previous work we focused on reverse engineering a soft-
ware ecosystem by generating high-level views capturing various
aspects of its structure and evolution [22]. Other approaches focus
on discovering and comparing methods extracting dependencies
between the projects in an ecosystem [28, 23]. Gonzalez-Barahona
et al. performed a study of the Debian Linux distribution, in terms
of the evolution of its size and of its programming languages [11].

The analysis of large source code data does not necessarily in-
volve an ecosystem. Code search was the first application of source
code analysis beyond the scope of the individual system: the first
academic search engine Sourcerer [2], was followed by several other
efforts [17, 29]. In 2007, Mockus studied the phenomenon of large
scale software reuse in a selected group of open-source projects [25].
Two years later, Mockus reported on his experience in amassing a
very large index of version control systems [26].

Gruska et al. mined a large sample of Linux projects (6,000),
to extract usage properties from their source code, to subsequently
detect usage anomalies [13]. They do not consider the evolution.

2.2 Ripple Effects and API Evolution
In this paper we investigate how clients react to changes in frame-

works and libraries they use. Our goal is to understand the propa-
gation of the changes in the ecosystem as a whole, and to examine
whether we can predict and support their propagation.

Similar studies have been performed at smaller scales. The work
of Haney [14], Yau et al. [37], and Black [3] investigated ripple
effects and possible methodologies to address them, at the scale
of a single system. One of them is impact analysis [1, 4]. Later
studies were performed on frameworks, libraries, and their clients
in particular. Dig and Johnson studied the evolution of the API of
four frameworks and one library, and concluded that in 80% of the
cases, the changes that break clients of a library or framework are
refactorings [7]. Similar earlier work was performed by Opdyke on
refactorings [27], and Graver on the evolution of an object-oriented
compiler framework [12]. Graver used refactorings successfully
during the evolution of a compiler, when extending it to incorporate
types; he does not comment on whether the documented changes
impacted the API of the framework. Likewise, Tokuda and Batory
applied refactoring operations on two object-oriented designs, in
order to recreate the changes between versions of these systems. In
their case, the API changes were extensive [34].

To our knowledge, we are the first to undertake a study on the
effect of API changes on actual clients of libraries and frameworks.



2.3 Reacting to API Changes
Several automated approaches have been proposed to react to ex-

ternal changes. Zeller introduced delta debugging, which partitions
the change sets in a version control archive in order to pinpoint the
change being the cause of a bug [38].

Later, both Henkel and Diwan, and Ekman and Asklund, proposed
to record the refactorings performed in an IDE on the source code of
the framework in order to replay them in the client [15, 10]. Dig et al.
built a refactoring-aware versioning system, storing the refactorings
and the other source code changes in a single repository [8].

In the absence of recorded refactorings, several approaches detect
them from several versions of a library. Weissgerber and Diehl
used a technique based on signature changes and clone detection in
the method bodies [35], while Dig et al. use shingles encoding of
ASTs to quickly compute the similarity between candidates accross
versions, and then used semantic analyses to refine the candidates
[6]. Taneja et al. expanded Dig’s technique to work for library API
that do not have callers [33]. Kim and Notkin identify systematic
changes (including refactorings) based on a logic engine [20].

Several approaches go further and recommend changes to be
made in order to recover from the API change. Dagenais and Ro-
billard observe how the framework itself adapted to its changes
[5], while Schaffer et al. observe how other clients adapted [31].
Wu et al. introduced an approach incorporating text similarity and
handling more complex cases [36]. Dig et al. adopt the opposite
approach, and introduce a layer between the client and the new ver-
sion of the library, so that the client is shielded from the changes [9].
Holmes and Walker also adopt a different viewpoint, and monitor
the versioning system of libraries used by a system and filter changes
according to how relevant they are for the system (ie., whether the
system uses the entities that were modified or not) [16]. In all cases,
the approaches were validated on a selected number of frameworks,
for statistically typed programming languages.

3. CHALLENGES IN ECOSYSTEM AND
API CHANGE ANALYSIS

To analyze API changes, and determine if they trigger ripple
effects, we need a reliable process to detect them in the large amount
of data at our disposal. This process has three main steps: (1)
curating the data, (2) building a model of the ecosystem, and (3)
generating a list of candidate API changes, and their impact on
clients. This process is subject to a set of challenges:

1. Curating the data. Determining which project is part of
the ecosystem can prove to be a challenge in itself. Some
communities—especially larger ones—may spread over mul-
tiple websites that need to be individually crawled to gather
the data. In our case, this problem is simpler, since the
Squeak/Pharo community mainly uses a single web site to
store source code.

2. Modeling thousands of evolving systems. An evolving ecosys-
tem contains a large amount of data that must be handled
appropriately with the correct level of abstraction. In the case
of ripple effect detection, we must model changes to the API
of systems, and do so between individual versions of systems:
The Ecco meta-model is our proposed solution.

3. Detecting ripple effects. After the model of the ecosystem
is built, the ripple effects themselves—original API change
and reactions and adaptation of the clients over time—must
be modeled and detected.

The next three section detail how we addressed these challenges.

4. THE SQUEAK/PHARO ECOSYSTEM
Our first task was selecting an adequate ecosystem that would

provide support for answering our research questions. We chose the
ecosystem built around the Squeak and Pharo open-source develop-
ment communities (Pharo is a fork of Squeak). It is hosted by the
Squeaksource2 source code repository. Since 2004, Squeaksource
hosts a large number of individual repositories of a distributed,
language-aware version control system named Monticello. Squeak-
source is the foundation for the software ecosystem that the Squeak
and Pharo communities have built over the years. As of March 2011,
Squeaksource hosts 2,601 systems in which 3,036 contributors per-
formed more than 127,000 source code commits. The combined
size of all the versions is more than 11.4GB of compressed source
code (Monticello stores versions as zip files).

4.1 The Squeak and Pharo Communities
Squeak is a dialect of Smalltalk, as well as an implementation of

its programming environment. It was created in 1996, and has gath-
ered around it an active community. The One Laptop Per Child ini-
tiative delivered the laptops with the EToys end-user programming
implemented in Squeak. The Seaside web-development framework—
the main competitor for Ruby on Rails as the framework of choice
for rapid web prototyping—is developed by the Squeak community.
The Moose analysis platform has been ported to the Pharo platform.

Pharo forked from Squeak in early 2008. It is now a distinct
Smalltalk distribution with a distinct (but somewhat overlapping)
community. One of the main goals of Pharo has been to provide a
distribution of Smalltalk with a wide set of libraries, an IDE, and
other applications, which are all open-source and liberally licensed.
As a sign of the distinction between the two communities, Pharo
has a distinct mailing list, a separate web presence,3 and is rapidly
evolving. If Squeak’s goal is to be an inclusive development plat-
form (featuring multimedia facilities, an environment for children
programming, etc), Pharo is geared towards being a development
platform more catering to the industry and the academia. As such,
since the fork the Pharo community has been doing a large amount
of refactoring and cleanup of its code base.

If these two communities are growing apart, they still share the
same version control infrastructure: Monticello for version control,
and the Squeaksource repository.

4.2 The Monticello Version Control System
Monticello is a distributed, language-aware version control sys-

tem.4 When performing a commit of a project with Monticello, a
snapshot of the source code is stored. Since this process does not
involve computing deltas with the previous version, a Monticello
repository is simply a file system directory. Besides the snapshot of
the source code, Monticello versions record meta-information, such
as author, time stamp, commit comment, and, particularly useful for
evolution analysis, version information: Each Monticello version
contains the list of all its ancestor version referenced by name.

Monticello is also language-aware; it is designed to version
Smalltalk source code only. As such, versioning is not performed at
the level of files and lines, but at the level of packages, classes, and
methods. This allows the differencing and merging algorithms to use
much richer information than more conventional versioning systems,
easing the process for the developer—and for our analyses—at the
price that other resources beyond source code need to be handled
separately [30].

2http://www.squeaksource.com
3http://pharo-project.org
4http://www.wiresong.ca/monticello/
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4.3 The Squeaksource Super-repository
Squeaksource is an online source forge, built with the Seaside

Smalltalk framework, which is the foundation for the software
ecosystem that the Squeak and Pharo community have built over the
years.5 Squeaksource has been operational since late 2003, and pub-
licly announced in early 2004. It has quickly become the de facto
platform for sharing open-source code for the Squeak and Pharo
communities. Today, the overwhelming majority of Squeak and
Pharo developers use Squeaksource as their source code repository,
making it a nearly complete view of the Squeak and Pharo software
ecosystem.

At its core, Squeaksource is simply a set of Monticello reposito-
ries (hence a super-repository), accessible via HTTP, where people
can commit their source code. Squeaksource provides accounts for
developers, who can define projects on the web site and specify
who can access their projects (ie. granting read/write access to the
project’s individual repository). It also provides services such as per-
project presentation pages, RSS feeds, wikis, and overall statistics,
and enables one to browse the source code of any version stored on
the web site, provided one has access rights to do so.

An alternative to our choice would have been to analyze a devel-
opment community centered on a more popular language such as
Java developers. This would have implied a distinct set of trade-offs.
Even if Monticello and Squeaksource have shortcomings, they are
extremely convenient to process as (1) the data is centralized on one
server and is simply structured in file directories, and (2) we can
reuse Monticello’s language awareness to work with object oriented
concepts instead of text files. To summarize, the reasons for the
choice of the Squeak/Pharo ecosystem as a case study are:

• Squeaksource is the de facto source code repository for the
overwhelming majority of the open-source code produced by
the Squeak and Pharo communities.

• The community—more than 3,000 contributors strong—is
large enough to be relevant.

• The versioning system used by the community, Monticello,
is a high-level versioning system, working at the level of
packages, classes and methods, instead of files and lines of
code, thus considerably simplifying our analysis.

• Several large and widely used frameworks are hosted on
Squeaksource, as well as a variety of smaller ones. Over-
all, several hundred projects can be classified as frameworks.

• The fact that the community has forked is a factor that con-
tributes to the frequency of API changes and ripple effects.
Pharo wants to “clean up” its code base, incurring a lot of
changes making it less compatible with Squeak code, and
triggering frequent updates for Pharo developers. This may
or may not affect Squeak developers.

5. MODELING EVOLVING ECOSYSTEMS

5.1 The Ecco-Evol Metamodel
There are two conflicting requirements that need to be addressed

by an ecosystem model that allows the detection of API changes
and ripple effects in ecosystems: on the one hand, the model should
be lightweight enough to allow the modeling of a large number
of projects—each of which might in turn have a large numbers of
versions; on the other hand, the model should represent ecosystem
5http://www.squeaksource.com

evolution and record the details of each of the versions, such that
the structural changes between versions can be tracked and used to
determine the occurrences of ripple effects. To build such a model
we drew inspiration from two previous ecosystem models that we
proposed in previous work:

• Ecco [23] is a lightweight, language-independent represen-
tation of the data in ecosystem snapshots, providing full
(language-dependent) access to the details on demand. Ecco’s
main unit of abstraction is the system. Each system maintains
lists of provided (defined in the system), and required (used
by the system) entities over its lifetime. Based on these lists of
provided and required entities one can recover dependencies
between systems (e.g., if system B requires a set of entities
and system A is the only provider of these entities in the
ecosystem, we can infer that B depends on A). Ecco does not
represent multiple versions of a system.

• RevEngE [21] is a meta-model that supports modeling the
structural evolution of an ecosystem; in our previous work we
have proposed it as a generic language-independent ecosystem
meta-model which supports evolutionary analysis. The model
uses a full FAMIX model to represent every version of the
individual systems. This turns out that is very expensive
both in terms of building the models, maintaining them, and
executing operations on them.

We enhanced Ecco with a model of versions inspired by RevEngE:
we model an ecosystem with systems and versions, but for each
pair of successive versions we only keep a delta. We call this new
meta-model Ecco-Evol.
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Figure 2: EccoEvol models every version as a delta

Figure 2 shows that in Ecco-Evol, each version keeps track of the
changes between itself and its predecessor. These changes are high-
level, and consist in sets of additions and removals of required and
provided entities (methods and classes). In addition to changes, the
meta-model keeps track of metadata (author, time stamp), and links
to ancestors and successors versions. The model allows more than
a single link to ancestors and successors in order to accommodate
forks and merge operations. The model allows details-on-demand:
each version contains a link to its original snapshot on the file system
and can use Monticello’s infrastructure to inspect the definitions
contained in it, as well as performing differences with its ancestors
and successors.

5.2 Detecting API Changes and Ripple Effects
At the level of the ecosystem, a ripple effect is determined by

a change to a system’s API which originates in one system and
propagates to other systems. A ripple effect is a pair of two elements
(CO, Ci,i<n):



• CO - An original source code change in an original project
(PO). This change must mutate in some way the API of the
project (e.g., by adding, removing, or modifying artifacts)

• Ci,i<n - A set of changes which belong to projects that are
distinct from the original project (PO), which are performed
as the direct consequence of the original change (CO) and mu-
tate the source code of the impacted project (e.g., by adding,
removing or modifying artifacts).

We simplify the problem of ripple effects in the ecosystem in
two ways. First, we consider that ripples propagate only one level
from the source. Ripples of higher degrees, where a change triggers
other changes which in turn trigger yet other changes, remain for
future work. second, we consider the ripple effects based only on
a very specific semantic change, deprecation: even detailed static
analysis may not always be able to infer whether a generic semantic
change will affect other artifacts. This becomes even harder at the
scale of an entire ecosystem. In contrast, a deprecation is an explicit
statement of intent that the API is changing.

When looking at the syntactic changes of the original source code
change we consider two types of artifacts, classes and methods. For
each type of entity there are three elementary changes that one can
introduce in a project that can later propagate to other projects:

1. Addition of provider. The change introduces a new entity that
will be provided by a project. In most of the cases this means
extending the API of the system.

2. Removal of provider. The change removes an entity that was
provided by the project. In most cases this means removing a
method from the API of the project.

3. Modification of provider. This changes the provided entity in
some way. A special case of this is annotating a method or
class as deprecated, tagging it for later removal.

A provider addition does not render the client incompatible with the
provider and therefore does not force him to react. Therefore, we
can not be sure that simple additions will introduce ripple effects.
On the other hand, removing or renaming a provided entity that
a client uses effectively forces them to update or use the outdated
version of the framework. A search for ripple effects based on
method removals and renames will provide a lower bounds on the
number of API changes causing ripple effects in the ecosystem.

The case of removal must be treated with attention. The devel-
opers of a library or a framework might decide to never actually
remove a provided artifact but instead just mark it as deprecated
(through annotations or special method calls), signaling in this way
that in future versions of the system that artifact is likely not to
be supported anymore. In fact, this is the most disciplined way to
remove a method, while allowing the clients time to react to the
change. In this article we will on changes to the provider that depre-
cates it, as this is the clearer indication that an API change is taking
place.

6. METHODOLOGY
To build and validate the list of API changes causing ripple effects

occurring in the ecosystem as a result of method deprecations, we
employ the following methodology.

Generate a list of candidates We query the model of the ecosys-
tem for every usage of a given method. To generate our list of
candidate changes to analyze, we operated under the assumption
that deprecated methods are a marker of API changes, and as such

a likely cause of ripple effects. Indeed, deprecated methods are
explicitly tagged for later removal.

When deprecating a method, Smalltalk users insert a call to a
deprecation method in the body of the deprecated method. Each call
to the deprecated method will output a warning at run-time. The
following method in Moose—a reverse-engineering environment—
was deprecated; the deprecation message indicates the preferred
alternative:

addEntity: anElement

self deprecated: 'use add: instead'.
↑self add: anElement.

We query the ecosystem for all the commits that introduce a
requirement to one of the deprecation methods; the actual deprecated
method is then extracted from the differences between the two
snapshots. In total, 577 methods were deprecated in the ecosystem
in the period from 2004 to 2011. In addition, we expanded the scope
of our search by also considering the 186 classes that featured a
deprecated method. In some cases, a deprecated method is moved
from one class to another; if we do not consider the classes, we
do not see this kind of changes if the name of the method stays
identical.

Assess usage of each candidate We filtered the initial set of
deprecated methods leaving only the ones for which the method
has been removed in at least 3 transactions over time. This filters
a portion of the methods that are removed as a result of the natural
evolution of the system6. We manually inspected the each of the
remaining candidates to assess whether they caused a ripple effect.
To do so, we assessed the following parameters:

• Number of projects using the candidate: At least two dis-
tinct projects must be using the method/class (the originating
project, and a client).

• Evolution of the usage of the candidate over time (as shown
in the graphs of Figure 1). Deprecated API elements causing
ripple effects experience a drop of usage after a point, whereas
others will usually grow in usage continuously or stabilize.
Methods or classes that are replacements of other entities may
sometimes see their popularity surge.

Inspect changes to confirm, and determine replacements For
each candidate, we analyze the related changes. We: (1) retrieve the
list of changes between each two versions in which the candidate
was involved (using Monticello’s infrastructure), (2) filter the list
of changes, keeping the list of methods that were changed and who
have references to the candidate, and (3) display those changes in a
Ripple Effect Browser. This tool we developed orders transitions
between versions by date; for each commit, it shows the changed
methods; for each method, it presents the differences between its
previous and current versions, highlighted to emphasize additions
and removals.

Using the Ripple Effect Browser, one can finally decide whether a
deprecated candidate caused a ripple effect, based on the magnitude
of the changes, their spread among projects, and the amount of
unrelated changes. In most cases, the inspection allows one to infer
what is the replacement to use. By manual inspection one can detect
whether the deprecated method is replaced consistently with another
method. If there is such method we (4) wrote it down in association
with the deprecated method.
6By natural evolution we mean the evolution of the system indepen-
dent of the API deprecation.



An additional benefit is that this process sometimes triggered the
discovery of new ripple effect candidates that we added to the list and
checked further (for instance, when a project adapted to two distinct
API changes in the same commit). We found 14 additional methods
and 6 additional classes in this manner, that were not explicitly
marked as deprecation. We refer to these as implicit deprecations.

Using this process, the first author processed the initial list of
candidates, and trimmed it down to 180 methods classified as “prob-
able ripple effects”, and 20 classes. At that stage, the second author
repeated steps (2), (3) and (4) on the list, to corroborate the findings
of the first author. Differences were discussed, and we opted for a
lower threshold with respect to noise (i.e., the amount of unrelated
changes or changes related to the natural evolution that we tolerated).
After this process, we had a final list of 113 confirmed ripple effects
(94 methods, and 19 classes, counting the additional 14 methods
and 6 classes we encountered during the inspection itself).

7. RESULTS
In this section, we answer the six research questions about API

changes that we outlined in the introduction.

7.1 Frequency of Ripple Effects
RQ1. How often do deprecated API methods cause ripple ef-
fects in the ecosystem?

From the 577 deprecated methods in the ecosystem, we discov-
ered that 80 (14%) produced non-trivial API changes effects that
impacted at least one other project. From the 185 deprecated classes
13 (7%) provoked reactions that impacted at least one project. As
such, a minority of deprecations appear to cause reactions in other
projects.

There are two possible explanations for the low numbers:

1. Most deprecated entities are only used internally in a system,
are not part of the public API, and hence not considered in
our study. Developers, without knowing who are the users
of their API follow defensive practices by deprecating even
entities used only internally.

2. The clients are still unaware of the deprecation, and the up-
dates are still pending. Later, we see that projects take time to
react to the API changes, hence some pending changes may
not have been discovered yet.

Anecdotal evidence gleaned from browsing the API changes and
their reactions indicate that the first explanation account for the
majority of the cases, but the second should not be excluded. In the
rest of this section, we add to these numbers the 14 methods and 6
classes that we identified separately as implicit deprecations.

7.2 Magnitude of Ripple Effects
RQ2. How many projects react to the API changes in the ecosys-
tem and how many developers are involved?

In this question, we seek to quantify the reactions to the API
change, in the cases where reactions occurred. We quantify the
reactions in terms of numbers of projects and packages affected,
numbers of developers affected, and total number of changes. To
determine the magnitude of a ripple effect, we first need to estimate
when the change that caused it was introduced. To do this we employ
a set of heuristics.

We first locate the change introducing the deprecation, if present.
However, in some cases this change does not exist (for classes or
methods identified separately), or is performed after the ripple effect
already started. We hence also estimate the date of the ripple effect
as the date when the method reached its peak usage, and return the

last change in the originating project that modified or removed the
deprecated entity. We return the change which has the earliest date
between the deprecation change and the change before the peak.
All commits after this change that remove a requirement to the
deprecated entity are considered to be reactions to the API change.

Looking at the data like this reveals that the largest ripple effect
concerns the deprecation of the class Preferences: 79 projects react;
in the box plot shown in Figure 3 (i) this deprecation is depicted as
the dot at the top (in a box plot all outliers are shown as dots). The
third quartile is 12 (25% of the ripple effects cause reactions in 12
or more projects, forming the top of the box in the box plot), the
median is 5 (middle of the box), the first quartile is 3 (bottom of the
box), and the minimum is 1 (bottom whisker of the box). The top
whisker at 20 marks the highest number of reacting projects that is
still not consider to be an outlier. On average, 9.2 projects react to a
deprecation causing a ripple effect.
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Figure 3: Box plots for (i) projects and (ii) packages reacting to
API changes.

The figures at the level of packages and individual changes follow
the same distribution. The deprecation of class Preferences caused
reactions in 132 packages, (3rd quartile: 15; median: 8; 1st quartile:
5; average: 14). Preferences caused 531 individual reactions, i.e.,
commits removing dependencies to it (3rd quartile: 28; median:
12; 3rd quartile: 7; average: 29). These distributions are shown
as box plots in Figure 3 (ii) and Figure 4 (i). We expected at least
one commit per package, but the distribution shows that more are
required: the median ripple effect causes 5 projects to react, but
triggers 12 individual changes. We clearly see that it usually takes
several commits before resolving a ripple effect in a single project,
so the changes are not trivial.

We compute the number of developers affected by the ripple ef-
fect simply as the number of authors of commits that react to the
ripple effect, shown in Figure 4 (ii). As before, the largest ripple
effect, Preferences, involved a large number of developers (86). The
top 25% of ripple effects all involve more than 14 individual devel-
opers, strengthening the intuition that some ripple effects have large
consequences. The median is 7, and the first quartile 4, showing that
the majority of ripple effects involve much less people. We also see
that the numbers of developers involved in the ripple effect is higher
than the number of projects, implying that it is common that two or
more developers involved in the same projects have to react to the
changes, meaning that a second developer has to pick up where the
other left off. This further confirms that reacting to an API change
is not trivial, and that a developer can easily overlook some pending
changes.
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Figure 4: Box plots for (i) individual reactions, and (ii) affected
developers

7.3 Duration of Ripple Effects
RQ3. How long does it take for projects to notice and adapt to
a change to an API they use?

A quick reaction to API changes is desirable. As changes get
older, their rationale become less clear as other changes accumulate.
Likewise, when they adapt to an API change, individual projects
should adapt at once to it, and not over a long period of time, as they
are in an inconsistent state during that period.

We estimate the reaction time to an API change as the number
of days between the starting time and the first reaction to the API
change. The reaction time varies wildly as depicted in the first box
plot in Figure 5. The first quantile is at 0 days, indicating that a
non-negligible minority of API changes see a reaction on the same
day as the change: this is possible if a developer works both on
the library and some of its clients, or if developers coordinate via
mailing lists, for instance. The median time is at two weeks, while
the third quartile is at 84 days, indicating that a strong minority of
API changes may take 3 months or more to be acted upon. Some
API changes take even longer (more than a year) to be acted upon,
which raises further concerns, as the older changes get, the harder
they are to understand, and the more they tend to accumulate.
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Figure 5: Box plots for (i) reaction time and (ii) adaptation time

For a large project, adapting to a simple API change may be a
challenge due to the sheer size of the code base. We looked at
the adaptation time for the ripple effect on a per-project basis. We
measure the interval between the first and the last reaction to the
ripple effect on the same project. As shown with the second box
plot in Figure 5 7, a large proportion of projects react quickly: the
7For legibility, we filter outliers; the 90th percentile is 243 days

median is at 0 days, indicating that more than half of the projects fix
an API change extremely quickly. With the help of refactoring tools,
correcting an API change such as a rename can be done instantly, if
the code base is manageable.

On the other hand, the third quartile is with 26 days much higher.
Some projects may even take more than an entire year to adapt to an
API change. Indeed, some of the largest projects on SqueakSource
are software distributions, where the large size of the system makes
it comparable to a small-scale ecosystem. At these scales, it is easy
to overlook that a package has not been updated yet. This situation
is compounded by the fact that Smalltalk is dynamically typed, so
a call to an out of date method will not be found at compile time,
but at runtime. This makes it possible that even smaller systems
may miss some updates and not notice them for a long time. A
statically-typed language will catch these errors at compile-time; as
such, a comparison would be extremely interesting. The situation is
not clear-cut: in large systems, a complete re-compilation may not
be a daily occurrence.

The findings in this section lead one to conclude that the problems
related to API changes are related to both the awareness of the
changes, and to performing the update itself: in most cases, the
update was carried out in a day; a minority of cases took much
longer, with the associated consequences of adapting to changes
late, and doing so partially.

7.4 Adaptations to Ripple Effects
RQ4. Do all the projects in the ecosystem adapt to the API
changes?

As we have seen, some projects take a long time to react to an API
change. Other projects do not react at all. Figure 6 (i) and (ii) show
the distribution of projects and packages affected by API changes
in the analyzed ecosystem. The numbers of affected projects and
packages are much higher than those that actually react to API
changes (as shown in Figure 3): the median of affected projects
by an API change is 25 compared to 5 projects also reacting to
it (packages: 44 compared to 8). The first quartile is 11 projects
affected compared to 3 reacting and the third quartile is 61 projects
affected compared to 12 reacting (packages: 1st quartile 20 to 5 and
3rd quartile 99 to 15). Most projects and packages are affected by
the Preferences deprecation: 314 and 625, respectively.
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Figure 6: Box plots for (i) projects and (ii) packages affected by
API changes

Comparing the ratio of reacting projects to the ratio of all projects
using the deprecated entity gives the distribution depicted in Figure
7 (i). We find that a surprisingly low number of projects react, with
the median at 20% (1st quartile: 13%; 3rd quartile: 31%). In the
following we investigate possible reasons for this low reaction.



Project category Description
Affected Projects using the deprecated entity and thus

being affected by the deprecation
Reacting Subset of the affected projects that remove

the usage of the deprecated entity
Broken Affected projects not removing the depen-

dency to the deprecated entity
Stagnating Affected projects with little or no activity

(less than 10 commits) after the deprecation
Dead Affected projects without any activity after

the deprecation
Counter-reacting Affected projects not removing the usage of

the deprecated entity but adding even more
usages

Table 1: Classification of projects affected by an API change

In a software ecosystem, a possibly large portion of the systems
may be stagnant, or even dead projects. Our first hypothesis is
that the projects that did not react, died before the ripple effect
happened. We consider a project as dead if there are no commits to
its repository after the API change that triggered the ripple effect.
Likewise, a project is stagnant if a minimal number of commits
(less than 10) have been performed after the API change. Table 1
lists the different classifications of projects regarding API changes.
Removing dead or stagnant projects (i.e.,, keeping alive projects
only) paints a different picture, seen in Figure 7 (ii): 40% of the
projects with a reasonable level of activity do react to the changes
(1st percentile: 29%; third percentile: 52%).
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Figure 7: Box plots for ratios of: (i) reacting and affected
projects; (ii) reacting and alive projects (dead or stagnat-
ing projects removed); and (iii) reacting, alive projects with
counter-reactions removed

The second reason why a project would not react to a change is
when it is using another version of the library or framework changing
its API, one in which the API did not change. This can happen when
a project does not have the manpower to keep up with the evolution
of another and freezes its relationship with a given version that is
sufficient for it. Another reason which might be particular to our
case study is the split in the communities of Squeak and Pharo and
the fact that Pharo more aggressively refactors its code base.

To estimate this effect, we measure the number of projects that
actually add more usages of the deprecated entity, and never re-
move any usages of it (that is, they are counter-reacting to the
deprecation); we assume that since they continue to actively use the
deprecated entity, they are well aware of its status in their branch
of the community or are not willing to update it. Removing these
from the set of projects that do not react to an API change raises the
median to 66% (1st quartile: 50%; 3rd quartile: 75%); the box plot
of the distribution is presented in Figure 7 (iii).

These figures show that a large majority of projects that are mod-
erately active and in the same part of the community do update
regularly to API changes. However, the other reality is that a simi-
larly considerable number of projects does not update either because
they are dormant projects, or because they have frozen their depen-
dency to an old version of the library or framework. This means that
the effort of porting to newer versions or other forks becomes pro-
gressively more expensive as time goes by and changes accumulate.

7.5 Consistency of Adaptations
RQ5. Do the projects adapt to an API change in the same way?

Ideally, an API change should provide a single go-to replacement,
making the adaptation painless. In practice, some API changes
may have less clear-cut or more complex solutions, making each
adaptation unique.

To study how consistent the client adaptations are after a depreca-
tion of entity in the API, we computed a list of possible replacements
for each deprecation based on co-change relationships: Each com-
mit in the reaction removes usages of the deprecated entity. For
each method in which such a reference to the entity is removed,
we extract the list of entities that were added at the same time. We
consider each of these to be a possible replacement for the entity.
For each reacting commit over time, we compute the frequency of
each candidate replacement to estimate the probability that each
candidate is a valid replacement. An example of such a frequency
list of replacements is shown in Figure 8 for the deprecation of
method addEntity:.

Figure 8: Frequency of replacements for deprecated method
addEntity: in the corpus of analyzed projects

Calculating the frequency of each replacements for all studied
deprecations yields the following results: In 16% of the cases, the
replacement is systematic, that is, one single way of replacing the
deprecated entity usage has been applied to all cases. The median
of the frequency distribution for the highest-ranked candidate is
60%, the first quartile is 46%, and the third quartile is 80% (see
Figure 9). Of course, not all dependencies to a deprecated entity
are tackled in an uniform manner: Some dependencies are simply
dropped, so the method calls disappear, without replacements; in
other cases, several alternatives may exist (as in the addEntity:
deprecation shown in Figure 8); and some developers may replace
the deprecated functionality with home-grown solutions.

However, these results provide evidence that in a large number
of cases, a replacement for an API change can be confidently found
by looking at the replacements performed by other clients of the
framework, as suggested by Schaffer et al. [31]. For the rest of the
cases, finding an algorithm that would allow the detection of the
recommended replacement remains an open problem.
RQ6. How helpful was the deprecation message, if any?

When deprecating a method, it is customary to provide an in-
dication of a replacement entity to be used instead, if possible.
Deprecated methods in Squeak and Pharo often feature a text that
describes the replacement. When present, we compared it with
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Figure 9: Box plot for the probability of the most likely replace-
ment for the deprecated entity.

the most co-changing entities as detected for the previous research
question. After manually inspecting the 80 deprecated methods, we
classified the messages in the categories shown in Table 2 (the 14
implicitly deprecated methods had no message). If some messages
were pointing to a specific replacement method, others pointed to a
class or a package instead (demanding further investigation for the
developers), while some, instead of offering a replacement, were
informing the user that the functionality was to be removed, or was
“ugly” and should not be used.

Figure 10 shows the distribution of the classification for the 94
deprecation messages we studied. In a strong minority of cases (44),
the recommendation in the deprecation was the most co-changing
entity. In a few cases, it came in second (recommendation somewhat
followed, 5). However, in 45 out of 94 cases (47.87%), the recom-
mendation was not clear on how to replace the deprecated entity,
or developers chose to bypass the recommendation and use another
mechanism to solve their problem (either removing the dependency
to the deprecated entity without replacement or using another, not
recommended way to replace it) .

These results show that one cannot always rely on a deprecation
indication to be helpful. The deprecation may either be absent, not
offer concrete advice, or offer advice, that after investigation from
the developer, is found to be insufficient.

8. IMPLICATIONS
By presenting the characteristics of the ripple effects (frequency,

magnitude, time to react and adapt, kinds of adaptations performed,
etc.) we provide the ground work for a better understanding of

Classification Description

Mostly Followed
The recommendation in the deprecation
message was followed in most of the
cases (i.e., the recommendation for ad-
dEntity: in Figure 8, was indeed add:)

Somewhat followed

The recommendation in the deprecation
message comes second in the list of
replacements developers did (i.e., this
would be the case if the recommenda-
tion for addEntity: would have been ad-
dModel:)

Rarely followed Usage of the deprecated entity was mostly
replaced in a different way than advised

Missing Recommen-
dation

No specific replacement was mentioned
in the deprecation message or the depre-
cations message was missing altogether

Table 2: Classification of the deprecation messages and of how
they were followed.

Mostly Followed

Somewhat Followed

Not Followed

Missing Recommendation 38

7

5

44

Figure 10: How developers follow the advice in deprecation
messages

API changes and their ecosystem-wide ripple effects and for future
research and development of tools and techniques to support ecosys-
tem evolution. The answers to our research questions allow us to
formulate the following implications of our study:

The quality of deprecation guidelines should be improved. In
the shorter term, our study provides immediate actionable infor-
mation: Our investigation of deprecation messages suggests that
developers should write more helpful deprecation messages. In a
strong minority of cases the deprecation message was absent, letting
developers on their own to find a replacement, vague, or—arguably
even worse—providing a recommendation that was ultimately not
followed by the majority of users of the deprecated entity. API
developers should provide concrete, specific instructions on what
element of the new API users of the deprecated API should turn to.

Some API deprecations have a large impact on the ecosystem.
The initial goal of the study was to discover whether ripple effects
happen at the ecosystem level. To answer this we focused our study
on the ripple effects that result from method deprecations and thus,
our results are only a lower bound for the actual number of ripple
effects in software ecosystems which are due to API changes.

Our study shows that even if only a minority of API deprecations
trigger ripple effects in other systems (14% of all the deprecated
methods trigger reactions in client projects), some of these can have
a large impact if we consider the number of projects and developers
that are affected (up to 80 developers, and up to 120 projects). They
take time before being noticed, and, once noticed, performing the
update itself may not be simple: more than one commit is usually
necessary, more than one developer may be involved, and some
changes may be overlooked, leaving the project in an inconsistent
state until they are addressed. In the face of this, some projects do
not react at all, either voluntarily, preferring to freeze their depen-
dencies on a given version, or involuntarily as they are not aware of
the changes. This only delays the problem.

Developers do not know how their software is used. The fact
that the majority of the deprecated methods are not used by any
other project illustrates the situation in which the library developers
do not know whether and how their code is used by clients. On the
one hand, this is the normal approach to reuse: the developer of the
library should not care about how his code is used. On the other
hand, we believe that, without excessive effort, infrastructure can be
built that would maintain the awareness and enable the querying of
inter-project dependencies, and thus pave the way to a situation in
which library developers can make better informed decisions about
the evolution of their system.

Reactions to API changes can be partially automated. Adapt-
ing a system to use a newer version of a framework, or porting it



to the other branch of a fork may be costly, and the cost will likely
increase over time. However, we observed that similar reactions
to a ripple effect happen across projects and this could allow the
partial automation of the adaptation. Indeed, strategies can be de-
veloped to assist developers impacted by API changes by reusing
and analyzing previous reactions to it. The previous reactions can
be analyzed qualitatively and quantitatively to help estimate which
are the changes required to adapt to a new API but also how much
effort it takes to upgrade to using a new API.

9. THREATS TO VALIDITY

9.1 Threats to Construct Validity
The threats to construct validity are related to the quality of

the data we analyze, and the degree of manual analysis that was
involved.

The Monticello versioning system is distributed. At each commit,
a stand-alone snapshot of the source code is stored. However, not ev-
ery commit is stored on SqueakSource; some are stored as commits
in a local repository on the developer’s hard drive. As such, there
may be gaps in the history of each systems. This artificially inflates
the changes between the versions and introduces some imprecisions.
Versions with a large amount of changes and/or a large gap between
them were filtered out the manual inspections to reduce the noise.

The ecosystem presents some instances of large-scale duplication
(around 15% of the code [32]), where packages are copied from a
repository to another (e.g.,, a developer keeping a copy of a specific
library version). This may overestimate the number of projects
that react to a given ripple effect, and sometimes makes the project
originating the change unclear.

Some method names—for instance simple action verbs such as
“move”—are very common. This introduces noise as projects may
use unrelated methods bearing the same name. Since Smalltalk is dy-
namically typed, the problem is made more difficult. Extremely com-
mon method names make ripple effects hard—if not impossible—to
detect, while we applied extra care while analyzing method names
that were less, but still somewhat common. In cases where the noise
was too high, we discarded the API change, but underestimate the
frequency with which API changes trigger ripple effects as a result.

Our study mostly consider methods and classes that were explic-
itly deprecated. Other API changes may not have been deprecated
beforehand, especially if the developer was not aware of their usage
by clients. As such, we may underestimate the amount of ripple
effects in the ecosystem. We also underestimate the size of ripple
effects since we only consider their immediate propagation, and not
transitive changes.

Some methods may have been removed as a consequence of the
natural evolution of a project, rather than a reaction to a ripple
effect. We tried to account for that during our manual analysis of
the changes, when determining if a method is the cause of a ripple
effect. In some instances, both use cases may happen at once, which
overestimates the importance of some ripple effects.

A significant part of the analysis was performed manually, and is
as such error-prone. We made sure to double-check our classification
and to discuss differences on a case-by-case basis.

9.2 Threats to External Validity
The threats to external validity are concerned with how generaliz-

able our results are.
We performed the study on a single ecosystem. It needs to be

replicated on other ecosystems in other languages in order to char-
acterize the phenomenon of ripple effects more broadly; our results
are limited to a single community in the context of open-source

software. One aspect that is particular to a Smalltalk ecosystem
is the fact that the source code from all the projects was always
available. In a different community and ecosystem one would have
to take into account that some projects would not have the source
code available but only binaries.

The SqueakSource ecosystem is a Smalltalk ecosystem, a dynami-
cally typed programming language. Ecosystems in a statically typed
programming language may present differences. In particular, we
expect static type checking to reduce the problem of inconsistent
updates in a given project. This may be mitigated if builds are in-
frequent, hence a replication on such an ecosystem would be very
insightful.

Further, the community we picked has a peculiar history as it has
experienced a fork of the community during the time it was observed.
This may produce exceptional results. In particular, the Pharo sub-
community has a heavy focus on refactoring the core libraries, which
may influence the amount of API changes encountered. On the other
hand, projects from the Squeak sub-community may understandably
not adapt to changes that concern only the Pharo sub-community.

We performed our study mostly on methods and classes that were
explicitly deprecated, with a few additional methods and classes we
encountered during our analysis. Other ripple effects may propagate
as the results of methods which are silently removed or change
semantics, and behave differently. We did not notice particular
differences between the two kinds of ripple effects, but we will
assess whether that is indeed the case work by devising algorithms
to detect these ripples and integrate more of them in our study.

10. CONCLUSIONS AND FUTURE WORK
This paper presented an empirical study on the actual incidence

of API changes, and in particular API deprecations, causing ripple
effects in practice. We analyzed the usage of deprecation in an
open-source development community, and found that a number of
deprecated methods and classes were causing ripple effects, where
client projects would have to adapt to the changes in the libraries and
frameworks they use. We inspected 113 occurrences of ripple effects
in the ecosystem we studied; we reiterate here the most interesting
conclusions we derived from the analysis:

1. A number of API changes caused by deprecation can have a
very large impact on the ecosystem, either considered in terms
of projects or developers that are impacted by the change, or
measured by the overall amount of changes.

2. A strong minority of reactions to API changes can remain
undiscovered long after the original change is introduced
(more than three months). In some cases, adaptations are
not done for entire project at once; parts of it remain in an
inconsistent state for long periods of time.

3. In a large number of cases a well-working replacement for
a deprecated method can be discovered by analyzing the re-
placements already performed for that method in the ecosys-
tem.

4. Deprecation messages are not always useful. In nearly 40%
of the cases, the instructions are either absent, unclear, or the
developers decide not to take into account the advice that they
received.

We expect that there are other API changes in our ecosystems
which are not using the deprecation mechanism. Thus, the results on
the impact of API changes we are reporting represent only a lower
bounds on the actual magnitude of the phenomenon. In future work,



we will develop algorithms to detect additional ripple effects in the
ecosystem and corroborate the results we presented here. Once that
step is complete we will work on building tools that monitor the
ecosystem and support its evolution in the presence of ripple effects.
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