
The Even More Irresistible SROIQ

Ian Horrocks, Oliver Kutz, and Ulrike Sattler

School of Computer Science, The University of Manchester,
Kilburn Building, Oxford Road, Manchester, M13 9PL, UK.

{Horrocks, Kutz, Sattler}@cs.man.ac.uk

Abstract

We describe an extension of the description logic underlying OWL-
DL, SHOIN , with a number of expressive means that we believe
will make it more useful in practise. Roughly speaking, we extend
SHOIN with all expressive means that were suggested to us by ontol-
ogy developers as useful additions to OWL-DL, and which, addition-
ally, do not affect its decidability. We consider complex role inclusion
axioms of the form R ◦ S v̇ R or S ◦ R v̇ R to express propagation
of one property along another one, which have proven useful in med-
ical terminologies. Furthermore, we extend SHOIN with reflexive,
symmetric, transitive, and irreflexive roles, disjoint roles, a universal
role, and constructs ∃R.Self, allowing, for instance, the definition of
concepts such as a “narcist”. Finally, we consider negated role asser-
tions in Aboxes and qualified number restrictions. The resulting logic
is called SROIQ.

We present a rather elegant tableau-based reasoning algorithm: it
combines the use of automata to keep track of universal value restric-
tions with the techniques developed for SHOIQ. We believe that
SROIQ could serve as a logical basis for possible future extensions
of OWL-DL.

Keywords: description logics; KR languages; ontology methodology.

1

1 INTRODUCTION 2

1 Introduction

We describe an extension, called SROIQ, of the description logic (DL)
SHOIN (14) underlying OWL-DL (9).1 SHOIN can be said to provide
most expressive means that one could reasonably expect from the logical
basis of an ontology language, and to constitute a good compromise between
expressive power and computational complexity/practicability of reasoning.
However, it lacks e.g. qualified number restrictions which are present in the
DL considered here since they are required in various applications (21) and
do not pose problems (13). That is, we extend SHOIQ—which is SHOIN
with qualified number restrictions—and extend the work begun in (8).

Since OWL-DL is becoming more widely used, it turns out that it lacks
a number of expressive means which—when considered carefully—can be
added without causing too much difficulties for automated reasoning. We
will extend SHOIQ with these expressive means and, although they are not
completely independent in that some of them can be expressed using others,
first present them together with some examples. Recall that, in SHOIQ,
we can already state that a role is transitive or the subrole or the inverse of
another one. In addition, SROIQ allows for the following:

1. disjoint roles. Most DLs can be said to be “unbalanced” since they al-
low to express disjointness on concepts but not on roles, despite the fact
that role disjointness is quite natural and can generate new subsump-
tions or inconsistencies in the presence of role hierarchies and number
restrictions. E.g., the roles sister and mother or partOf and hasPart

should be declared as being disjoint.

2. reflexive and irreflexive roles. These features are of minor interest
when considering TBoxes only, yet they add some useful constraints on
ABoxes, especially in the presence of number restrictions. E.g., the role
knows should be declared as being reflexive, and the role hasSibling

should be declared as being irreflexive.

3. negated role assertions. Most Abox formalisms only allow for positive
role assertions (with few exceptions (1; 5)), whereas SROIQ also al-
lows for statements such as (John, Mary) : ¬likes. In the presence of

1OWL also includes datatypes, a simple form of concrete domain (4). These can, how-
ever, be treated exactly as in SHOQ(D)/SHOQ(Dn) (10; 18), so we will not complicate
our presentation by considering them here.

1 INTRODUCTION 3

complex role inclusions, negated role assertions can be quite useful and,
like disjoint roles, they overcome a certain asymmetry in expressivity.

4. SROIQ provides complex role inclusion axioms of the form R◦S v̇ R
and S ◦ R v̇ R that were first introduced in RIQ (12). For exam-
ple, w.r.t. the axiom owns ◦ hasPart v̇ owns, and the fact that each
car contains an engine Car v̇ ∃hasPart.Engine, an owner of a car is
also an owner of an engine, i.e., the following subsumption is implied:
∃owns.Car v ∃owns.Engine.

5. SROIQ provides the universal role U . Together with nominals (which
are also provided by SHOIQ), this role is a prominent feature of hy-
brid logics (6). Nominals can also be viewed as a powerful generalisa-
tion of ABox individuals (19; 10). They occur naturally in ontologies,
e.g., when describing a class such as EUCountries by enumerating its
members.

6. Finally, SROIQ allows for concepts of the form ∃R.Self which can be
used to express “local reflexivity” of a role R, e.g., to define the concept
“narcist” as ∃likes.Self.

Besides a Tbox and an Abox, SROIQ provides a so-called Rbox to gather
all statements concerning roles.
SROIQ is designed to be of similar practicability as SHIQ. The tableau

algorithm for SROIQ presented here is essentially a combination of the
algorithms for RIQ and SHOIQ. Even though the additional expressive
means require certain adjustments, these adjustments do not add new sources
of non-determinism, and, subject to empirical verification, are believed to be
“harmless” in the sense of not significantly degrading typical performance as
compared with the SHOIQ algorithm.

More precisely, we employ the same technique using finite automata as
in (12) to handle role inclusions R ◦ S v̇ R and S ◦ R v̇ R. This involves a
pre-processing step which takes an Rbox and builds, for each role R, a finite
automaton that accepts exactly those words R1 . . . Rn such that, in each
model of the Rbox, 〈x, y〉 ∈ (R1 . . . Rn)I implies 〈x, y〉 ∈ RI . These automata
are then used in the tableau expansion rules to check, for a node x with
∀R.C ∈ L(x) and an R1 . . . Rn-neighbour y of x, whether to add C to L(y).
Even though the pre-processing step might appear a little cumbersome, the
usage of the automata in the algorithm makes it quite elegant and compact.

2 THE LOGIC SROIQ 4

Moreover, the algorithm for SROIQ has, similar to the one for SHOIQ,
excellent “pay as you go” characteristics. For instance, in case only expres-
sive means of SHIQ are used, the new algorithm will behave just like the
algorithm for SHIQ.

We believe that the combination of properties described above makes
SROIQ a very useful basis for future extensions of OWL DL.

2 The Logic SROIQ
In this section, we introduce the DL SROIQ. This includes the definition
of syntax, semantics, and inference problems.

2.1 Roles, Role Hierarchies, and Role Assertions

Definition 1 Let C be a set of concept names including a subset N of
nominals, R a set of role names including the universal role U , and
I = {a, b, c . . .} a set of individual names. The set of roles is R ∪ {R− |
R ∈ R}, where a role R− is called the inverse role of R.

As usual, an interpretation I = (∆I , ·I) consists of a set ∆I, called
the domain of I, and a valuation ·I which associates, with each role name
R, a binary relation RI ⊆ ∆I ×∆I, with the universal role U the universal
relation ∆I × ∆I, with each concept name C a subset CI ⊆ ∆I, where CI

is a singleton subset if C ∈ N, and with each individual name a an element
aI ∈ ∆I. Inverse roles are interpreted as usual, i.e., for each role R ∈ R,
we have

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}.

Obviously, (U−)I = (U)I . Note that, unlike in the cases of SHIQ or
SHOIQ, we did not introduce transitive role names. This is because, as will
become apparent below, role box assertions can be used to force roles to be
transitive.

To avoid considering roles such as R−−, we define a function Inv on roles
such that Inv(R) = R− if R ∈ R is a role name, and Inv(R) = S ∈ R if
R = S−.

Since we will often work with a string of roles, it is convenient to extend
both ·I and Inv(·) to such strings: if w = R1 . . . Rn for Ri roles, then we

2 THE LOGIC SROIQ 5

set wI = RI
1 ◦ . . . ◦ RI

n and Inv(w) = Inv(Rn) . . . Inv(R1), where ◦ denotes
composition of binary relations.

A role box R consists of two components. The first component is a role
hierarchy Rh which consists of (generalised) role inclusion axioms. Typically,
these statements are of the form R v̇ S, RS v̇ S, and SR v̇ S. However, we
also allow role inclusion axioms of the form S− v̇ S, SS v̇ S, and w v̇ S,
where w is a finite string of roles of a certain shape, for details see below.

The second component is a set Ra of role assertions stating, for instance,
that a role R must be interpreted as an irreflexive relation, or that two
(possibly inverse) roles R and S are to be interpreted as disjoint binary
relations.

We start with the definition of a (regular) role hierarchy, whose definition
involves a certain ordering on roles, called regular. A strict partial order ≺
on a set A is an irreflexive and transitive relation on A. A strict partial order
≺ on the set of roles R ∪ {R− | R ∈ R} is called a regular order, if ≺
satisfies additionally

S ≺ R ⇐⇒ S− ≺ R,

for all roles R and S. Note, in particular, that the irreflexivity of ≺ ensures
that neither S− ≺ S nor S ≺ S− hold.

Definition 2 ((Regular) Role Inclusion Axioms) Let ≺ be a regular or-
der on roles. A role inclusion axiom (RIA for short) is an expression of
the form w v̇ R, where w is a finite string of roles, and R is a role name. A
role hierarchy Rh, then, is a finite set of RIAs.

An interpretation I satisfies a role inclusion axiom S1 . . . Sn v̇ R, if

SI1 ◦ . . . ◦ SIn ⊆ RI ,

where ◦ stands for the composition of binary relations. An interpretation is a
model of a role hierarchy Rh, if it satisfies all RIAs in Rh, written I |= Rh.

A RIA w v̇ R is ≺-regular if R is a role name, and

1. w = RR, or

2. w = R−, or

3. w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or

4. w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or

2 THE LOGIC SROIQ 6

5. w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is said to be regular if there exists a regular
order ≺ on roles such that each RIA in Rh is ≺-regular.

Regularity prevents a role hierarchy from containing cyclic dependencies.
For instance, the role hierarchy

{RS v̇ S, RT v̇ R, V T v̇ T, V S v̇ V }

is not regular because it would require ≺ to satisfy S ≺ V ≺ T ≺ R ≺
S, which would imply S ≺ S, thus contradicting irreflexivity. Such cyclic
dependencies are known to lead to undecidability (12).

Also, note that RIAs of the form RR− v̇ R, which would imply (a weak
form of) reflexivity of R, are not regular according to the definition of regular
orderings. However, an equivalent condition on R can be imposed by using
the concept ∃R.Self; see below.

From the definition of the semantics of inverse roles, it follows immedi-
ately that

〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .

Hence, each model satisfying w v̇ S also satisfies Inv(w) v̇ Inv(S) (and vice
versa), and thus the restriction to those RIAs with role names on their right
hand side does not have any effect on expressivity.

Given a role hierarchy Rh, we define the relation v* to be the transitive-
reflexive closure of v̇ over {R v̇ S, Inv(R) v̇ Inv(S) | R v̇ S ∈ Rh}. A role
R is called a sub-role (resp. super-role) of a role S if R v* S (resp. S v* R).
Two roles R and S are equivalent (R ≡ S) if R v* S and S v* R.

Note that, due to restriction (3) in the definition of ≺-regularity, we also
restrict v* to be acyclic, and thus regular role hierarchies never contain two
equivalent roles.2

Next, let us turn to the second component of Rboxes, the role assertions.
For an interpretation I, we define DiagI to be the set {〈x, x〉 | x ∈ ∆I}.
Note that, since the interpretation is fixed in any given model, we disallow
the universal role to appear in role assertions.

2This is not a serious restriction for, if R contains v* cycles, we can simply choose one
role R from each cycle and replace all other roles in this cycle with R in the input Rbox,
Tbox and Abox (see below).

2 THE LOGIC SROIQ 7

Definition 3 (Role Assertions) For roles R,S 6= U , we call the asser-
tions Ref(R), Irr(R), Sym(R), Tra(R), and Dis(R,S), role assertions,
where, for each interpretation I and all x, y, z ∈ ∆I, we have:

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI ;
I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI imply 〈x, z〉 ∈ RI ;
I |= Ref(R) if DiagI ⊆ RI ;
I |= Irr(R) if RI ∩DiagI = ∅;
I |= Dis(R,S) if RI ∩ SI = ∅.

Adding symmetric and transitive role assertions is a trivial move since
both of these expressive means can be replaced by complex role inclusion
axioms as follows: for the role assertion Sym(R) we can add to the Rbox,
equivalently, the role inclusion axiom R− v̇ R, and, for the role assertion
Tra(R), we can add to the Rbox, equivalently, RR v̇ R. The proof of this
should be obvious.

Thus, as far as expressivity is concerned, we can assume for convenience
that no role assertions of the form Tra(R) or Sym(R) appear in Ra, but that
transitive and/or symmetric roles will be handled by the RIAs alone. In
particular, notice that the addition of these role assertions can not trigger
the Rbox to become non-regular.

The situation is different, however, for the other Rbox assertions. Neither
reflexivity nor irreflexivity nor disjointness of roles can be enforced by role
inclusion axioms. However, as we shall see later, reflexivity and irreflexivity
of roles are closely related to the new concept ∃R.Self.

In SHIQ (and SHOIQ), the application of qualified number restrictions
has to be restricted to certain roles, called simple roles, in order to preserve
decidability (14). In the context of SROIQ, the definition of simple role has
to be slightly modified, and simple roles figure not only in qualified number
restrictions, but in several other constructs as well. Intuitively, non-simple
roles are those that are implied by the composition of roles.

Given a role hierarchy Rh and a set of role assertions Ra (without tran-
sitivity or symmetry assertions), the set of roles that are simple in R =
Rh ∪Ra is inductively defined as follows:

• a role name is simple if it does not occur on the right hand side of a
RIA in Rh,

• an inverse role R− is simple if R is, and

2 THE LOGIC SROIQ 8

• if R occurs on the right hand side of a RIA in Rh, then R is simple if,
for each w v̇ R ∈ Rh, w = S for a simple role S.

A set of role assertions Ra is called simple if all roles R,S appearing in role
assertions of the form Irr(R) or Dis(R,S) are simple in R. If R is clear from
the context, we often use “simple” instead of “simple in R”.

Definition 4 (Role Box) A SROIQ-role box (Rbox for short) is a set
R = Rh∪Ra, where Rh is a regular role hierarchy and Ra is a finite, simple
set of role assertions.

An interpretation satisfies a role box R (written I |= R) if I |= Rh

and I |= φ for all role assertions φ ∈ Ra. Such an interpretation is called a
model of R.

2.2 Concepts and Inference Problems for SROIQ
We are now ready to define the syntax and semantics of SROIQ-concepts.

Definition 5 (SROIQ Concepts, Tboxes, and Aboxes)
The set of SROIQ-concepts is the smallest set such that

• every concept name (including nominals) and >,⊥ are concepts, and,

• if C, D are concepts, R is a role (possibly inverse), S is a simple role
(possibly inverse), and n is a non-negative integer, then C uD, C tD,
¬C, ∀R.C, ∃R.C, ∃S.Self, (>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the
form C v̇ D for two SROIQ-concepts C and D. A Tbox T is a finite set
of GCIs.

An individual assertion is of one of the following forms: a :C, (a, b) :
R, (a, b) :¬S, or a 6 .= b, for a, b ∈ I (the set of individual names), a (possibly
inverse) role R, a (possibly inverse) simple role S, and a SROIQ-concept
C. A SROIQ-Abox A is a finite set of individual assertions.

Note that number restrictions (>nS.C) and (6nS.C), as well as the
concept ∃S.Self and the disjointness and irreflexivity assertions for roles,
Dis(R,S) and Irr(R), are all restricted to simple roles. In the case of number
restrictions we mentioned the reason for this restriction already: without it,

2 THE LOGIC SROIQ 9

the satisfiability problem of SHIQ-concepts is undecidable (14), even for a
logic without inverse roles and with only unqualifying number restrictions
(these are number restrictions of the form (>nR.>) and (6nR.>)).

For SROIQ and the remaining restrictions to simple roles in concept
expressions as well as role assertions, it is part of future work to determine
which of these restrictions to simple roles is strictly necessary in order to
preserve decidability or practicability. This restriction, however, allows a
rather smooth integration of the new constructs into existing algorithms.

Definition 6 (Semantics and Inference Problems) Given an interpre-
tation I = (∆I , ·I), concepts C, D, roles R, S, and non-negative integers n,
the extension of complex concepts is defined inductively by the following
equations, where]M denotes the cardinality of a set M , and concept names,
roles, and nominals are interpreted as in Definition 1:

>I = ∆I, ⊥I = ∅, (¬C)I = ∆I \ CI (Booleans)
(C uD)I = CI ∩DI, (C tD)I = CI ∪DI (Booleans)
(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI} (exists restriction)

(∃R.Self)I = {x | 〈x, x〉 ∈ RI} (∃R.Self-concepts)
(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI} (value restriction)

(>nR.C)I = {x |]{y.〈x, y〉 ∈ RI and y ∈ CI} > n} (atleast restriction)
(6nR.C)I = {x |]{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n} (atmost restriction)

An interpretation I is a model of a Tbox T (written I |= T) if CI ⊆
DI for each GCI C v̇ D in T .

A concept C is called satisfiable if there is an interpretation I with
CI 6= ∅. A concept D subsumes a concept C (written C v D) if CI ⊆ DI

holds for each interpretation. Two concepts are equivalent (written C ≡
D) if they are mutually subsuming. The above inference problems can be
defined w.r.t. a general role box R and/or a Tbox T in the usual way, i.e.,
by replacing interpretation with model of R and/or T .

For an interpretation I, an element x ∈ ∆I is called an instance of a
concept C if x ∈ CI.

An interpretation I satisfies (is a model of) an Abox A (I |= A) if
for all individual assertions φ ∈ A we have I |= φ, where

I |= a :C if aI ∈ CI ;
I |= a 6 .= b if aI 6= bI ;
I |= (a, b) :R if 〈aI , bI〉 ∈ RI ;
I |= (a, b) :¬R if 〈aI , bI〉 /∈ RI .

2 THE LOGIC SROIQ 10

An Abox A is consistent with respect to an Rbox R and a Tbox T if
there is a model I for R and T such that I |= A.

2.3 Reduction of Inference Problems

For DLs that are closed under negation, subsumption and (un)satisfiability
of concepts can be mutually reduced: C v D iff C u¬D is unsatisfiable, and
C is unsatisfiable iff C v ⊥. Furthermore, a concept C is satisfiable iff the
Abox {a :C} (a a ‘new’ individual name) is consistent.

It is straightforward to extend these reductions to Rboxes and Tboxes. In
contrast, the reduction of inference problems w.r.t. a Tbox to pure concept
inference problems (possibly w.r.t. a role hierarchy), deserves special care:
in (2; 20; 3), the internalisation of GCIs is introduced, a technique that
realises exactly this reduction. For SROIQ, this technique only needs to
be slightly modified. We will show in a series of steps that SROIQ concept
satisfiability of a concept C with respect to a triple 〈A,R, T 〉 of, respectively,
a SROIQ Abox, Rbox, and Tbox, can be reduced to concept satisfiability
of a concept C ′ with respect to an Rbox R′, where the Rbox R′ only contains
role assertions of the form Dis(R,S), and the universal role U does not appear
in C ′.

While nominals can be used to ‘internalise’ the Abox, in order to eliminate
the universal role, we use a ‘simulated’ universal role U ′, i.e., a reflexive,
symmetric, and transitive super-role of all roles and their inverses appearing
in 〈A,R, T 〉, and which, additionally, connects all nominals appearing in the
input.

Thus, let C and 〈A,R, T 〉 be a SROIQ concept and Abox, Rbox, and
Tbox, respectively. In a first step, we replace the Abox A with an Abox A′
such that A′ only contains individual assertions of the form a : C. In this
regard, associate with every individual a ∈ I appearing in the input Abox
A a new nominal oa not appearing in T or C. Next, define A′ by replacing
every individual assertion in A of the form (a, b) : R with a : ∃R.ob, every
(a, b) :¬R with a :∀R.¬ob, and every a 6 .= b with a : ¬ob. Now, given C and
A′, define C ′ as follows:

C ′ := C u u
a:C∈A′

∃U.(oa u C),

where U is the universal role.

2 THE LOGIC SROIQ 11

It should be clear that C is satisfiable with respect to 〈A,R, T 〉 if and
only if C ′ is satisfiable with respect to 〈R, T 〉. Thus we have:

Lemma 7 (Abox Elimination) SROIQ concept satisfiability with respect
to Aboxes, Rboxes, and Tboxes is polynomially reducible to SROIQ concept
satisfiability with respect to Rboxes and Tboxes only.

Hence, in the following we will assume that Aboxes have been eliminated.
Next, although we have the ‘real’ universal role U present in the language,
the following lemma shows how general concept inclusion axioms can be
internalised while at the same time eliminating occurrences of the universal
role U , using a simulated “universal” role U ′, that is, a transitive super-role
of all roles (except U) occurring in T or R and their respective inverses.
Furthermore, note that the universal role U is not allowed to appear in
Rboxes.

Lemma 8 (Tbox and Universal Role Elimination) Let C and D be con-
cepts, T a Tbox, and R = Rh ∪Ra an Rbox. Let U ′ 6= U be a role that does
not occur in C, D, T , or R, and let C ′, D′, and T ′ result from C, D, and T
respectively, by replacing every occurrence of U by U ′. We define

CT ′ := ∀U ′.
(u

C′iv̇D′
i∈T ′
¬C ′

i tD′
i

)
u

(u
N3o∈T ∪C∪D

∃U ′.o
)
,

and set

RU ′

h := Rh ∪ {R v̇ U ′ | R occurs in C ′, D′, T ′, or R};

RU ′

a := Ra ∪ {Tra(U ′), Sym(U ′), Ref(U ′)}, and RU ′ := RU ′

h ∪RU ′

a .

Then

• C is satisfiable w.r.t. T and R iff C ′ u CT ′ is satisfiable w.r.t. RU ′.

• D subsumes C with respect to T and R iff C ′u¬D′uCT ′ is unsatisfiable
w.r.t. RU ′.

The proof of Lemma 8 is similar to the ones that can be found in (20;
2). Most importantly, it must be shown that (a): if a SROIQ-concept
C is satisfiable with respect to a Tbox T and an Rbox R, then C, T ,R
have a weakly connected model, i.e., a model which is a union of connected
components, where each such component contains a nominal, and where any

3 SROIQ IS DECIDABLE 12

two elements of a connected component are connected by a role path over
those roles occurring in C, T or R, and (b): if y is reachable from x via
a role path (possibly involving inverse roles), then 〈x, y〉 ∈ U ′I . These are
easy consequences of the semantics and the definition of U ′ and CT ′ , which
guarantees that all nominals are connected by U ′ links.

Now, note also that, instead of having a role assertion Irr(R) ∈ Ra, we
can add, equivalently, the GCI > v̇ ¬∃R.Self to T , which can in turn be
internalised. Likewise, instead of asserting Ref(R), we can, equivalently, add
the GCI > v̇ ∃R.Self to T . However, in the case of Ref(R) this replacement
is only admissible for simple roles R and thus not possible (syntactically) in
general.

Thus, using these equivalences (including the replacement of Rbox asser-
tions of the form Sym(R) and Tra(R)) and Lemmas 7 and 8, we arrive at the
following theorem:

Theorem 9 (Reduction)

1. Satisfiability and subsumption of SROIQ-concepts w.r.t. Tboxes, Aboxes,
and Rboxes, are polynomially reducible to (un)satisfiability of SROIQ-
concepts w.r.t. Rboxes.

2. W.l.o.g., we can assume that Rboxes do not contain role assertions of
the form Irr(R), Tra(R), or Sym(R), and that the universal role is not
used.

With Theorem 9, all standard inference problems for SROIQ-concepts
and Aboxes can be reduced to the problem of determining the consistency
of a SROIQ-concept w.r.t. to an Rbox (both not containing the universal
role), where we can assume w.l.o.g. that all role assertions in the Rbox are
of the form Ref(R) or Dis(R,S)—we call such an Rbox reduced.

3 SROIQ is Decidable

In this section, we show that SROIQ is decidable. We present a tableau-
based algorithm that decides the consistency of a SROIQ concept w.r.t. a
reduced Rbox, and therefore also all standard inference problems as discussed
above, see Theorem 9. Therefore, in the following, by Rbox we always mean
reduced Rbox.

3 SROIQ IS DECIDABLE 13

The algorithm tries to construct, given a SROIQ-concept C and an Rbox
R, a tableau for C and R, that is, an abstraction of a model of C and R.
Given the appropriate notion of a tableau, it is then quite straightforward
to prove that the algorithm is a decision procedure for SROIQ-concept
satisfiability with respect to Rboxes.

Before specifying this algorithm, we translate a role hierarchy Rh into
non-deterministic automata which are used both in the definition of a tableau
and in the tableau algorithm. Intuitively, an automaton is used to memorise
the path between an object x that has to satisfy a concept of the form ∀R.C
and other objects, and then to determine which of these objects must satisfy
C.3

For the following considerations, it is worthwhile to recall that, for a string
w = R1 . . . Rm and Ri roles, Inv(w) = Inv(Rm) . . . Inv(R1). The following
Lemma is a direct consequence of the definition of the semantics.

Lemma 10 If I is a model of Rh with S− v̇ S ∈ Rh and w v̇ S ∈ Rh, then
Inv(w)I ⊆ SI.

3.1 Translating RIAs into Automata

The technique used in this chapter is identical to the one presented in (12),
and repeated here only to make this paper self-contained. First, we will de-
fine, for a regular role hierarchy Rh and a (possibly inverse) role S occurring
in Rh, a non-deterministic finite automaton (NFA) BS which captures all
implications between (paths of) roles and S that are consequences of Rh. To
make this clear, before we define BS, we formulate the lemma which we are
going to prove for it.

Proposition 11 I is a model of Rh if and only if, for each (possibly inverse)
role S occurring in Rh, each word w ∈ L(BS), and each 〈x, y〉 ∈ wI, we have
〈x, y〉 ∈ SI.

In the following, we use NFAs with ε-transitions in a rather informal way

(see, e.g., (7) for more details), e.g., we use p
R→ q to denote that there is a

transition from a state p to a state q with the letter R instead of introducing
transition relations formally. The automata BS are defined in three steps.

3This technique together with the relationship between automata and regular languages
is the reason why we called these role hierarchies “regular”.

3 SROIQ IS DECIDABLE 14

Definition 12 Let C be a SROIQ-concept and R a reduced Rbox which
is ≺-regular. For each role name R occurring in R or C, we first define
the NFA AR as follows: AR contains a state iR and a state fR with the

transition iR
R→ fR. The state iR is the only initial state and fR is the only

final state. Moreover, for each w v̇ R ∈ R, AR contains the following states
and transitions:

1. if w = RR, then AR contains fR
ε→ iR, and

2. if w = R1 · · ·Rn and R1 6= R 6= Rn, then AR contains

iR
ε→ iw

R1→ f 1
w

R2→ f 2
w

R3→ . . .
Rn→ fn

w
ε→ fR,

3. if w = RR2 · · ·Rn, then AR contains

fR
ε→ iw

R2→ f 2
w

R3→ f 3
w

R4→ . . .
Rn→ fn

w
ε→ fR,

4. if w = R1 · · ·Rn−1R, then AR contains

iR
ε→ iw

R1→ f 1
w

R2→ f 2
w

R3→ . . .
Rn−1→ fn−1

w
ε→ iR,

where all f i
w, iw are assumed to be distinct.

In the next step, we use a mirrored copy of NFAs: this is a copy of an
NFA in which we have carried out the following modifications: we

• make final states to non-final but initial states,

• make initial states to non-initial but final states,

• replace each transition p
S→ q for S a (possibly inverse) role S with

q
Inv(S)→ p, and

• replace each transition p
ε→ q with q

ε→ p.

Secondly, we define the NFAs ÂR as follows:

• if R− v̇ R 6∈ R, then ÂR := AR,

3 SROIQ IS DECIDABLE 15

• if R− v̇ R ∈ R, then ÂR is obtained as follows: first, take the disjoint
union4 of AS with a mirrored copy of AS. Secondly, make iR the only
initial state, fR the only final state. Finally, for f ′R the copy of fR and
i′R the copy of iR, add transitions iR

ε→ f ′R, f ′R
ε→ iR, i′R

ε→ fR, and
fR

ε→ i′R.

Thirdly, the NFAs BR are defined inductively over ≺:

• if R is minimal w.r.t. ≺ (i.e., there is no R′ with R′ ≺ R), we set
BR := ÂR.

• otherwise, BR is the disjoint union of ÂR with a copy B′S of BS for

each transition p
S→ q in ÂR with S 6= R. Moreover, for each such

transition, we add ε-transitions from p to the initial state in B′S and
from the final state in B′S to q, and we make iR the only initial state
and fR the only final state in BR.

Finally, the automaton BR− is a mirrored copy of BR.

Please note that the inductive definition of BR is well-defined since the
acyclic relation ≺ is used to restrict the dependencies between roles.

We have kept the construction of BS as simple as possible. If one wants to
construct an equivalent NFA without ε-transitions or which is deterministic,
then there are well-known techniques to do this (7). Recall that elimina-
tion of ε-transitions can be carried out without increasing the number of
an automaton’s states, whereas determinisation might yield an exponential
blow-up. However, as we will see later, this determinisation will happen any-
way “on-the-fly” in the tableau algorithm, and thus has no influence on the
complexity, see (12) for a discussion.

Lemma 13 For R a role, the size of BR is bounded exponentially in the
depth

dR := max{n | there are S1 ≺ . . . ≺ Sn, ui, vi with uiSi−1vi v̇ Si ∈ R}

and thus in the size of R. Moreover, there are R and R such that the number
of states in BR is 2dR.

4A disjoint union of two automata is the disjoint union of their states, transition rela-
tions, etc.

3 SROIQ IS DECIDABLE 16

In (12), certain further syntactic restrictions of role hierarchies were con-
sidered (there called simple role hierarchies) that avoid this exponential blow-
up. We conjecture that without some such further restriction, this blow-up
is unavoidable. Next, we will repeat a technical Lemma from (12) which
we will use later, and refer the reader to (12) for its proof and the proof of
Proposition 11.

Lemma 14 1. S ∈ L(BS) and, if w v̇ S ∈ R, then w ∈ L(BS).

2. If S is a simple role, then L(BS) = {R | R v* S}.

3. If
←−
A is a mirrored copy of an NFA A, then L(

←−
A) = {Inv(w) | w ∈

L(A)}.

3.2 A Tableau for SROIQ
In the following, if not stated otherwise, C, D (possibly with subscripts) de-
note SROIQ-concepts (not using the universal role), R,S (possibly with
subscripts) roles, R = Rh∪Ra an Rbox, and RC the set of roles occurring in
C and R together with their inverses. Furthermore, as noted in Theorem 12,
we can (and will from now on) assume w.l.o.g. that all role assertions ap-
pearing in Ra are of the form Dis(R,S) or Ref(R).

We start by defining fclos(C0,R), the closure of a concept C0 w.r.t. a
regular role hierarchyR. Intuitively, this contains all relevant sub-concepts of
C0 together with universal value restrictions over sets of role paths described
by an NFA. We use NFAs in universal value restrictions to memorise the path
between an object that has to satisfy a value restriction and other objects.
To do this, we “push” this NFA-value restriction along this path while the
NFA gets “updated” with the path taken so far. For this “update”, we use
the following definition.

Definition 15 For B an NFA and q a state of B, B(q) denotes the NFA

obtained from B by making q the (only) initial state of B, and we use q
S→

q′ ∈ B to denote that B has a transition q
S→ q′.

Without loss of generality, we assume all concepts to be in NNF, that is,
negation occurs only in front of concept names or in front of ∃R.Self. Any
SROIQ-concept can easily be transformed into an equivalent one in NNF

3 SROIQ IS DECIDABLE 17

by pushing negations inwards using a combination of DeMorgan’s laws and
the following equivalences:

¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)
¬(6nR.C) ≡ (>(n + 1)R.C) ¬(>(n + 1)R.C) ≡ (6nR.C)

¬(>0R.C) ≡ ⊥

We use ¬̇C for the NNF of ¬C. Obviously, the length of ¬̇C is linear in the
length of C.

For a concept C0, clos(C0) is the smallest set that contains C0 and that
is closed under sub-concepts and ¬̇. The set fclos(C0,R) is then defined as
follows:

fclos(C0,R) := clos(C0)∪{∀BS(q).D | ∀S.D ∈ clos(C0) and BS has a state q}.

It is not hard to show and well-known that the size of clos(C0) is linear in the
size of C0. For the size of fclos(C0,R), we have seen in Lemma 13 that, for a
role S, the size of BS can be exponential in the depth of R. Since there are
at most linearly many concepts ∀S.D, this yields a bound for the cardinality
of fclos(C0,R) that is exponential in the depth of R and linear in the size of
C0.

Definition 16 (Tableau) T = (S, L, E) is a tableau for C0 w.r.t. R iff

• S is a non-empty set;

• L : S→ 2fclos(C0,R) maps each element in S to a set of concepts;

• E : RC0 → 2S×S maps each role to a set of pairs of elements in S;

• C0 ∈ L(s) for some s ∈ S.

Furthermore, for all s, t ∈ S, C, C1, C2 ∈ fclos(C0,R), R,S ∈ RC0, and

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S ′) for some S ′ ∈ L(BS) and C ∈ L(t)},

the tableau T satisfies:

3 SROIQ IS DECIDABLE 18

(P1a) if C ∈ L(s), then ¬C /∈ L(s) (C atomic or ∃R.Self),
(P1b) > ∈ L(s), and ⊥ /∈ L(s), for all s,
(P1c) if ∃R.Self ∈ L(s), then 〈s, s〉 ∈ E(R),
(P1d) if ¬∃R.Self ∈ L(s), then 〈s, s〉 /∈ E(R),
(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4a) if ∀B(p).C ∈ L(s), 〈s, t〉 ∈ E(S), and p
S→ q ∈ B(p),

then ∀B(q).C ∈ L(t),
(P4b) if ∀B.C ∈ L(s) and ε ∈ L(B), then C ∈ L(s),
(P5) if ∃S.C ∈ L(s), then there is some t with

〈s, t〉 ∈ E(S) and C ∈ L(t),
(P6) if ∀S.C ∈ L(s), then ∀BS.C ∈ L(s),
(P7) 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)),
(P8) if (6nS.C) ∈ L(s), then]ST (s, C) 6 n,
(P9) if (>nS.C) ∈ L(s), then]ST (s, C) > n,
(P10) if (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S), then

C ∈ L(t) or ¬̇C ∈ L(t),
(P11) if Dis(R,S) ∈ Ra, then E(R) ∩ E(S) = ∅,
(P12) if Ref(R) ∈ Ra, then 〈s, s〉 ∈ E(R) for all s ∈ S,
(P13) if 〈s, t〉 ∈ E(R) and R v* S, then 〈s, t〉 ∈ E(S),
(P14a) o ∈ L(s) for some s ∈ S, for each o ∈ N ∩ fclos(C0,R),
(P14b) if o ∈ L(s) ∩ L(t) for some o ∈ N, then s = t.

Theorem 17 (Tableau) A SROIQ-concept C0 is satisfiable w.r.t. a re-
duced Rbox R iff there exists a tableau for C0 w.r.t. R.

Proof: For the if direction, let T = (S, L, E) be a tableau for C0 w.r.t.
R. We extend the relational structure of T and then prove that this indeed
gives a model.

More precisely, a model I = (∆I , ·I) of C0 and R can be defined as
follows: we set ∆I := S, CI := {s | C ∈ L(s)} for concept names C in
fclos(C0,R), where (P14a) and (P14b) guarantee that nominals are indeed
interpreted as singleton sets, and for roles names R ∈ RC0 , we set

RI := {〈s0, sn〉 ∈ (∆I)2 | exists s1, . . . , sn−1 with 〈si, si+1〉 ∈ E(Si+1)
for 0 ≤ i ≤ n− 1 and S1 · · ·Sn ∈ L(BR)}

The semantics of complex concepts is given through the definition of the
SROIQ-semantics. Due to Lemma 14.3 and (P7), the semantics of inverse

3 SROIQ IS DECIDABLE 19

roles can either be given directly as for role names, or by setting (R−)I :=
{〈y, x〉 | 〈x, y〉 ∈ RI}.

We have to show that I is a model ofR and C0. We begin by showing that
I |= R. First, we look at role assertions. Remember that we assumed that
R is reduced, and thus we only have to deal with role disjointness assertions
of the form Dis(R,S) and reflexivity assertions of the form Ref(R).

Consider an assertion Dis(R,S) ∈ R. By definition of SROIQ-Rboxes,
both R and S are simple roles, and (P11) implies E(R)∩E(S) = ∅. Moreover,
we have, by definition of I, Lemma 14.2, (P7), and (P13) that, for T a
simple role, T I = E(T). Hence RI ∩ SI = ∅. Next, if Ref(R) ∈ Ra for R
a possibly non-simple role, we have immediately, by (P12) and R ∈ L(BR),
that DiagI ⊆ RI , and thus I satisfies each role assertion in Ra.

Next, we show that I |= Rh. Due to Proposition 11, it suffices to prove
that, for each (possibly inverse) role S, each word w ∈ L(BS), and each
〈x, y〉 ∈ wI , we have 〈x, y〉 ∈ SI .

Let w ∈ L(BS) and 〈x, y〉 ∈ wI . For w = S1 . . . Sn, this implies the
existence of yi such that y0 = x, yn = y, and 〈yi−1, yi〉 ∈ SIi for each 1 ≤ i ≤
n. For each i, we define a word wi as follows:

• if 〈yi−1, yi〉 ∈ E(Si), then set wi := Si.

• otherwise, there is some vi = T
(i)
1 . . . T

(i)
ni ∈ L(BSi

) and there are y
(i)
j

such that yi−1 = y
(i)
0 , yi = y

(i)
ni , and 〈y(i)

j−1, y
(i)
j 〉 ∈ E(T

(i)
j) for each

1 ≤ j ≤ ni. In this case, we set wi := vi.

Let ŵ := w1 . . . wn. By construction of BS from ÂS, w ∈ L(BS) implies

that ŵ ∈ L(BS). For ŵ = U1 . . . Un′ , we can thus re-name the yi and y
(i)
j

to zi such that we have z0 = x, zn = y, and 〈zi−1, zi〉 ∈ E(Ui). Hence, by
definition of ·I , we have 〈x, y〉 ∈ SI .

Secondly, we prove that I is a model of C0. We show that C ∈ L(s)
implies s ∈ CI for each s ∈ S and each C ∈ fclos(A,R). This proof can be
given by induction on the length of concepts, where we count neither negation
nor integers in number restrictions. The only interesting cases are C =
(6nS.E), C = ∀S.E, and C = (¬)∃R.Self (for the other cases, see (17; 11)):

• If (6nS.E) ∈ L(s), then (P8) implies that #ST (s, E) ≤ n. Moreover,
since S is simple, Lemma 14.2 implies that L(BS) = {S ′ | S ′ v* S},
and (P13) implies that SI = E(S). Hence (P10) implies that, for

3 SROIQ IS DECIDABLE 20

all t, if 〈s, t〉 ∈ SI , then E ∈ L(t) or ¬̇E ∈ L(t). By induction
EI = {t | E ∈ L(t)}, and thus s ∈ (6nS.E)I .

• Let ∀S.E ∈ L(s) and 〈s, t〉 ∈ SI . From (P6) we have that ∀BS.E ∈
L(s). By definition of SI , there are S1 . . . Sn ∈ L(BS) and si with
s = s0, t = sn, and 〈si−1, si〉 ∈ E(Si). Applying (P4a) n times, this
yields ∀BS(q).E ∈ L(t) for q a final state of BS. Thus (P4b) implies
that E ∈ L(t). By induction, t ∈ EI , and thus s ∈ (∀S.E)I .

• Let ∃R.Self ∈ L(s). Then, by (P1c), 〈s, s〉 ∈ E(R) and, since R ∈
L(BR) and by definition of I, we have 〈s, s〉 ∈ RI . It follows that
s ∈ (∃R.Self)I .

• Let ¬∃R.Self ∈ L(s). Then, by (P1d), 〈s, s〉 /∈ E(R). Since R is a
simple role by definition, we have, as shown above, RI = E(R). Hence
〈s, s〉 /∈ RI , and so s ∈ (¬∃R.Self)I .

For the converse, suppose I = (∆I , ·I) is a model of C0 w.r.t. R. We
define a tableau T = (S, L, E) for C0 and R as follows:

S := ∆I ,
E(R) := RI , and
L(s) := {C ∈ fclos(C0,R) | s ∈ CI} ∪

{∀BS.C | ∀S.C ∈ fclos(C0,R) and s ∈ (∀S.C)I} ∪
{∀BR(q).C ∈ fclos(C0,R) | for all S1 · · ·Sn ∈ L(BR(q)),

s ∈ (∀S1.∀S2. · · · ∀Sn.C)I and
if ε ∈ L(BR(q)), then s ∈ CI}

We have to show that T satisfies each (Pi). We restrict our attention to the
only new cases.

For (P6), if ∀S.C ∈ L(s), then s ∈ (∀S.C)I and thus ∀BS.C ∈ L(s) by
definition of T .

For (P4a), let ∀B(p).C ∈ L(s) and 〈s, t〉 ∈ E(S) = SI . Assume that there

is a transition p
S→ q in B(p) and ∀B(q).C 6∈ L(t). By definition of T , this

can have two reasons:

• there is a word S2 . . . Sn ∈ L(B(q)) and t 6∈ (∀S2. . . .∀Sn.C)I . However,
this implies that SS2 . . . Sn ∈ L(B(p)) and thus that we have s ∈
(∀S.∀S2. . . .∀Sn.C)I , which contradicts, together with 〈s, t〉 ∈ SI , the
definition of the semantics of SROIQ concepts.

3 SROIQ IS DECIDABLE 21

• ε ∈ L(B(q)) and t 6∈ CI . This implies that S ∈ L(B(p)) and thus
contradicts s ∈ (∀S.C)I .

Hence ∀B(q).C 6∈ L(t).
For (P4b), ε ∈ L(B(p)) implies s ∈ CI by definition of T , and thus

C ∈ L(s).
Finally, (P11)–(P14b) follow immediately from the definition of the se-

mantics.
�

3.3 The Tableau Algorithm

In this section, we present a terminating, sound, and complete tableau algo-
rithm that decides consistency of SROIQ-concepts not using the universal
role w.r.t. reduced Rboxes, and thus, using Theorem 9, also concept satisfi-
ability w.r.t. Rboxes, Tboxes and Aboxes.

We first define the underlying data structures and corresponding oper-
ations. For more detailed comments about the intuitions underlying these
definitions, consult (13).

The algorithm generates a completion graph, a structure that, if complete
and clash-free, can be unravelled to a (possibly infinite) tableau for the in-
put concept and Rbox. Moreover, it is shown that the algorithm returns a
complete and clash-free completion graph for C0 and R if and only if there
exists a tableau for C0 and R, and thus with Lemma 17, if and only if the
concept C0 is satisfiable w.r.t. R.

As usual, in the presence of transitive roles, blocking is employed to ensure
termination of the algorithm. In the additional presence of inverse roles,
blocking is dynamic, i.e., blocked nodes (and their sub-branches) can be
un-blocked and blocked again later. In the further, additional presence of
number restrictions, pairs of nodes are involved in the definition of blocking
rather than single nodes (17). The blocking conditions as they are presented
here are, clearly, too strict. As a consequence, blocking may occur later
than necessary, and thus we end up with a search space that is larger than
necessary. In (11), it was shown how to loosen the blocking condition for
SHIQ while retaining correctness of the algorithm. Here, we focus on the
decidability of SROIQ, and defer a similar loosening for SROIQ to future
work.

3 SROIQ IS DECIDABLE 22

Definition 18 (Completion Graph) Let R be a reduced Rbox, let C0 be
a SROIQ-concept in NNF not using the universal role, and let N be the set
of nominals. A completion graph for C0 with respect to R is a directed
graph G = (V, E, L, 6 .=) where each node x ∈ V is labelled with a set

L(x) ⊆ fclos(C0,R)∪N∪ {(6mR.C) | (6nR.C) ∈ fclos(C0,R) and m ≤ n}

and each edge 〈x, y〉 ∈ E is labelled with a set of role names L(〈x, y〉) contain-
ing (possibly inverse) roles occurring in C0 or R. Additionally, we keep track
of inequalities between nodes of the graph with a symmetric binary relation
6 .= between the nodes of G.

In the following, we often use R ∈ L(〈x, y〉) as an abbreviation for 〈x, y〉 ∈
E and R ∈ L(〈x, y〉).

If 〈x, y〉 ∈ E, then y is called a successor of x and x is called a pre-
decessor of y. Ancestor is the transitive closure of predecessor, and de-
scendant is the transitive closure of successor. A node y is called an R-
successor of a node x if, for some R′ with R′ v* R, R′ ∈ L(〈x, y〉). A node
y is called a neighbour (R-neighbour) of a node x if y is a successor (R-
successor) of x or if x is a successor (Inv(R)-successor) of y.

For a role S and a node x in G, we define the set of x’s S-neighbours
with C in their label, SG(x, C), as follows:

SG(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

G is said to contain a clash if there are nodes x and y such that

1. ⊥ ∈ L(x), or

2. for some concept name A, {A,¬A} ⊆ L(x), or

3. x is an S-neighbour of x and ¬∃S.Self ∈ L(x), or

4. there is some Dis(R,S) ∈ Ra and y is an R- and an S-neighbour of x,
or

5. there is some concept (6nS.C) ∈ L(x) and {y0, . . . , yn} ⊆ SG(x, C)
with yi 6

.
= yj for all 0 ≤ i < j ≤ n, or

6. for some o ∈ N, x 6 .= y and o ∈ L(x) ∩ L(y).

3 SROIQ IS DECIDABLE 23

If o1, . . . , o` are all the nominals occurring in C0, then the tableau al-
gorithm starts with the completion graph G = ({r0, r1 . . . , r`}, ∅, L, ∅) with
L(r0) = {C0} and L(ri) = {oi} for 1 ≤ i ≤ `. G is then expanded by re-
peatedly applying the expansion rules given in Figure 1, stopping if a clash
occurs.

Before describing the tableau algorithm in more detail, we define some
terms and operations used in the (application of the) expansion rules:

Nominal Nodes and Blockable Nodes We distinguish two types of
nodes in G, nominal nodes and blockable nodes. A node x is a nominal
node if L(x) contains a nominal. A node that is not a nominal node is a
blockable node. A nominal o ∈ N is said to be new in G if no node in G
has o in its label.
Comment: like ABox individuals (16), nominal nodes can be arbitrarily inter-
connected. In contrast, blockable nodes are only found in tree-like structures
rooted in nominal nodes (or in r0); a branch of such a tree may simply end,
possibly with a blocked node (defined below) as a leaf, or have an edge
leading to a nominal node. In case a branch ends in a blocked node, we use
standard unravelling to construct a tableau from the completion graph, and
thus the resulting tableau will contain infinitely many copies of the nodes on
the path from the blocking node to the blocked node. This is why there can
be no nominal nodes on this path.

In the NN -rule, we use new nominals to create new nominal nodes—
intuitively, to fix the identity of certain, constrained neighbours of nominal
nodes. As we will show, it is possible to fix an upper bound on the number
of nominal nodes that can be generated in a given completion graph; this
is crucial for termination of the construction, given that blocking cannot be
applied to nominal nodes.

Blocking A node x is label blocked if it has ancestors x′, y and y′ such
that

1. x is a successor of x′ and y is a successor of y′,

2. y, x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x′) = L(y′), and

4. L(〈x′, x〉) = L(〈y′, y〉).

3 SROIQ IS DECIDABLE 24

In this case, we say that y blocks x. A node is blocked if either it is label
blocked or it is blockable and its predecessor is blocked; if the predecessor of
a safe node x is blocked, then we say that x is indirectly blocked.
Comment: blocking is defined exactly as for SHIQ, with the only difference
that, in the presence of nominals, we must take care that none of the nodes
between a blocking and a blocked one is a nominal node.

Generating and Shrinking Rules and Safe Neighbours The >-, ∃-
and NN -rules are called generating rules, and the 6- and the o-rule are
called shrinking rules. An R-neighbour y of a node x is safe if (i) x is
blockable or if (ii) x is a nominal node and y is not blocked.
Comment: generating rules add new nodes to the completion graph, whereas
shrinking rules remove nodes—they merge all information concerning one
node into another one (e.g., to satisfy atmost number restrictions), and then
remove the former node. We need the safety of R-neighbours to ensure that
enough R-neighbours for nominal nodes are generated.

Pruning When a node y is merged into a node x, we “prune” the comple-
tion graph by removing y and, recursively, all blockable successors of y. More
precisely, pruning a node y (written Prune(y)) in G = (V, E, L, 6 .=) yields a
graph that is obtained from G as follows:

1. for all successors z of y, remove 〈y, z〉 from E and, if z is blockable,
Prune(z);

2. remove y from V .

Merging In some rules, we “merge” one node into another node. Intu-
itively, when we merge a node y into a node x, we add L(y) to L(x), “move”
all the edges leading to y so that they lead to x and “move” all the edges
leading from y to nominal nodes so that they lead from x to the same nom-
inal nodes; we then remove y (and blockable sub-trees below y) from the
completion graph. More precisely, merging a node y into a node x (written
Merge(y, x)) in G = (V, E, L, 6 .=) yields a graph that is obtained from G as
follows:

1. for all nodes z such that 〈z, y〉 ∈ E

3 SROIQ IS DECIDABLE 25

(a) if {〈x, z〉, 〈z, x〉}∩E = ∅, then add 〈z, x〉 to E and set L(〈z, x〉) =
L(〈z, y〉),

(b) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉),
(c) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S) | S ∈

L(〈z, y〉)}, and

(d) remove 〈z, y〉 from E;

2. for all nominal nodes z such that 〈y, z〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉}∩E = ∅, then add 〈x, z〉 to E and set L(〈x, z〉) =
L(〈y, z〉),

(b) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉),
(c) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S) | S ∈

L(〈y, z〉)}, and

(d) remove 〈y, z〉 from E;

3. set L(x) = L(x) ∪ L(y);

4. add x 6 .= z for all z such that y 6 .= z; and

5. Prune(y).

If y was merged into x, we call x a direct heir of y, and we use being an
heir of another node for the transitive closure of being a “direct heir”.
Comment: merging is the generalisation of what is often done to satisfy
an atmost number restriction for a node x in case that x has too many
neighbours. However, since we might need to merge nominal nodes that
are related in some arbitrary, non-tree-like way, merging gets slightly more
tricky since we must take care of all incoming and outgoing edges. The
usage of “heir” is quite intuitive since, after y has been merged into x, x
has “inherited” all of y’s properties, i.e., its label, its inequalities, and its
incoming and outgoing edges (except for any outgoing edges removed by
Prune).

Level (of Nominal Nodes) Let o1, . . . , o` be all the nominals occurring
in the input concept D. We define the level of a node inductively as follows:

• each (nominal) node x with an oi ∈ L(x), 1 ≤ i ≤ `, is of level 0, and

3 SROIQ IS DECIDABLE 26

• a nominal node x is of level i if x is not of some level j < i and x has
a neighbour that is of level i− 1.

Comment: if a node with a lower level is merged into another node, the level
of the latter node may be reduced, but it can never be increased because
Merge preserves all edges connecting nominal nodes. The completion graph
initially contains only level 0 nodes.

Strategy (of Rule Application) the expansion rules are applied accord-
ing to the following strategy:

1. the o-rule is applied with highest priority,

2. next, the 6- and the NN -rule are applied, and they are applied first to
nominal nodes with lower levels (before they are applied to nodes with
higher levels). In case they are both applicable to the same node, the
NN -rule is applied first.

3. all other rules are applied with a lower priority.

Comment: this strategy is necessary for termination, and in particular to fix
an upper bound on the number of applications of the NN -rule. The general
idea is to apply shrinking rules before any other rules (with the exception
that the NN -rule is applied to a node before applying the 6-rule to it), and
to apply these “crucial” rules to lower level nodes before applying them to
higher level nodes.

We are now ready to finish the description of the tableau algorithm:
A completion graph is complete if it contains a clash, or when none of

the rules is applicable. If the expansion rules can be applied to C0 and R in
such a way that they yield a complete, clash-free completion graph, then the
algorithm returns “C0 is satisfiable w.r.t. R”, and “C0 is unsatisfiable w.r.t.
R” otherwise.

3.4 Termination, Soundness, and Completeness

All but the Self–Ref-rule have been used before for fragments of SROIQ,
see (14; 11; 12), and the three ∀i-rules are the obvious counterparts to the
tableau conditions (P4a), (P4b), and (P6) of (12).

3 SROIQ IS DECIDABLE 27

u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} 6⊆ L(x),
then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked, and
{C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}
∃-rule: if ∃S.C ∈ L(x), x is not blocked, and

x has no S-neighbour y with C ∈ L(y)
then create a new node y with

L(〈x, y〉) := {S} and L(y) := {C}
Self–Ref-rule: if ∃S.Self ∈ L(x) or Ref(S) ∈ Ra, x is not blocked, and S /∈ L(〈x, x〉)

then add an edge 〈x, x〉 if it does not yet exist, and
set L(〈x, x〉) −→ L(〈x, x〉) ∪ {S}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and
∀BS .C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀BS .C}
∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked, p

S→ q in B(p),
and there is an S-neighbour y of x with ∀B(q).C /∈ L(y),

then L(y) −→ L(y) ∪ {∀B(q).C}
∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B), and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}
choose-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and

there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅
then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and
2. there are not n safe S-neighbours y1, . . . , yn of x with

C ∈ L(yi) and yi 6
.= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.= yj for 1 ≤ i < j ≤ n.
6-rule: if 1. (6nS.C) ∈ L(z), z is not indirectly blocked, and

2.]SG(z, C) > n and there are two S-neighbours x, y of z with
C ∈ L(x) ∩ L(y), and not x 6 .= y

then 1. if x is a nominal node, then Merge(y, x)
2. else if y is a nominal node or an ancestor of x, then Merge(x, y)
3. else Merge(y, x)

o-rule: if for some o ∈ NI there are 2 nodes x, y with o ∈ L(x) ∩ L(y)
and not x 6 .= y

then Merge(x, y)
NN -rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and there is a blockable

S-neighbour y of x such that C ∈ L(y) and
x is a successor of y,

2. there is no m such that 1 6 m 6 n, (6mS.C) ∈ L(x),
and there exist m nominal S-neighbours z1, . . . , zm of x
with C ∈ L(zi) and zi 6

.= zj for all 1 ≤ i < j ≤ m.
then 1. guess m with 1 6 m 6 n and set L(x) = L(x) ∪ {(6mS.C)}

2. create m new nodes y1, . . . , ym with L(〈x, yi〉) = {S},
L(yi) = {C, oi} for each oi ∈ NI new in G,
and yi 6

.= yj for 1 ≤ i < j ≤ m,

Figure 1: The Expansion Rules for the SROIQ Tableau Algorithm.

3 SROIQ IS DECIDABLE 28

As usual, we prove termination, soundness, and completeness of the
tableau algorithm to show that it indeed decides satisfiability of SROIQ-
concepts w.r.t. Rboxes.

Theorem 19 (Termination, Soundness, and Completeness)
Let C0 be a SROIQ-concept in NNF and R a reduced Rbox.

1. The tableau algorithm terminates when started with C0 and R.

2. The expansion rules can be applied to C0 and R such that they yield
a complete and clash-free completion graph if and only if there is a
tableau for C0 w.r.t. R.

Proof: (1): The algorithm constructs a graph that consists of a set of ar-
bitrarily interconnected nominal nodes, and “trees” of blockable nodes with
each tree rooted in r0 or in a nominal node, and where branches of these
trees might end in an edge leading to a nominal node.

Termination is a consequence of the usual SHIQ conditions with respect
to the blockable tree parts of the graph, plus the fact that there is a bound on
the number of new nominal nodes that can be added to G by the NN -rule.

The termination proof for the SROIQ tableaux is virtually identical to
the one for SHOIQ, whence we omit the details and refer the reader to (13).
To see this, note first that the blocking technique employed for SROIQ is
identical to the one for SHOIQ. Next, the closure fclos(C0,R) is defined
differently, comprising concepts of the form ∀BS(q).C, generally yielding a
size of fclos(C0,R) that can be exponential in the depth of the role hierarchy.
However, the construction of the automata can also be considered a pre-
prozessing step and part of the input, in that case keeping the polynomial
bound on the size of the closure relative to the input. Furthermore, it should
be clear that the new Self–Ref-rule (only adding new reflexive edges) as well
as the new clash conditions do not affect the termination of the algorithm.

(2): For the “if” direction, we can obtain a tableau T = (S, L′, E) from a
complete and clash-free completion graph G by unravelling blockable “tree”
parts of the graph as usual (these are the only parts where blocking can
apply).

More precisely, paths are defined as follows. For a label blocked node x,
let b(x) denote a node that blocks x.

3 SROIQ IS DECIDABLE 29

A path is a sequence of pairs of blockable nodes of G of the form
p = 〈(x0, x

′
0), . . . , (xn, x

′
n)〉. For such a path, we define Tail(p) := xn and

Tail′(p) := x′n. With 〈p|(xn+1, x
′
n+1)〉 we denote the path

〈(x0, x
′
0), . . . , (xn, x

′
n), (xn+1, x

′
n+1)〉.

The set Paths(G) is defined inductively as follows:

• For each blockable node x of G that is a successor of a nominal node
or a root node, 〈(x, x)〉 ∈ Paths(G), and

• For a path p ∈ Paths(G) and a blockable node y in G:

– if y is a successor of Tail(p) and y is not blocked, then 〈p|(y, y)〉 ∈
Paths(G), and

– if y is a successor of Tail(p) and y is blocked, then 〈p|(b(y), y)〉 ∈
Paths(G).

Please note that, due to the construction of Paths, all nodes occurring in
a path are blockable and, for p ∈ Paths(G) with p = 〈p′|(x, x′)〉, x is not
blocked, x′ is blocked iff x 6= x′, and x′ is never indirectly blocked. Further-
more, the blocking condition implies L(x) = L(x′).

Next, we use Nom(G) for the set of nominal nodes in G, and define a
tableau T = (S, L′, E) from G as follows.

S= Nom(G) ∪ Paths(G)

L′(p) =

{
L(Tail(p)) if p ∈ Paths(G)
L(p) if p ∈ Nom(G)

E(R) = {〈p, q〉 ∈ Paths(G)× Paths(G) |
q = 〈p|(x, x′)〉 and x′ is an R-successor of Tail(p) or
p = 〈q|(x, x′)〉 and x′ is an Inv(R)-successor of Tail(q)} ∪

{〈p, x〉 ∈ Paths(G)× Nom(G) | x is an R-neighbour of Tail(p)} ∪
{〈x, p〉 ∈ Nom(G)× Paths(G) | Tail(p) is an R-neighbour of x} ∪
{〈x, y〉 ∈ Nom(G)× Nom(G) | y is an R-neighbour of x}

We already commented above on S, and L′ is straightforward. Unfor-
tunately, E is slightly cumbersome because we must distinguish between
blockable and nominal nodes.

3 SROIQ IS DECIDABLE 30

Claim: T is a tableau for C0 with respect to R.
Firstly, by definition of the algorithm, there is an heir x0 of r0 with

C0 ∈ L(x0). By the 6-rule, x0 is either a root node or a nominal node, and
thus cannot be blocked. Hence there is some s ∈ S with C0 ∈ L′(s). Next,
we prove that T satisfies each (Pi).

• (P1a), (P1b), (P2) and (P3) are trivially implied by the definition of L′

and completeness of G.

• (P1c) follows from the construction of E and completeness, and (P1d)
follows from clash-freeness.

• (P4b) and (P6) follow from completeness of G.

• for (P4a), consider a tuple 〈s, t〉 ∈ E(R) with ∀B(p).C ∈ L′(s) and

p
R→ q ∈ B(p). We have to show that ∀B(q).C ∈ L′(t) and distinguish

four different cases:

– if 〈s, t〉 ∈ Paths(G)× Paths(G), then ∀B(p).C ∈ L(Tail(s)) and

∗ either Tail′(t) is an R-successor of Tail(s). Hence completeness
implies ∀B(q).C ∈ L(Tail′(t)), and by definition of Paths(G),
either Tail′(t) = Tail(t), or Tail(t) blocks Tail′(t) and the block-
ing condition implies L(Tail′(t)) = L(Tail(t)).

∗ or Tail′(s) is an Inv(R)-successor of Tail(t). Again, either
Tail′(s) = Tail(s), or Tail(s) blocks Tail′(s) in which case the
blocking condition implies that ∀B(p).C ∈ L(Tail′(s)), and
thus completeness implies that ∀B(q).C ∈ L(Tail(t)).

– if 〈s, t〉 ∈ Nom(G) × Nom(G), then ∀B(p).C ∈ L(s) and t is an
R-neighbour of s. Hence completeness implies ∀B(q).C ∈ L(t).

– if 〈s, t〉 ∈ Nom(G) × Paths(G), then ∀B(p).C ∈ L(s) and Tail(t)
is an R-neighbour of s. Hence completeness implies ∀B(q).C ∈
L(Tail(t)).

– if 〈s, t〉 ∈ Paths(G)×Nom(G), then ∀B(p).C ∈ L(Tail(s)) and t is
an R-neighbour of Tail(s). Hence completeness implies ∀B(q).C ∈
L(t).

In all four cases, by definition of L′, we have ∀B(q).C ∈ L′(t).

3 SROIQ IS DECIDABLE 31

• for (P5), consider some s ∈ S with ∃R.C ∈ L′(s).

– If s ∈ Paths(G), then ∃R.C ∈ L(Tail(s)), Tail(s) is not blocked,
and completeness of T implies the existence of an R-neighbour y
of Tail(s) with C ∈ L(y).

∗ If y is a nominal node, then y ∈ S, C ∈ L′(y), and 〈s, y〉 ∈
E(R).

∗ If y is blockable and a successor of Tail(s), then 〈s|(ỹ, y)〉 ∈ S,
for ỹ = y or ỹ = b(y), C ∈ L′(〈s|(ỹ, y)〉), and 〈s, 〈s|(ỹ, y)〉〉 ∈
E(R).

∗ If y is blockable and a predecessor of Tail(s), then
s = 〈p|(y, y)|(Tail(s), Tail′(s))〉, C ∈ L′(〈p|(y, y)〉), and
〈s, 〈p|(y, y)〉〉 ∈ E(R).

– If s ∈ Nom(G), then completeness implies the existence of some
R-successor x of s with C ∈ L(x).

∗ If x is a nominal node, then 〈s, x〉 ∈ E(R) and C ∈ L′(x).

∗ If x is a blockable node, then x is a safe R-neighbour of s and
thus not blocked. Hence there is a path p ∈ Paths(G) with
Tail(p) = x, 〈s, p〉 ∈ E(R) and C ∈ L′(p).

• (P7) and (P13) are immediate consequences of the definition of “R-
successor” and “R-neighbour”, as well as the definition of E.

• for (P8), consider some s ∈ S with (6nR.C) ∈ L′(s). Clash-freeness
implies the existence of at most n R-neighbours yi of s with C ∈ L(yi).
By construction, each t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an R-
neighbour yi of s or Tail(s), and none of these R-neighbours gives rise to
more than one such yi. Moreover, since L′(t) = L(yi), (P8) is satisfied.

• for (P9), consider some s ∈ S with (>nR.C) ∈ L′(s).

– if s ∈ Nom(G), then completeness implies the existence of n safe
R-neighbours y1, . . . , yn of s with and yj 6= yj, for each i 6= j,
and C ∈ L(yi), for each 1 ≤ i ≤ n. By construction, each yi

corresponds to a ti ∈ S with ti 6= tj, for each i 6= j:

∗ if yi is blockable, then it cannot be blocked since it is a safe
R-neighbour of s. Hence there is a path 〈p|(yi, yi)〉 ∈ S and
〈s, 〈p|(yi, yi)〉〉 ∈ E(R).

3 SROIQ IS DECIDABLE 32

∗ if yi is a nominal node, then 〈s, yi〉 ∈ E(R).

– if s ∈ Paths(G), then completeness implies the existence of n
R-neighbours y1, . . . , yn of Tail(s) with yj 6= yj, for each i 6= j,
and C ∈ L(yi), for each 1 ≤ i ≤ n. By construction, each yi

corresponds to a ti ∈ S with ti 6= tj, for each i 6= j:

∗ if yi is safe, then it can be blocked if it is a successor of Tail(s).
In this case, the “pair” construction in our definition of paths
ensure that, even if b(yi) = b(yj), for some i 6= j, we still have
〈p|(b(yi), yi)〉 6= 〈p|(b(yj), bj)〉.
∗ if yi is unsafe, then 〈s, yi〉 ∈ E(R).

Hence all ti are different and, by construction, C ∈ L′(ti), for each
1 ≤ i ≤ n.

• (P10) is satisfied due to completeness of G and the fact that each
t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an R-neighbour of s (in case
s ∈ Nom(G)) or of Tail(s) (in case s ∈ Paths(G)).

• (P11) follows from clash-freeness and definition of E.

• (P12) follows from completeness of G and definition of E (just as (P1c)).

• (P14a) follows trivially from the initialisation of G.

• (P14b) is due to completeness of G and the fact that nominal nodes
are not “unravelled”.

For the “only if” direction, given a tableau T = (S, L′, E) for C0 w.r.t.
R, we can apply the non-deterministic rules, i.e., the t-, choose-, 6-, and
NN -rule, in such a way that we obtain a complete and clash-free graph:
inductively with the generation of new nodes, we define a mapping π from
nodes in the completion graph to individuals in S of the tableau in such a
way that,

1. for each node x, L(x) ⊆ L′(π(x)),

2. for each pair of nodes x, y and each role R, if y is an R-successor of x,
then 〈π(x), π(y)〉 ∈ E(R), and

3 SROIQ IS DECIDABLE 33

3. x 6 .= y implies π(x) 6= π(y).

This is analogous to the proof in (15) with the additional observation
that, due to (P14b), application of the o-rule does not lead to a clash of the
form (6) as given in Definition 18. Similarly, an application of the Self–Ref-
rule does not lead to a clash of the form (3) due to Conditons (P1d), and a
clash of the form (4) can not occur due to (P11).

�

From Theorems 9, 17 and 19, we thus arrive at the following theorem:

Theorem 20 (Decidability) The tableau algorithm decides satisfiability and
subsumption of SROIQ-concepts with respect to Aboxes, Rboxes, and Tboxes.

REFERENCES 34

References

[1] Areces, C., Blackburn, P., Hernandez, B., and Marx, M.
Handling Boolean Aboxes. In Proc. of the 2003 Description Logic Work-
shop (DL 2003) (2003), CEUR (http://ceur-ws.org/).

[2] Baader, F. Augmenting Concept Languages by Transitive Closure of
Roles: An Alternative to Terminological Cycles. In Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI-91) (Sydney, 1991).

[3] Baader, F., Bürckert, H.-J., Nebel, B., Nutt, W., and
Smolka, G. On the Expressivity of Feature Logics with Negation,
Functional Uncertainty, and Sort Equations. Journal of Logic, Language
and Information 2 (1993), 1–18.

[4] Baader, F., and Hanschke, P. A schema for integrating concrete
domains into concept languages. In Proc. of the 12th Int. Joint Conf.
on Artificial Intelligence (IJCAI’91) (1991), pp. 452–457.

[5] Baader, F., Lutz, C., Milicic, M., Sattler, U., and Wolter,
F. Integrating Description Logics and Action Formalisms: First Re-
sults. In Proc. of the 20th National Conference on Artificial Intelligence
(AAAI-05) (2005), A. Press, Ed.

[6] Blackburn, P., and Seligman, J. Hybrid languages. J. of Logic,
Language and Information 4 (1995), 251–272.

[7] Hopcroft, J. E., and Ullman, J. D. Introduction to Automata The-
ory, Languages, and Computation. Addison Wesley Publ. Co., Reading,
Massachussetts, 1997.

[8] Horrocks, I., Kutz, O., and Sattler, U. The Irresistible SRIQ.
In Proc. of Workshop: OWL: Experiences and Directions, Galway, Ire-
land, November 11th-12th (2005).

[9] Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F.
From SHIQ and RDF to OWL: The Making of a Web Ontology Lan-
guage. J. of Web Semantics 1, 1 (2003), 7–26.

[10] Horrocks, I., and Sattler, U. Ontology reasoning in the
SHOQ(D) description logic. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001) (2001), pp. 199–204.

REFERENCES 35

[11] Horrocks, I., and Sattler, U. Optimised reasoning for SHIQ. In
Proc. of the 15th European Conf. on Artificial Intelligence (ECAI 2002)
(2002).

[12] Horrocks, I., and Sattler, U. Decidability of SHIQ with complex
role inclusion axioms. Artificial Intelligence 160 (2004), 79–104.

[13] Horrocks, I., and Sattler, U. A Tableaux Decision Procedure for
SHOIQ. In Proc. of 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005) (2005), Morgan Kaufmann, Los Altos.

[14] Horrocks, I., Sattler, U., and Tobies, S. Practical Reasoning
for Expressive Description Logics. In Proc. of the 6th Int. Conf. on
Logic for Programming and Automated Reasoning (LPAR’99) (1999),
H. Ganzinger, D. McAllester, and A. Voronkov, Eds., vol. 1705 of Lecture
Notes in Artificial Intelligence, Springer-Verlag, pp. 161–180.

[15] Horrocks, I., Sattler, U., and Tobies, S. Practical reasoning
for expressive description logics. In Proc. of the 6th Int. Conf. on
Logic for Programming and Automated Reasoning (LPAR’99) (1999),
H. Ganzinger, D. McAllester, and A. Voronkov, Eds., no. 1705 in Lec-
ture Notes in Artificial Intelligence, Springer, pp. 161–180.

[16] Horrocks, I., Sattler, U., and Tobies, S. Reasoning with in-
dividuals for the description logic SHIQ. In Proc. of the 17th Int.
Conf. on Automated Deduction (CADE 2000) (2000), D. McAllester,
Ed., vol. 1831 of Lecture Notes in Computer Science, Springer, pp. 482–
496.

[17] Horrocks, I., Sattler, U., and Tobies, S. Reasoning with in-
dividuals for the description logic SHIQ. In Proc. of the 17th Conf.
on Automated Deduction (CADE-17) (Germany, 2000), D. MacAllester,
Ed., vol. 1831 of Lecture Notes in Computer Science, Springer-Verlag.

[18] Pan, J., and Horrocks, I. Web ontology reasoning with datatype
groups. In Proc. of the 2003 International Semantic Web Conference
(ISWC 2003) (2003), D. Fensel, K. Sycara, and J. Mylopoulos, Eds.,
no. 2870 in Lecture Notes in Computer Science, Springer, pp. 47–63.

[19] Schaerf, A. Reasoning with individuals in concept languages. Data
and Knowledge Engineering 13, 2 (1994), 141–176.

REFERENCES 36

[20] Schild, K. A Correspondence Theory for Terminological Logics: Pre-
liminary Report. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91) (Sydney, 1991), pp. 466–471.

[21] Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sat-
tler, U., Turi, D., and Stevens, R. A Little Semantic Web Goes
a Long Way in Biology. In Proc. of the 4th International Semantic Web
Conference (2005), LNCS, SV. To appear.

