
Change-based Software Evolution

Romain Robbes and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Abstract

Software evolution research is limited by the amount of
information available to researchers: Current version con-
trol tools do not store all the information generated by de-
velopers. They do not record every intermediate version of
the system issued, but only snapshots taken when a devel-
oper commits source code into the repository. Additionally,
most software evolution analysis tools are not a part of the
day-to-day programming activities, because analysis tools
are resource intensive and not integrated in development
environments. We propose to model development informa-
tion as change operations that we retrieve directly from the
programming environment the developer is using, while he
is effecting changes to the system. This accurate and incre-
mental information opens new ways for both developers and
researchers to explore and evolve complex systems.

1. Introduction

The goal of software evolution research is to use the his-
tory of a software system to analyse its present state and
to predict its future development [11, 5]. Such an analy-
sis needs a lot of information about a system to give accu-
rate insights about its history. Traditionally researchers ex-
tract their data from versioning systems, as their reposito-
ries contain the artifacts the developer produce and modify.

We argue that the information stored in versioning sys-
tems is not complete enough to perform higher quality evo-
lution research. Since the past evolution of a software sys-
tem is not a primary concern for most developers, it is not
an important requirement when designing versioning sys-
tems. They favor features such as language independence,
distribution and advanced merging capacities.

We need to prove to developers that results in software
evolution research are immediately useful to them by im-
proving the integration of our tools in their day-to-day pro-
cesses. Most tools are tailored for an use “after the fact”,
once the main development is over and before a new fea-
ture is added. A common approach is to download several

versions from a repository and to process them all at once.
This shows that incremental processing is limited, and com-
putations are long and resource-intensive. We need to pro-
vide more incremental, lightweight approaches that devel-
opers can use in their work.

This paper presents our approach to tackle both problems
of accurate information retrieval and developer use of evo-
lution tools. We believe the most accurate source of infor-
mation is the Integrated Development Environment (IDE)
the developers are using. By hooking our tools into an IDE,
we can capture evolution information as it happens, treat
it in an incremental manner, and interact with the environ-
ment to improve the usability of our tools. Our approach is
based on a model of the changes developers are applying
to the system and hence treats changes as first-class enti-
ties. In that sense, we do not make a distinction between the
system and the changes that are performed on it, i.e., soft-
ware engineering is part of software evolution.

Structure of the paper: Section 2 expands on the nature
and consequences of the problems we presented. Section 3
introduces our alternative approach. Section 4 describes the
implementation status of SpyWare, our prototype. Section
5 describes how such a model can be used in practice and
how problems are stated and solved differently in an incre-
mental, change-based world. Section 6 concludes the paper.

2. Current Approaches to Software Evolution

To perform efficient evolution research, accurate data
about the system under study is required. Despite this need,
the tools the community uses to gather the data do not pro-
vide such accurate information. At the core of most data re-
covery strategies is the versioning system used by the de-
velopers of the system.

The main criteria in choosing a versioning system to
extract data from is how many systems it versions, espe-
cially open-source ones: developers allow free access to
their repositories. The largest open-source software systems
(Mozilla, Apache, KDE, etc) use either CVS or Subversion,
researchers therefore write their tools to gather data from
these repositories.

2.1. Limitations in Information Gathering

In a previous study [12] we showed that most versioning
systems in use today (including CVS and Subversion) are
indeed losing a lot of information about the system they ver-
sion. We identified two main, orthogonal, reasons: most ver-
sioning systems are (1) file-based, and (2) snapshot-based.

File-based systems. Most of these systems still function
at the file level, as this guarantees language independence.
On the other hand, it involves extra work to raise the level
of abstraction to the programming language used by the sys-
tem [13, 9], because the collected information is obfuscated:

• The semantic information about a system is scattered
in a large amount of text files: there is no built-in cen-
tral repository of the program structure, it has to be cre-
ated manually.

• Keeping track of a program-level (not text-level) en-
tity among several versions of the system is hard since
it involves parsing several versions of the entire system
while taking into account events such as renames of
files and entities due to refactorings. Hence some anal-
yses are performed on data which has been sampled
[7, 8]: only a subset of the versions are selected be-
cause of time and space constraints. This increases the
changes between each versions, and makes it harder to
link entities across versions since the probability they
have changed is higher. Other analyses do without the
parsing of the files altogether, basing themselves on
coarser-grained information such as number of lines
or size of directories [4, 6].

Snapshot-based systems. Changes between successive
versions of the software are stored on explicit requests
(called commits) by the developer. The time between two
developer commits varies widely, but is often on the order
of several hours or days. What happens between two com-
mits is never stored in the versioning system, and we have
to deal with degraded information:

• Since commits are done at the developer’s will, sev-
eral independent fixes or feature additions can be in-
troduced in one single commit, making it hard to dif-
ferenciate them.

• The time information of each change is reduced to the
time when a commit has been performed: beyond the
task of extracting the differences between two versions
of the system, all information about the exact sequence
of changes which led to this differences is lost.

2.2. Practical Impacts of Information Loss

Example. The example in Figure 1 shows how this loss
of information can significantly degrade the knowledge we

class Foo {
 public int x;
 public int y;

 public doFoo() {
 blah.blah(blah);
 z = x + y;
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }

 public quux() {
 return y + 4;
 }

 public asdf() {
 return x * 8 + y;
 }
}

 f = new Foo();
 f.doFoo();
 print f.x + f.y;

class Foo {
 private int x;
 private int y;

 public getX() { return x; }
 public setX(newX) { x = newX; }

 public getY() { return y; }
 public setY(newY) { y = newY; }

 public baz() {
 blah.blah(blah);
 z = getX() + getY();
 return bar();
 }

 public quux() {
 return getY() + 4;
 }

 public asdf() {
 return getX() * 8 + getY();
 }

 private bar(z) {
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }

}

 f = new Foo();
 f.baz();
 print f.getX() + f.getY();

class Foo {
 public int x;
 public int y;

 public doFoo() {
 blah.blah(blah);
 z = x + y;
 return bar(z);
 }

 public quux() {
 return y + 4;
 }

 public asdf() {
 return x * 8 + y;
 }

 private bar(z) {
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }
}

 f = new Foo();
 f.doFoo();
 print f.x + f.y;

class Foo {
 public int x;
 public int y;

 public baz() {
 blah.blah(blah);
 z = x + y;
 return bar(z);
 }

 public quux() {
 return y + 4;
 }

 public asdf() {
 return x * 8 + y;
 }

 private bar(z) {
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }
}

 f = new Foo();
 f.baz();
 print f.x + f.y;

Extract Method Rename Method Create Accessors

? lines changed between commitsdifferences between refactorings

Figure 1. Simple refactoring scenario leading
to evolution information loss.

get of a system. In this simple scenario a developer starts a
short refactoring session, in which he refactors the method
doFoo. He (1) extracts a block of statements in a new
method bar, (2) replaces direct accesses to instance vari-
ables x and y with accessors throughout the entire system,
and (3) renames doFoo to baz, replacing all references to
doFoo in the code base.

He then commits these changes. This is a very small
commit, less than a minute of work, since in current IDEs all
these refactoring operations can be semi-automated. Com-
mits usually imply larger change sets than this simple ex-
ample. According to the information gathered from the ver-
sioning system, the following physical changes happened:

• The method doFoo changed name and is now signifi-
cantly shorter. This makes it hard to detect if the new
method baz is really the same entity that doFoo was.
A simple analysis would conclude that method doFoo
disappeared.

• There are several new methods: bar, baz, and accessor
methods getX, getY, setX, setY.

• Several methods had their implementation modified
because of the rename of doFoo and the introduction
of accessors, possibly scattered among several files of
the entire codebase.

In this example, only refactorings – by definition
behavior-preserving[3] – have been performed. The log-
ical changes to the system are trivial, yet this commit
caused many physical changes: Its importance mea-
sured in lines of codes is exaggerated. Without a sophis-
ticated, time-consuming analysis [13], some entities such
as doFoo are lost, even if they still exist in the code base.
On the other hand, using such a time-consuming analy-
sis makes it harder to integrate our tools in day-to-day
activies.

Moreover, the simple scenario depicted above assumes
that a developer commits after every couple of minutes of
work. In reality, it is more on the order of hours. The change
amount would be greater, and changes would be even more
diluted and less recoverable.

2.3. The Lack of Integration

The way we collect our information has shaped our tools
to function likewise. The typical procedure to fetch infor-
mation out of a version repository is to (1) download a set
of versions from the repository, (2) build a program repre-
sentation for each of the versions, and (3) attempt to link
successive versions of entities.

This approach is clearly only suited for an off-line activ-
ity, because even if sampling is used it is time-consuming
(hours or days to complete on a large-scale system). Cur-
rently, forward and reverse engineering are two very dis-
tinct, separate activities. When applied in practice, reverse
engineering is performed by specialized consultants acting
on unknown systems under time constraints.

To better accomodate developers, software evolu-
tion tools need to be incremental in nature and easily ac-
cessible from IDEs. Tools need to focus on smaller-scale
changes, when developers are working on smaller parts
of the system, as well as providing a “big picture” view
of the system to external people such as project man-
agers.

All these necessities become even more important with
the advent of agile methodologies such as extreme program-
ming (whose motto is “embrace change” [1]), which advo-
cate continuous refactorings and changes in the code base.

2.4. Ideas Behind our Approach

Our approach, presented in the next sections, stems from
the following observations:

• Versioning systems are not a good source to retrieve in-
formation, as they store changes at the file level. They
also store changes at commit time, yelding too coarse-
grained changes.

• More and more developers are nowadays using IDEs,
featuring a wealth of information and tools, making

development more effective and increasing the change
rates of systems.

• For evolution tools to gain acceptance, they must (1)
adapt to this increase of the rate of change, (2) be used
by the developers themselves as part of their day-to-
day activities, (3) be able to focus on small-scale as
well as large-scale entities, and (4) support incremen-
tal updates of information, as day-long information re-
trieval phases are a serious flaw for daily usage.

3. An Alternative Approach to Evolution

Our approach is based on two concepts: (1) an IDE in-
tegration to record as much information as possible and to
allow easy access to our tools, and (2) a model based on
first-class change operations to better match the incremen-
tal process of developing software.

3.1. Using the IDE as Information Source

Most programmers use IDEs for their day-to-day tasks,
because they are powerful tools featuring support for semi-
automatic refactoring, incremental compilation, unit test-
ing, advanced debugging, source control integration, quick
browsing of the system, etc. Most of them are extensible by
plug-in systems.

IDEs are able to do so much because they have an enor-
mous amount of information about the developer and his
system. Being able to browse or refactor the system already
implies having a reified program model. Thus we advocate
integrating our tools in an IDE, and using the IDE itself as
the source of evolution information instead of the version-
ing system. Tool integration increases tool visibility and is
a first step to feature them in the developer’s workflow. To
use the IDE as the source of information is the closest we
can get to understand the developer’s intentions.

Most IDEs feature an event notification system, so tools
can react to what the developer is doing. Hooks monitor
when a class is compiled, or when a method is recompiled.
The approach we propose use these IDE hooks to react
when a developer modifies the system by creating data de-
fined as first-class change entities.

3.2. First-class Change Entities

First-class change entities are objects modeling the his-
tory of a system following the incremental way it was
built. They contain information to reproduce the program of
which they represent the history. When executed, they yield
an abstract representation of the program they represent at a
certain point in time. They also contain additional informa-
tion interesting for evolution researchers, such as when and
who performed which change operations.

Traditional approaches model the history of a program
as a sequence of versions. This is memory-consuming, since
most parts of the system do not change and are simply dupli-
cated among versions. This is why most approaches include
a sampling step, aimed at reducing the number of versions
by selecting a fraction of them. This sampling step hence
increases the changes between successive versions, render-
ing fine-grained analysis even harder. In constrast, our ap-
proach only stores the program-level differences between
versions, and is able to reproduce the program at any point
in time.

Change operations also model with greater accuracy the
way the developer thinks about the system. If a developer
wants to rename a variable, he does not think about replac-
ing all methods referencing it with new methods, even if that
is what the IDE ends up doing: Modeling incremental mod-
ifications to the system eases its understanding.

Although we model program evolution with first-class
change operations to ease reverse engineering, we believe
it is useful for forward engineering as well. Most end-
user applications feature an undo mechanism, but most pro-
gram editors do not provide a sensible one at the seman-
tic level. First-class change operations could enable this,
hence facilitating exploratory programming by trial and er-
ror. First-class change entities can also ease arbitrary pro-
gram transformation to facilitate program evolution, follow-
ing the same scheme as semi-automated refactorings[?].

To sum up, our approach consists of the following steps:

1. Use the hooks of the IDE to be notified of developer
activity.

2. React to this activity by creating first-class change ob-
jects representing the semantic actions the developer is
performing.

3. Execute these change objects to move the program rep-
resentation at any point in time.

Advantages. The advantages of this alternative approach
over gathering data from a repository and performing off-
line analysis are the following:

• Accuracy. Reacting to events as they happen gives us
more accurate information than the one stored in the
versioning system. Timestamps are more precise, not
reduced to commit times. Events happen one by one,
giving us more context to process them than if we had
to process a batch of them, originated from an entire
day’s work.

• Incrementality. It is significantly easier to maintain a
semantic representation of the model. Events originat-
ing in the IDE are high level. Their granularity is the
one of classes and methods, not files and lines. Code
parsing is required only at the method level.

• Fine-grained. Every program entity can be modelled
and tracked along its versions, down to the statement
level if necessary. There is no state duplication, lead-
ing to space economies when an entity does not change
during several versions.

• Flexibility. Going back and forward in time using
change objects is easy. It leads to more experiments
with the code base, easing “trial and error” in develop-
ment.

Drawbacks. We have identified possible issues and im-
plications with our approach:

• Acceptance. Evolution researchers use CVS despite its
flaws, because it is the versioning systems most de-
veloper use. Subversion is a newer versioning system
gathering momentum because it is close enough to
CVS. Hence to be succesful we need to depart from
people habits as less as possible.

• Validation. Our approach needs to be evaluated with
case studies. We are monitoring our prototype itself,
but without a “real-world” case study we are unsure
about performance constraints. Our approach works
best for new projects. This limits possible case stud-
ies.

• Paradigm shift. Such an incremental approach to vari-
ous problems needs new tools and new practices to be
defined.

• Applicability. Our approach is language-specific,
which involves more effort to adapt it to a new lan-
guage than conventional file-based approach. How-
ever, our current prototype implementation is split
into a language-independent part and a language-
dependent one. Only the latter one must be adapted to
other languages/IDEs.

To address acceptance issues, we can integrate our tools
in mainstream IDEs, such as Eclipse, which features a plu-
gin mechanism. The monitoring part of the system is not
intrusive and is not visible to users. Keeping track of the
data across sessions or programmer locations can be done
by creating a “sync” file which would be part of the cur-
rent project. The versioning system itself would be used to
broadcast and synchronize information.

4. Our Prototype: SpyWare

Our ideas are implemented in a prototype named Spy-
Ware (see Figure 2), written in Squeak [10]. It monitors
developer activity by using event handlers located at IDE
hooks, and generates change operations from events hap-
pening in the Squeak IDE. Changes supported so far are
shown in Table 1.

Change Type Package Class Method Variable Statement
Creation X X X X X
Addition X X X X X
Removal X X X X X
Rename - X - - -
Superclass Change no X no no no
Property Change X X X X X
Refactoring - - - - -

Table 1. Changes supported by SpyWare.

Figure 2. SpyWare’s UI features browsing,
statistics and interactive visualizations.

SpyWare associates these change operations to program
entities up to the statement level. It is possible to track
changes to a single statement. Entities are uniquely iden-
tified independently from their name: A rename is a triv-
ial operation. SpyWare can also generate the source code
of the program it is monitoring at any point in time, by ap-
plying or reverting change operations. It also features basic
support for interactive visualizations of the history.

Our future work includes the definition and detection of
higher-order changes such as refactorings, or distinct fea-
tures of the monitored program, out of the basic building
blocks we already defined. SpyWare is currently single-
user: we plan to make it multi-user soon.

5. Change-Based Software Evolution

We believe our approach has the potential to address sev-
eral problems in both reverse and forward engineering, as an
IDE integration makes the dialogue between the two activi-
ties more natural.

Facilitating program comprehension. Processing
finer-grained changes will allow us to detect and character-
ize changes with greater accuracy. Detecting and keeping
track of all the refactorings performed on the code will al-
low us to track specific entities with more accuracy. We
also believe that it is possible to characterize changes as ei-
ther bug fixes, refactorings or feature additions and that
this information will allow to focus analysis on spe-
cific changes by contextualizing them.

Our model allows us to characterize or classify changes
and entities in arbitrary ways (using properties or annota-
tions). This facility can be used to ease understanding of
the code as well. Contrary to classical versioning systems
where branches are fixed and are set up before modification,
our model permits the modification of properties of changes
while reviewing them. Changes that need to be grouped can
be tagged for an easier handling.

Recording the complete history of a system allows for
fine-grained understanding of a dedicated piece of code by
reviewing its introduction and modifications in context of
surrounding modifications, e.g., it is useful to know whether
a line is present from the beginning of a method or much
later because of a bug fix.

Facilitating program evolution. First-class change ob-
jects can be broadcasted through a network to increase
awareness and responsiveness to changes, by providing de-
velopers insights of what other developers are doing. Such a
system would tell them if their changes are conflicting with
other people’s changes interactively. This will help avoid-
ing long and painful merge phases.

Change-based operation coupled with entity-level track-
ing will ease refactoring, e.g., in our current model, the
name of an entity is just a property: A rename does not af-
fect identity.

Merging reverse and forward engineering. Higher-
level languages and tools promote a faster and easier im-
plementation of functionality, which translates into a higher

change rate of the system. Hence some reverse engineer-
ing activities need to be done on a smaller scale, but with
a higher frequency and accuracy, to keep track of what has
been done in the system before resuming work on a part of
the system.

Change operations between two versions of the system
can be used to generate an automatic and interactive change
log to bring other developers up to speed on the changes a
developer made.

6. Conclusion

Software evolution research is restrained by the loss of
information which are not captured by most versioning sys-
tems. Evolution analysis tools are not used by developers
because they are not integrated in an IDE and require time-
consuming data retrieval and processing phases. They are
not suited for smaller-scale, day-to-day tasks [2].

We presented an alternative approach to gather and pro-
cess information for software evolution. We gather data
from the IDE the developer is using rather than the version-
ing system. We model program change as first-class enti-
ties to be closer to the developer’s thought process. Changes
can manipulate the model to bring it at any point in time in
a very fine-grained way.

Our approach being incremental, fine-grained and inte-
grated in an IDE, we consider it is suited for a daily use by
developers. To validate our hypothesis, we are currently im-
plementing a prototype named SpyWare.

Acknowledgments: We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the projects “COSE - Controlling Software Evolution”
(SNF Project No. 200021-107584/1), and “NOREX - Net-
work of Reengineering Expertise” (SNF SCOPES Project No.
IB7320-110997), and the Hasler Foundation for the project
“EvoSpaces - Multi-dimensional navigation spaces for soft-
ware evolution” (Hasler Foundation Project No. MMI 1976).
We thank Marco D’Ambros and Mircea Lungu for giving valu-
able feedback on drafts of this paper.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[2] S. Demeyer, F. Van Rysselberghe, T. Gı̂rba, J. Ratzinger, ,
R. Marinescu, T. Mens, B. Du Bois, D. Janssens, S. Ducasse,
M. Lanza, M. Rieger, H. Gall, M. Wermelinger, and M. El-
Ramly. The Lan-simulation: A Research and Teaching Ex-
ample for Refactoring. In Proceedings of IWPSE 2005 (8th
International Workshop on Principles of Software Evolu-
tion), pages 123–131, Los Alamitos CA, 2005. IEEE Com-
puter Society Press.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proceedings
International Conference on Software Maintenance (ICSM
’98), pages 190–198, Los Alamitos CA, 1998. IEEE Com-
puter Society Press.

[5] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Software
evolution observations based on product release history. In
Proceedings International Conference on Software Mainte-
nance (ICSM’97), pages 160–166, Los Alamitos CA, 1997.
IEEE Computer Society Press.

[6] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. In International Work-
shop on Principles of Software Evolution (IWPSE 2003),
pages 13–23, Los Alamitos CA, 2003. IEEE Computer So-
ciety Press.

[7] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 40–49, Los Alamitos CA, 2004. IEEE Computer So-
ciety Press.

[8] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings Ninth Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR’05), pages 2–11, Los Alamitos CA, 2005. IEEE
Computer Society.

[9] C. Görg and P. Weissgerber. Detecting and visualizing refac-
torings from software archives. In Proceedings of IWPC
(13th International Workshop on Program Comprehension,
pages 205–214. IEEE CS Press, 2005.

[10] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, A practical
Smalltalk written in itself. In Proceedings OOPSLA ’97,
ACM SIGPLAN Notices, pages 318–326. ACM Press, Nov.
1997.

[11] M. Lehman and L. Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[12] R. Robbes and M. Lanza. Versioning systems for evolution
research. In Proceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution), pages 155–
164. IEEE Computer Society, 2005.

[13] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96,
Chicago, IL, Apr. 1996.

[14] Q. Tu and M. W. Godfrey. An integrated approach for
studying architectural evolution. In 10th International Work-
shop on Program Comprehension (IWPC’02), pages 127–
136. IEEE Computer Society Press, June 2002.

