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Abstract. There is a diversity of ontology languages in use, among
them OWL, RDF, OBO, Common Logic, and F-logic. Related languages
such as UML class diagrams, entity-relationship diagrams and object role
modelling provide bridges from ontology modelling to applications, e.g.
in software engineering and databases.
Another diversity appears at the level of ontology modularity and rela-
tions among ontologies. There is ontology matching and alignment, mod-
ule extraction, interpolation, ontologies linked by bridges, interpretation
and refinement, and combination of ontologies.
The Distributed Ontology, Modelling and Specification Language (DOL)
aims at providing a unified meta language for handling this diversity.
In particular, DOL provides constructs for (1) “as-is” use of ontologies
formulated in a specific ontology language, (2) ontologies formalised in
heterogeneous logics, (3) modular ontologies, and (4) links between on-
tologies. This paper sketches the design of the DOL language. DOL will
be submitted as a proposal within the OntoIOp (Ontology Integration
and Interoperability) standardisation activity of the Object Management
Group (OMG).

1 Introduction

OWL is a popular language for ontologies.5 Yet, the restriction to a decidable de-
scription logic often hinders ontology designers from expressing knowledge that
cannot (or can only in quite complicated ways) be expressed in a description
logic. A practice to deal with this problem is to intersperse OWL ontologies
with first-order axioms, e.g. in the case of bio-ontologies where mereological re-
lations such as parthood are of great importance, though only partly definable
in OWL. However, these remain informal annotations to inform the human de-
signer, rather than first-class citizens of the ontology with formal semantics and
impact on reasoning. One goal of the Distributed Ontology, Modelling and Spec-
ification Language (DOL), discussed in detail in this paper, is therefore to equip
such heterogeneous ontologies with a precise semantics and proof theory.
5 We adopt the completely formal position that an ontology is a formal theory in a
given ontology language, and that an ontology language is any logical language that
some community considers suitable for ontology design.



A variety of languages is used for formalising ontologies. Some of these, such
as RDF (mostly used for linked data), OBO and certain6 UML class diagrams, can
be seen more or less as fragments and notational variants of OWL, while others,
such as F-logic and Common Logic (CL), clearly go beyond the expressiveness of
OWL.

We face this diversity not by proposing yet another ontology language that
would subsume all the others, but by accepting this pluralism in ontology lan-
guages and by formulating means (on a sound and formal semantic basis) to
compare and integrate ontologies written in different formalisms. This view is
a bit different from that of unifying languages such as OWL and CL, which are
meant to be “universal” formalisms (for a certain domain/application field), into
which everything else can be mapped and represented. While such “universal”
formalisms are clearly important and helpful for reducing the diversity of for-
malisms, it is still a matter of fact that no single formalism will be the Esperanto
that is used by everybody [23]. It is therefore important to both accept the exist-
ing diversity of formalisms and to provide means of organising their coexistence
in a way that enables formal interoperability among ontologies.
DOL enjoys the following distinctive features:
– modular and distributed ontologies are specially supported,
– ontologies can not only be aligned (as in BioPortal [37] and NeON [14]), but

also combined along alignments,
– logical links between ontologies (interpretation of theories, conservative ex-

tensions etc.) are supported,
– support for a variety of ontology languages (OWL, RDF, Common Logic,

first-order logic; planned: UML, relational database schemas, F-logic, dis-
tributed description logics, and more),

– ontologies can be translated to other ontology languages, and compared with
ontologies in other languages,

– heterogeneous ontologies involving several languages can be built,
– ontology languages and ontology language translations are first-class citizens

and are available on the Web as linked data.
The paper is organised as follows: we first discuss the theoretical foundations of
DOL in Section 2, followed by a sketch of the DOL language itself in Section 3.
Section 4 briefly discusses the DOL-enabled, web-based ontology repository en-
gine Ontohub, and Section 5 concludes.

2 Foundations of the Distributed Ontology, Modelling
and Specification Language (DOL)

The Distributed Ontology, Modelling and Specification Language (DOL)7 aims
at providing a unified framework for (1) “as-is” use of ontologies formulated in
6 Those avoiding qualified associations (amounting to identification constraints), n-ary
relations (for n > 2) and stereotyping.

7 DOL has formerly been standardised within ISO/TC 37/SC 3. The OntoIOp (On-
tology Integration and Interoperability) activity is now being continued at OMG,
see the project page at http://ontoiop.org.
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a specific ontology language, (2) ontologies formalised in heterogeneous logics,
(3) modular ontologies, and (4) links between ontologies. Historically, the design
of DOL has inherited many ideas and features (1) discussed in the Workshop on
Modular Ontologies series [13, 12, 39, 19, 24, 40], (2) from the Alignment API
[9], and (3) from the CASL (Common Algebraic Specification Language) and
HetCASL (CASL’s heterogeneous extension) languages, standardised in IFIP
WG 1.38 (Foundations of System Specification) [2, 27, 32, 20].

A distributed ontology in DOL consists of modules formalised in basic on-
tology languages, such as OWL (based on description logic) or Common Logic
(based on first-order logic with some second-order features). These modules
are serialised in the existing syntaxes of these languages in order to facilitate
reuse of existing ontologies. DOL adds a meta-level on top, which allows for
expressing heterogeneous ontologies and links between ontologies.9 Such links
include (heterogeneous) imports and alignments, conservative extensions (im-
portant for studying ontology modules), and theory interpretations (important
for reusing proofs). Thus, DOL gives ontology interoperability a formal ground-
ing and makes heterogeneous ontologies and services based on them amenable
to automated verification. The basic syntax and semantics of DOL has been
introduced in [35, 34], and the general theory of heterogeneous specifications
for ontologies in [22]. DOL uses internationalised resource identifiers (IRIs, the
Unicode-aware superset of URIs) for all entities of distributed ontologies to make
them referenceable on the Web.

2.1 Foundations

The large variety of logical languages in use can be captured at an abstract
level using the concept of institutions [10]. This allows us to develop results
independently of the particularities of a logical system and to use the notions
of institution and logical language interchangeably throughout the rest of the
paper. The main idea is to collect the non-logical symbols of the language in sig-
natures and to assign to each signature the set of sentences that can be formed
with its symbols. For each signature, we provide means for extracting the sym-
bols it consists of, together with their kind. Signature morphisms are mappings
between signatures. We do not assume any details except that signature mor-
phisms can be composed and that there are identity morphisms; this amounts to
a category of signatures. Readers unfamiliar with category theory may replace
this with a partial order (signature morphisms are then just inclusions). See [34]
for details of this simplified foundation.

Institutions also provide a model theory, which introduces semantics for the
language and gives a satisfaction relation between the models and the sentences
of a signature. The only restriction imposed is the satisfaction condition, which
captures the idea that truth is invariant under change of notation (and enlarge-
ment of context) along signature morphisms. This relies on two further compo-
nents of institutions: the translation of sentences along signature morphisms, and
8 See http://ifipwg13.informatik.uni-bremen.de
9 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

3



the reduction of models against signature morphisms (generalising the notion of
model reduct known from logic).

It is also possible to complement an institution with a proof theory, introduc-
ing a derivability relation between sentences, formalised as an entailment system
[30]. In particular, this can be done for all logics that have so far been in use in
DOL.

Example 1. OWL signatures consist of sets of atomic classes, individuals and
properties. OWL signature morphisms map classes to classes, individuals to in-
dividuals, and properties to properties. For an OWL signature Σ, sentences are
subsumption relations between classes or properties, membership assertions of
individuals in classes and pairs of individuals in properties, complex role inclu-
sions, and some more. Sentence translation along a signature morphism simply
replaces non-logical symbols with their image along the morphism. The kinds of
symbols are class, individual, object property and data property, respectively,
and the set of symbols of a signature is the union of its sets of classes, individuals
and properties. Models are (unsorted) first-order structures that interpret con-
cepts as unary and properties as binary predicates, and individuals as elements
of the universe of the structure, and satisfaction is the standard satisfaction of
description logics. This gives us an institution for OWL.

In this framework, a basic ontology O over an institution I is a pair (Σ,E)
where Σ is a signature and E is a set of Σ-sentences. Given a basic ontology
O, we denote by Sig(O) the signature of the ontology. An ontology morphism
σ : (Σ1, E1) → (Σ2, E2) is a signature morphism σ : Σ1 → Σ2 such that σ(E1)
is a logical consequence of E2.

Several notions of translations between institutions can be introduced. The
most frequently used variant are institution comorphisms [11]. A comorphism
from institution L1 to institution L2 maps L1-signatures to L2-signatures along
a functor Φ and Σ-sentences in L1 to Φ(Σ)-sentences in L2, for each L1-signature
Σ, while Φ(Σ)-models are mapped to Σ-models. Again, a satisfaction condition
has to be fulfilled. For institution morphisms, the directions of the translation
of sentences and models are reversed. See [11] for full details.

Figure 1 shows a conceptual hierarchy of mappings.10 Mappings are split
along the following dichotomies:
– translation versus projection: a translation embeds or encodes a logic into

another one, while a projection is a forgetful operation (e.g. the projec-
tion from first-order logic to propositional logic forgets predicates with arity
greater than zero). Technically, the distinction is that between institution
comorphisms and morphisms.

– plain mapping versus simple theoroidal mapping [11]: while a plain mapping
needs to map signatures to signatures, a simple theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatisation of a transitivity predicate for properties.

10 This graph, computed within protégé, shows the inferred class hierarchy below the
class Mapping of the LoLa ontology (see Section 2.3 below).
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Fig. 1. The mapping subset of the LoLa ontology

Mappings can also be classified according to their accuracy; see [33] for de-
tails. Sublogics are the most accurate mappings: they are syntactic subsets. Em-
beddings come close to sublogics, like injective functions come close to subsets. A
mapping can be faithful in the sense that logical consequence (or logical deduc-
tion) is preserved and reflected, that is, inference systems and reasoning engines
for the target logic can be reused for the source logic (along the mapping).
(Weak) exactness is a technical property that guarantees this faithfulness even
in the presences of ontology structuring operations [5].

2.2 A Graph of Logic Translations

Figure 2 is a revised and extended version of the graph of logics and translations
introduced in [33]. New nodes include UML class diagrams, OWL-Full (i.e. OWL
with an RDF semantics instead of description logic semantics), and Common
Logic without second-order features (CL−). We have defined the translations
between most of these logics in earlier publications [35, 33]. The definitions of
the DOL conformance of some central standard ontology languages and trans-
lations among them will be given as annexes to the standard and published in
an open registry, which is also the place where the remaining definitions will be
maintained (cf. Section 2.3).

2.3 A Registry for Ontology Languages and Mappings

Beyond those shown so far, it will be possible to use any (future) language or
mapping (in the sense of Section 2.1) with DOL. We host a registry to which
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Fig. 2. The current logic translation graph for DOL-conforming languages

the community can contribute descriptions of any languages and mappings11,
as well as logics and serialisations (i.e. concrete syntaxes of languages).12 The
LoLa (“logics and languages”) ontology formalises these notions [25]. LoLa and its
main instance, the registry, form themselves a distributed ontology. The registry
is written in RDF, LoLa in OWL plus some Common Logic axioms.

Fig. 3. Top-level classes in LoLa’s OWL module

Figure 3 shows the top-level classes of LoLa’s OWL module, axiomatising
logics, languages, and mappings. Object-level classes (that is, classes providing
the vocabulary for expressing distributed ontologies) comprise ontologies, their
constituents (namely symbols and sentences), as well as links between ontolo-
gies. Mappings are modelled as shown in Figure 1: by a hierarchy of properties
corresponding to the different types of edges in Figure 2. The full LoLa ontology
is available at http://purl.net/dol/1.0/rdf#.
11 As distributed ontologies refer to languages and mappings by IRIs, third parties may

also set up their own, decentral registry extensions.
12 The OWL 2 DL language is, e.g., exactly as expressive as the logic SROIQ(D) [17],

and it can be serialised in the text-based Manchester syntax or as XML.
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3 The Language DOL

3.1 Motivation

Many (domain) ontologies are written in DLs such as SROIQ and its profiles.
These logics are characterised by having a rather fine-tuned expressiveness, ex-
hibiting (still) decidable satisfiability problems, whilst being amenable to highly
optimised implementations.

However, expressiveness beyond standard DLs is required for many foun-
dational ontologies (as well as bio-medical ontologies), for instance Dolce13,
BFO14, or GFO15. Moreover, for practical purposes, these foundational ontolo-
gies also come in different versions ranging in expressiveness, typically between
OWL (e.g. Dolce Light, BFO-OWL) and first-order (Dolce, GFO) or even
second-order logic (BFO-Isabelle).

The relation between such different versions, OWL and first-order, may be
recorded in various ways. In some cases it is primarily discussed in the research
literature, see Keet’s mereo-topological ontology [18] for an example, or it is
described in the OWL ontology within a comment, not carrying formal semantics.
Such a comment might only contain an informal explanation of how the OWL
approximation was obtained (Dolce Light is an example), but it might also
describe a fully formal, axiomatised first-order extension of the OWL ontology.

Consider the BFO-OWL object property temporalPartOf. The OWL axioma-
tisation states this to be a transitive subproperty of occurrentPartOf, and the
inverse of hasTemporalPart.16 This property is, however, annotated in a rich way,
containing example usages, a richer first-order axiomatisation of this property
with pointers to the corresponding axioms in the first-order version, as well as
natural language renderings of these axioms. The logical part of this annotation
may be captured in DOL as follows: an OWL ontology first lists the entire OWL
axiomatisation of BFO. In a second step, we import this OWL ontology along
a translation to Common Logic, and subsequently extend the resulting first-
order version of BFO-OWL with the first-order axioms previously only listed as
comments. We obtain a two-level specification of BFO: the original OWL part
(supported by OWL reasoners) and the full first-order part in Common Logic
(amenable to first-order theorem proving and non-conservatively extending the
OWL consequences).

3.2 DOL Syntax and Semantics

The DOL language is not “yet another ontology language”, but a meta language
for expressing relations between ontologies. Therefore, any ontology written in
any conforming ontology language also is a DOL ontology. This has the clear
13 See http://www.loa.istc.cnr.it/DOLCE.html
14 See http://www.ifomis.org/bfo/
15 See http://www.onto-med.de/ontologies/gfo/
16 Parthood, typically understood as an anti-symmetric relation in mereology, is the

canonical example of a relation that cannot be adequately formalised in OWL; a
corresponding comment can be found in many bio-medical ontologies.
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advantage that users can leave their ontologies as they are when working with
DOL.
DOL provides two main abstract syntax categories:

1. Modular and heterogeneous ontologies. Such an ontology is written in a mod-
ular way, with the help of structuring operations. The semantics of ontologies
is given by a signature and a class of models. In some cases, we can addition-
ally provide a theory-level semantics of ontologies, as a signature and a class
of sentences that, if it exists, agrees with the model-level semantics (that is,
the model class is equal to the class of models satisfying the theory). We
call an ontology flattenable if it has a theory-level semantics and elusive if it
only admits a model-level semantics. This can be decided according to the
outermost structuring operation on ontologies, as follows:
Flattenable ontologies: basic ontologies, extension, union, translation,

interpolate/forget, extract, reference, qualification, combination, bridge.
Among these operations, interpolate/forget and extract can only be ap-
plied to flattenable ontologies.

Elusive ontologies: reduction, minimisation and maximisation.
For detailed definitions of these types of ontologies, see Section 3.3.

2. Distributed ontologies. These consist of of a list of declarations involving
(possibly modular and/or heterogeneous) ontologies. These declarations can
be ontology definitions (assigning a name to an ontology), interpretations
(specifying a logical consequence relationship between ontologies), equiv-
alences of ontologies (specifying that their model classes are in bijective
correspondence), module relations (between ontologies and their modules),
ontology alignments, and qualifications of the language, logic and/or serial-
isation. This will be detailed in Section 3.4.

3.3 Modular and Heterogeneous Ontologies

A (possibly modular and/or heterogeneous) ontology can be one of the following:

(a) a basic ontology O written inline, in a conforming ontology language and
serialisation. The semantics is inherited from the ontology language. O can
also be an ontology fragment, which means that some of the symbols or ax-
ioms may refer to symbols declared outside O (i.e. in an imported ontology).
This is mainly used for extensions and equivalences. Here are two sample
ontologies in OWL (using Manchester syntax) and Common Logic (using
CLIF):

Class: Woman EquivalentTo: Person and Female

ObjectProperty: hasParent

(cl-module PreOrder

(forall (x) (le x x))

(forall (x y z) (if (and (le x y) (le y z)) (le x z))))

8



(b) an ontology qualified with the ontology language that is used to express it
(written language l : O, where l identifies a language). Similarly, qualifica-
tions can also be by logic (written logic l : O), and/or serialisation (written
syntax s : O).17

(c) an IRI reference to an ontology existing on the Web18, possibly abbreviated
using prefixes.19 For example:
%prefix(

co-ode: <http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/> )%

http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl

co-ode:pizza.owl

(d) an extension of an ontology by new symbols and axioms, written O1 then
O2, where O2 is an ontology (fragment) in a conforming ontology language.
The resulting signature is that of O1, augmented with the symbols in O2.
A model of an extension ontology is a model of this signature, that satisfies
the axioms on O2 and is (when appropriately reduced) a model of O1. An
extension can optionally be marked as conservative (%mcons or %ccons after
the “then”). The semantics is that each O1-model must have at least one
expansion to the whole extension O1 then O2 (for %mcons) resp. that each
logical consequence of O1 then O2 is already one of O1 if it is over the
signature of O1 (for %ccons). In case that O2 does not introduce any new
symbols, the keyword %implied can be used instead of %ccons or %mcons;
the extension then merely states intended logical consequences. The keyword
%def stands for definitional extensions. This is similar to %mcons, but the
model expansion must always exist uniquely. The following OWL ontology
is an example for the latter:
Class Person

Class Female

then %def

Class: Woman EquivalentTo: Person and Female

(e) a union of two self-contained ontologies (not fragments), written O1 and O2.
Models of this union are those models that are (perhaps after appropriate
reduction) models of both O1 and O2. For example, the class of commutative
monoids can be expressed as
algebra:Monoid and algebra:Commutative

Forming a union of ontologies is a particularly common operation in the
RDF logic, where it is known as merging graphs [15, section 0.3]; however,
the RDF language provides no explicit syntax for this operation. When mul-
tiple RDF ontologies (“graphs”) contain statements about the same symbol
(“resource”), i.e., syntactically, triples having the same subject, the effect

17 Some of the following listings omit obvious qualifications for readability.
18 Note that not all ontologies can be downloaded by dereferencing their IRIs. Im-

plementing a catalogue mechanism in DOL-aware applications might remedy this
problem.

19 Some of the following listings abbreviate IRIs using prefixes but omit the prefix
bindings for readability.
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is that in the merged graph the resource will have all properties that have
previously been stated about it separately. Different kinds of properties, e.g.
multilingual labels, geodata, or outgoing links to external graphs, are often
maintained in different RDF graphs, which are then merged; consider the
following excerpt:
{ :UniBremen rdfs:label "Université de Brême"@fr . } and

{ :UniBremen geo:lat "53.108612"^^xsd:float . } and

{ :UniBremen owl:sameAs20

<http://dbpedia.org/page/University_of_Bremen> . }

(f) a translation of an ontology to a different signature (written O with σ,
where σ is a signature morphism) or into some ontology language (written
O with translation ρ, where ρ is an institution comorphism). For example,
we can combine an OWL ontology with a first-order axiom (formulated in
Common Logic) as follows:
ObjectProperty: isProperPartOf

Characteristics: Asymmetric

SubPropertyOf: isPartOf

with translation trans:SROIQtoCL

then

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))

Note that OWL can express transitivity, but not together with asymmetry.
(g) a reduction of an ontology to a smaller signature Σ is written O reveal Σ.

Alternatively, it can be written O hide Σ, where Σ is the set of symbols
to be hidden (i.e. this is equivalent to O reveal Sig(O) \ Σ). The effect
is an existential quantification over all hidden symbols. For example, when
specifying a group in sorted first-order logic, using the CASL language,
sort Elem

ops 0: Elem; __+__: Elem * Elem -> Elem; inv: Elem -> Elem

forall x,y,z . 0 + x = x

. x + (y + z) = (x + y) + z

. x + inv(x) = 0

reveal Elem, 0, __+__

revealing everything except the inverse operation inv results in a specifi-
cation of the class of all monoids that can be extended with an inverse
operation, i.e. the class of all groups with inverse left implicit.
Here is an example of hiding:
ontology Pizza = %% a simplified remake of the Pizza ontology [16]

Individual: TomatoTopping

Individual: MozzarellaTopping DifferentFrom: TomatoTopping

ObjectProperty: hasTopping

Class: VegetarianTopping

EquivalentTo: { TomatoTopping, MozzarellaTopping, ... }

20 While owl:sameAs is borrowed from the vocabulary of OWL, it is commonly used in
the RDF logic to link to resources in external graphs, which should be treated as if
their IRI were the same as the subject’s IRI.
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Class: VegetarianPizza SubClassOf: some hasTopping VegetarianTopping

...

end

ontology Pizza_hide_VegetarianTopping =

Pizza hide VegetarianTopping

end

A reduction to a less expressive logic is written O hide along µ, where µ
is an institution morphism. This is a common operation in TBox/ABox set-
tings, where an ontology in an expressive language provides the terminology
(TBox) used in assertions (ABox) stated in a logic that is less expressive but
scales to larger data sets; OWL DL (whose logic is SROIQ) vs. RDF is a
typical language combination:

ontology TBoxABox =

Pizza hide along trans:SROIQtoRDF

then language lang:RDF syntax ser:RDF/Turtle : {

:myPizza :hasTopping

[ a :TomatoTopping ], [ a :MozzarellaTopping ] .

}

(h) an interpolation of an ontology, either in a subsignature or a sublogic, op-
tionally with respect to a logic L (written O keep in Σ with L, where
Σ is a signature or a logic and L is a logic)21. The effect is that sentences
not expressible in Σ are weakened or removed, but the resulting theory still
has the same L-consequences. The “with L” is optional, it defaults to the
logic of O. Technically, this is a uniform interpolant [41, 29]. In case that
Σ is a sublogic, this is also called approximation [28]. For example, we can
interpolate the first-order DOLCE mereology in OWL:22

DOLCE_Mereology keep in log:OWL

Dually, O forget Σ with L interpolates O with the signature Sig(O)\Σ, i.e.
Σ specifies the symbols that need to be left out. Cf. the notion of forgetting
in [41, 29]. For example,

Pizza forget VegetarianTopping

This has a theory-level semantics, i.e. yields a theory in the reduced signature
(without VegetarianTopping). By contrast Pizza hide VegetarianTopping

has a model-level semantics.
(i) a module extracted from an ontology, written O extract c Σ with m. Here,

Σ is a restriction signature (which needs to be a subsignature of Sig(O)), c
is one of %mcons and %ccons, and m identifies a module extraction method.
The extracted module is a subontology of O with signature larger than (or
equal to) Σ, such that O is a conservative extension of the extracted module.

21 It is also possible to specify a signature and a logic simultaneously: O keep in Σ,L1
with L2

22 Interpolants need not always exist, and even if they do, tools might only be able to
approximate them.
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Dually, O remove c Σ with m extracts w.r.t. the signature Sig(O) \ Σ.23

For example, using the syntactic locality-* extraction method [38]:

Pizza remove %mcons

VegetarianTopping

with <http://example.org/onto/module/syntactic-locality-*>

Table 1 illustrates some of the connections between (g)–(i). We have three
ways of removing the class VegetarianTopping from the ontology Pizza: (1)
using hiding, we keep the model class of Pizza, but just remove the inter-
pretation of VegetarianTopping from each model. Note that the resulting
ontology has
VegetarianPizza SubClassOf:

Annotations: dol:iri (*)

some hasTopping { TomatoTopping, MozzarellaTopping, ... }

as a logical consequence. This is also a consequence of the corresponding
uniform interpolant
Pizza forget VegetarianTopping

which captures the theory of Pizza hide VegetarianTopping. Note that there
is a subtle difference between (model-theoretic) hiding and (consequence-
theoretic) forgetting: a model satisfying the theory of O hide Σ might itself
not be a model of O hide Σ. In examples involving “with L”, the uniform
interpolant can be weaker than the hiding, because it is only required to have
the same logical consequences in some language L, and a formula like (*)
might not be a formula of L. Finally, an extracted module does not contain
(*), because it only selects a subontology, and Pizza does not contain (*).
Note that while forget/keep and hide/reveal both work w.r.t. smaller sig-
natures and sublogics, remove/extract does not work for sublogics. This
is because remove/extract must always respect the conservative extension
property, which may not be possible when projecting to a sublogic. And if
conservativity cannot be guaranteed, then forget/keep can be used in any
case.

(j) a combination of ontologies, written combine O1, . . . , On L1, . . . , Lm. Here
the Lj are links between ontologies, see below. For disambiguating the sym-
bols in the combined ontology, the individual ontologies can be prefixed with
labels, like n : O, which are scoped to the current distributed ontology. The
simplest example of a combination is a disjoint union (we here translate
OWL ontologies into many-sorted OWL in order to be able to distinguish
between different universes of individuals):
ontology Publications1 =

Class: Publication

Class: Article SubClassOf: Publication

Class: InBook SubClassOf: Publication

23 Note that the resulting module can still contain symbols from Σ, because the result-
ing signature may be enlarged.
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remove/extract forget/keep hide/reveal
semantic background conservative

extension
uniform
interpolation

model reduct

relation to original subtheory interpretable interpretable
approach theory level theory level model level
type of ontology flattenable flattenable elusive
signature of result ≥ Σ = Σ = Σ

change of logic not possible possible possible
Table 1. Extract – Forget – Hide

Class: Thesis SubClassOf: Publication

...

ontology Publications2 =

Class: Thing

Class: Article SubClassOf: Thing

Class: BookArticle SubClassOf: Thing

Class: Publication SubClassOf: Thing

Class: Thesis SubClassOf: Thing

...

ontology Publications_Combined =

combine

1 : Publications1 with translation trans:OWL2MS-OWL,

2 : Publications2 with translation trans:OWL2MS-OWL

%% implicitly: Article 7→ 1:Article ...

%% Article 7→ 2:Article ...

end

(This example will be continued using bridges below.) If links or alignments
are present, the semantics of a combination is a quotient of a disjoint union
(aligned symbols are identified). Technically, this is a colimit, see [42, 6]. An
example for this is given along with the examples for alignments below.

(k) a minimisation of an ontology imposes a closed-world assumption on part of
the ontology. It forces the non-logical symbols declared in O to be interpreted
in a minimal way. This is written minimize { O }. Symbols declared before
the minimised part are considered to be fixed for the minimisation (that
is, we minimise among all models with the same reduct). Symbols declared
after the minimisation can be varied. This is borrowed from circumscription
[26, 3]. Alternatively, the non-logical symbols to be minimised and to be
varied can be explicitly declared: O minimize Σ1 vars Σ2. For example, in
the following OWL theory, B2 is a block that is not abnormal, because it is
not specified to be abnormal, and hence it is also on the table.
Class: Block

Individual: B1 Types: Block
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Individual: B2 Types: Block DifferentFrom: B1

then minimize {

Class: Abnormal

Individual: B1 Types: Abnormal }

then

Class: OnTable

Class: BlockNotAbnormal EquivalentTo:

Block and not Abnormal SubClassOf: OnTable

then %implied

Individual: B2 Types: OnTable

Dually to minimisations, there are also maximisations.
(l) an ontology bridge, written O1 bridge with translation t O2, where t is

a logic translation. The semantics is that of O1 with translation t then
O2. Typically, t will translate a language like OWL to some language for
distributed description logic or E-connections [4, 21, 8], and O2 introduces
some axioms involving the relations (introduced by t) between ontologies in
O1. For example,
Publications_Combined

bridge with translation trans:MS-OWL2DDL

%% implicitly added by translation trans:MS-OWL2DDL:

%% binary relation providing the bridge

1:Publication
v−→ 2:Publication

1:PhdThesis
v−→ 2:Thesis

1:InBook
v−→ 2:BookArticle

1:Article
v−→ 2:Article

1:Article
w−→ 2:Article

end

3.4 Distributed Ontologies

Distributed ontologies. These have an optional identifier, declared with dis-
tributed ontology Id, and consist of

(a) ontology definitions, written ontology Id = O. For example,
ontology co-code:Pizza =

Class: VegetarianPizza

Class: VegetableTopping

ObjectProperty: hasTopping

...

end

(b) theory interpretations, written interpretation Id : O1 to O2 = σ, express-
ing that the σ-reduct of each model of O2 is a model of O1. Instead of σ,
an institution comorphism can be referred to. For example, we can express
that the natural numbers are a total order as follows:
interpretation i : TotalOrder to Nat = Elem 7→ Nat

14



Here is a more complex example in Common Logic from the COLORE repos-
itory [7]:
interpretation geometry_of_time %mcons :

%% Interpretation of linearly ordered time intervals...

int:owltime_le

%% ... that begin and end with an instant as lines

%% that are incident with linearly ...

to { ord:linear_ordering and bi:complete_graphical

%% ... ordered points in a special geometry, ...

and int:mappings/owltime_interval_reduction }

= int:ProperInterval 7→ int:Interval end

(c) ontology equivalences, written equivalence Id : O1 ↔ O2 = O3 along
ρ1, ρ2, expressing that O1 and O2 have model classes that are in bijective
correspondence. This is done by providing a (fragment) ontology O3 such
that ρi(Oi) then O3 is a definitional extension [22]. ρ1 and ρ2 are optional
institution comorphisms that default to the identity. For example, Boolean
algebras are equivalent to Boolean rings:
equivalence e : algebra:BooleanAlgebra ↔ algebra:BooleanRing =

∀ x,y

. x ∧ y = x*y

. x ∨ y = x + y + x*y

. ¬x = 1 + x

. x*y = x ∧ y,

. x+y = (x ∨ y) ∧ ¬(x ∧ y).

end

(d) module relations, written module Id c : O1 of O2 for Σ. This expresses
that O1 is a module of O2 with restriction signature Σ and conservativity
c. If c is %mcons, this means that every Σ-reduct of an O1-model can be
expanded to an O2-model. If c is %ccons, this means that every Σ-sentence
ϕ following from O2 already follows from O1. This relation shall hold for any
module O1 extracted from O2 using the extract construct.

(e) alignment definitions, written alignment Id card1 card2 : O1 to O2 =
c1, . . . , cn, where card1 resp. card2 specify constraints on the alignment re-
lation concerning the source resp. target. Each cardi is one of 1, ?, +, *
(‘1’ for injective and total, ‘+’ for total, ‘?’ for injective and ‘*’ for none).
The cj are correspondences of form sym1 rel conf sym2. Here, symi is a
symbol from Oi, rel is one of the built-in relations >, <, =, %, 3, ∈, 7→,
or an identifier of a relation specified externally, and conf is an (optional)
confidence value between 0 and 1. This syntax of alignments follows the
Alignment API [9].24 Alignments have no formal semantics, but they can be
used in combinations. For example,
%prefix( : <http://www.example.org/alignment#>

24 Note that BioPortal’s [37] mappings are correspondences in the sense of the Align-
ment API and hence of DOL. BioPortal only allows users to collect correspondences,
but not to group them into alignments. In a sense, for each pair of ontologies, all
BioPortal users contribute to a big alignment between these.
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lang: <http://purl.net/dol/languages/>

ser: <http://purl.net/dol/serializations/>

trans: <http://purl.net/dol/translations/> )%

distributed ontology Alignments

language lang:OWL2/DL syntax ser:OWL2/Manchester

alignment Alignment1 : { Class: Woman } to { Class: Person } =

Woman < Person

end

ontology AlignedOntology1 =

combine Alignment1

end

ontology Onto1 =

Class: Person

Class: Woman SubClassOf: Person

Class: Bank

end

ontology Onto2 =

Class: HumanBeing

Class: Woman SubClassOf: HumanBeing

Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =

Person = HumanBeing,

Woman = Woman

end

ontology VAlignedOntology =

combine 1 : Onto1, 2 : Onto2, VAlignment

%% 1:Person is identified with 2:HumanBeing

%% 1:Woman is identified with 2:Woman

%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =

VAlignedOntology with 1:Bank 7→ RiverBank, 2:Bank 7→ FinancialBank,

Person_HumanBeing 7→ Person

end

(f) qualifications choosing the ontology language, logic, and/or serialisation.
This is written language Id, logic Id and/or syntax Id, referring to entries
of a registry as explained in Section 2.3, and affects the subsequent definitions
in the distributed ontology.
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This completes our overview of DOL. The full syntax and semantics of DOL
will be available at wiki.ontohub.org and later submitted to OMG for standard-
isation.

Note that we have not covered the role of annotations in DOL so far. For
structured annotation of ontologies and their parts, e.g. with metadata, or possi-
bly with ontological relations not built into DOL’s syntax, DOL does not provide
its own syntax, but relies on the existing RDF standard. DOL allows for giving
identifiers to all entities of distributed ontologies and basic ontologies25 and thus
enables their annotation. Annotations can be maintained in an RDF ontology
that is a part of the distributed ontology.

4 The Ontology Repository Ontohub

Ontohub (see http://ontohub.org) is a web-based repository engine for ontolo-
gies that are written either in DOL or in some specific ontology language.26

Fig. 4. ontohub.org: overview of logics

Ontohub provides means for
organising ontologies into reposi-
tories. The distributed nature en-
ables communities to share and ex-
change their contributions easily.
The heterogeneous nature makes
it possible to integrate ontologies
written in various ontology lan-
guages. Ontohub supports a wide
range of DOL-conforming ontol-
ogy languages building on DOL
and also supports DOL’s inter-
pretations, equivalences and align-
ments. Users of Ontohub can up-
load, browse, search and annotate
single and distributed ontologies in
various languages via a web front
end. Figure 4 shows an excerpt of
the 25 logics currently available in
Ontohub.

The parsing and inference back
end is the Heterogeneous Tool Set
(Hets [31, 36], available at hets.

dfki.de). Hets supports a large
number of basic ontology languages and logics, as well as the DOL meta language
25 When a basic ontology language has no mechanism for annotating or assigning iden-

tifiers to some ontology entities (as with imports in OWL or sentences in Common
Logic), DOL provides a special comment syntax for injecting identifiers into basic
ontologies written inline. Where identifiers in a basic ontology language are not IRIs,
DOL allows for making them accessible as IRIs.

26 Ontohub’s sources are freely available at https://github.com/ontohub/ontohub.
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as described in this paper.27 The structural information extracted from DOL on-
tologies by Hets is stored in the Ontohub database and exposed to human users
via a web interface and to machine clients as linked data.28

5 Conclusion and Future Work

The Distributed Ontology, Modelling and Specification Language (DOL) inte-
grates different lines of research that have been reflected in the WoMO commu-
nity (see [13, 12, 39, 19, 24, 40]):

– conservative extensions,
– ontology module extraction,
– ontology alignments,
– combinations of ontologies along alignments,
– distributed description logics,
– E-connections, and
– relations between ontologies written in different languages (e.g. OWL and

FOL).

DOL provides a unified meta language for these (and more) concepts, with a
clean formal semantics. Tool support is provided by the Heterogeneous Tool Set
(Hets) and by ontohub.org. The latter will also be used for the FOIS 2014 ontol-
ogy competition. Since ontologies used in FOIS papers often need expressiveness
beyond OWL, the multi-logic nature of DOL and Ontohub is essential.

A number of open problems and challenges remain:

– What is a suitable abstract meta framework for non-monotonic logics and
rule languages such as RIF and RuleML? Are institutions suitable here? Are
the modularity questions for these languages different from those for OWL?

– What is a useful abstract notion of ontology query (language)? How to handle
answer substitutions in a logic-agnostic way?

– Can the notions of class hierarchy and of satisfiability of a class be generalised
from OWL to other languages?

– Can logical frameworks be used for the specification of ontology languages
and translations?
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