
Modelling Change-based Software Evolution

Romain Robbes and Michele Lanza (Advisor)

Faculty of Informatics
University of Lugano, Switzerland

Abstract. More than 90% of the cost of software is due to maintenance
and evolution1. We claim that the commonly held vision of a software
as a set of files, and its history as a set of versions does not accurately
represent the phenomenon of software evolution: Software development
is an incremental process more complex than simply writing lines of text.
To better understand and address the problem of software evolution we
propose a model of software in which change is explicitly represented to
closely match how object-oriented software is implemented. To validate
our approach we implemented this model in an Integrated Development
Environment (IDE) and used it to perform software evolution analysis.
Further validation will continue with the implementation of tools exploit-
ing this change-based model of software to assist software development.

1 Introduction and Problem Statement

Once implemented, a software system has to adapt to new requirements to stay
useful [1]: Over time, systems grow and become more complex. Maintaining these
systems is hard since developers deal with a large code base they might not fully
understand when performing modifications. They have to identify where in the
system to apply the change, and keep track of numerous parameters to not
introduce bugs during these interventions. 40 % of bugs are indeed introduced
while correcting previous bugs [2].

Several approaches exist to assist software evolution. Agile methodologies
[3] acknowledge that change is inevitable, rather than attempting to prevent it,
and hence ensure that a system is as simple and easy to change as possible.
Refactorings [4] are program transformations improving the structure of code,
without modifying its behavior, making it easier to maintain. The research field
of Software Configuration Management (SCM) [5] built tools to ease versioning,
configuring and building large software systems. Finally, reverse engineering en-
vironments [6] use the structure and the history of a system to ease a subsequent
reengineering effort, the history being often extracted from a versioning system.
Indeed, the history of a system contains valuable information [7], [8].

We approach the problem of software evolution at a more fundamental level.
Our thesis is that an explicit model of software evolution improves the state of
the art in software engineering and evolution. Such a model must closely reflect

1 http://www.cs.jyu.fi/ koskinen/smcosts.htm



the reality of software development, which is very incremental in nature. Hence,
our model describes the phenomenon of change itself with great accuracy, i.e.
treats change to the system as a first-class entity. In the following we describe
the model we defined, then present our ongoing validation of it.

2 Our approach

Our thesis is that a change-based model of software evolution is beneficial to
software development and maintenance activities. By change-based, we mean
that the incremental development activities of maintainers and developers must
be modelled as changes to closely reflect what happens.

The model of the evolution of software systems we defined follows these
principles (more detail can be found in [9]):

Program Representation: We represent a state of a program as an abstract syntax
tree (AST) of its source code. We are hence close to the actual system, at the
price of being language-dependent. In our model, a program state (of an object-
oriented program), contains packages, classes, methods, and program statements.
Each program entity is a node of the tree with a parent, 0 or more children, and
a set of properties (such as name, type of the entity, comments, etc.).

Change Representation: We represent changes to the program as explicit change
operations to its abstract syntax tree. A change operation is executable, and
when executed takes as input a program state and returns an altered program
state. Since each state is an AST, change operations are tree operations, such as
addition or removal of nodes, and modifications of the properties of a node.

Change Composition: Low-level change operations can be composed to form
higher-level change operations typically performed by developers. For example,
the addition of a method is the addition of the method itself, as well as the
statements defined into it. At a higher level, refactorings are composed of several
“developer-level actions” (i.e. renaming a method actually modifies the renamed
method and all methods calling it). At an even higher level, our model includes
development sessions, which regroup all the changes performed by a developer
during a given period of time.

Change Retrieval: This model of the change-based evolution of programs is
extracted from IDE interactions of programmers, and stored into a change-
based repository. Advanced IDEs such as Eclipse, VisualWorks or Squeak contain
enough information and the necessary infrastructure to gather the evolutionary
data. This repository is then accessible to tools which can use it to provide useful
information to programmer or help him or her performing change requests.

3 Validation

To validate our ideas, we are employing the following 4-step approach:



1. Comparison to other models of evolution: We first surveyed existing models
of evolving software used by evolution researchers. These models are closely
based on the underlying model of versioning systems, hence we reviewed those
in [10]. We concluded that versioning systems used by researchers (because of
their popularity among developers, such as CVS or SubVersion) all have similar
characteristics: They version systems at the file level to be language-independent,
and take snapshots of the system at the developer’s request. [10] also outlines
why these two characteristics make them not accurate enough to perform finer-
grained evolution research.

2. Feasibility: We implemented our model and populated it by developing an
IDE plug-in which listens to programmer interactions in the IDE and stores the
changes corresponding to these interactions. This IDE plug-in was implemented
for the Squeak Smalltalk IDE. It has been ported to VisualWorks Smalltalk, and
is being ported to Eclipse for the Java language.

3. Analysing evolution: We then used the data gathered in our repository to
perform software evolution analysis, in order to improve program comprehension
and reverse engineering. We implemented several visualization and exploration
tools on top of the repository. These tools show promising improvements with re-
spect to traditional software evolution analysis based on versioning system data.
The information we gather is more precise. Since each change is analysed in con-
text, origin analysis [11] is simplified. We can record precise time information for
each change, and reconstitute accurate development sessions [12], whereas tra-
ditional approaches can only recover the end result of a session. Analysing such
precise sequences allowed us to define new metrics on the sequence of changes
itself, measuring for example the activity (number of changes per hour), or the
number of changes per entity.

4. Assisting Evolution: If we can record changes to a system, it is also possible to
generate these changes. To validate our model in a forward engineering context,
we will implement tools designed to ease changing the software itself, using our
change-based representation. Several tools can be implemented to validate our
approach. One obvious possibility is the implementation of a language-level undo
system. We also think a change-based representation could act as a common
platform between refactoring tools and other program transformation tools [13].
Code clones could have changes to one instance applied to other instances, in
the spirit of [14].

4 Conclusion

To reflect on the phenomenon of software evolution more accurately, we intro-
duced a model of the evolution of programs, in which changes are first-class
entities. We represent programs as ASTs and their history as change operations
on the AST. These change operations can be composed to represent higher-level



changes such as refactorings, or development sessions. Our ongoing validation
shows that our approach recovers more information than found in classical ver-
sioning system repositories. However, our approach has several drawbacks: it
is language-dependent and requires the presence of an IDE to be accurate. To
pursue our validation we are currently porting the approach from Smalltalk to
Java, in order to isolate the language-independent parts of our model. We are
also building tools exploiting our change-based model to assist software evolution
rather than analysing it.

References

1. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. Lon-
don Academic Press, London (1985)

2. Purushothaman, R., Perry, D.E.: Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering 31 (2005) 511–
526

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley
(2000)

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison Wesley (1999)

5. Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W.,
Wiborg-Weber, D.: Impact of software engineering research on the practice of
software configuration management. ACM Transactions on Software Engineering
and Methodology 14 (2005) 383–430

6. Nierstrasz, O., Ducasse, S., Gı̂rba, T.: The story of Moose: an agile reengineering
environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE 2005), New York NY, ACM Press (2005) 1–10 Invited paper.

7. Gı̂rba, T., Lanza, M., Ducasse, S.: Characterizing the evolution of class hierar-
chies. In: Proceedings of 9th European Conference on Software Maintenance and
Reengineering (CSMR’05), Los Alamitos CA, IEEE Computer Society (2005) 2–11

8. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. In: 26th International Conference on Software Engineering
(ICSE 2004), Los Alamitos CA, IEEE Computer Society Press (2004) 563–572

9. Robbes, R., Lanza, M.: A change-based approach to software evolution. In: ENTCS
volume 166, issue 1. (2007) 93–109

10. Robbes, R., Lanza, M.: Versioning systems for evolution research. In: Proceedings
of IWPSE 2005 (8th International Workshop on Principles of Software Evolution),
IEEE Computer Society (2005) 155–164

11. Tu, Q., Godfrey, M.W.: An integrated approach for studying architectural evo-
lution. In: 10th International Workshop on Program Comprehension (IWPC’02),
IEEE Computer Society Press (2002) 127–136

12. Robbes, R., Lanza, M.: Characterizing and understanding development sessions.
In: Proceedings of ICPC 2007. (2007) to appear

13. Robbes, R., Lanza, M.: The “extract refactoring” refactoring. In: ECOOP 2007
Workshop on Refactoring Tools. (2007) to appear

14. Duala-Ekoko, E., Robillard, M.P.: Tracking code clones in evolving software. In:
ICSE. (2007) 158–167


