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ABSTRACT
Starting from an acknowledgment of the plurality of
epistemic motivations driving phenotype representa-
tions, our main contribution is a distinction between
six categories of human agents as individuals and
groups focused around particular epistemic interests.
We analyse the corresponding impact of these groups
and individuals on representation types, mapping and
reasoning scenarios, using the example of breast
cancer research. We in particular demonstrate a
heterogeneity of representation types for breast cancer
phenotypes and stress that the characterisation of a
tumour phenotype often includes parameters that go
beyond the representation of a corresponding empirically
observed tumour, thus reflecting significant functional
features of the phenotypes as well as epistemic interests
that drive the modes of representation. Accordingly,
the represented features of cancer phenotypes function
as epistemic vehicles aiding various classifications,
explanations, and predictions.

1 INTRODUCTION
The representation of phenotypes plays an important
role in clinical and biomedical knowledge. Besides
functional characterisations, a disease often gets
characterised through a distinction between ‘normal’
and ‘abnormal’ phenotypes, where ‘abnormal’ pheno-
types often serve as the marks of disease. The
‘abnormal’ phenotypes associated with a disease are
labelled as phenotypes of disease (PD). However, the
questions of what is ‘abnormal’ and what should be
considered as a phenotype of a disease and how such a
phenotype should be represented are rather contentious.
Clearly, the choice of how a PD should be represented
is normative and context dependent. Consider the case
of breast cancer and BRCA gene mutations. In the age
of genomic medicine, the very definition of disease has
changed introducing an asymptomatic diagnosis. So,
carriers of BRCA mutation, without having developed
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any signs of breast cancer, still have a likelihood of over
80% for developing an aggressive cancer phenotype
during their life span. Genomic medicine shifts the
focus of PD from a traditional organ level approach
to the gene level, treating apparently healthy people
as ‘patients’. For, the ‘normal’ breast phenotype in
a BRCA mutation carrier will be irrelevant in the
light of knowledge about ‘abnormal’, fine-grained
phenotypes related to the gene expression patterns of
the mutated gene. Although these new directions in
biomedicine aim towards an integration of clinical
and biomedical knowledge, in most cases the needs
of sub-domain knowledge significantly vary. So, a
clinician will have different criteria for a representation
than a molecular biologist. Regarding the goals of a
discipline and the research context, a representation
that is relevant for a clinician does not need to
satisfy the needs of a molecular biologist who is
aiming towards more fine-grained representations. As
a result, heterogeneous representations of breast cancer
phenotypes were employed in clinical and biomedical
knowledge [8, 4, 25].

Taking a very general position, representations of
PDs may include images acquired by technologies
such as ultrasound, X-ray, and microscopy of
histopathological samples. Moreover, representations
of PDs are not limited to visual representations,
but may include mathematical equations, statistical
graphs, molecular markers, microarrays data, and the
phenotype specific protein interactions, thus describing
PDs according to the needs of and knowledge
about a particular domain aspect. In addition, a
specific representation of a phenotype should not,
in general, be mistaken for the representation of
knowledge. Rather, a representation reflects which
aspects of knowledge have been targeted by the
representation. Accordingly, a representation reflects a
scientist’s choice of a representation type in order to
represent a certain subset of the domain knowledge—
therefore, ‘choosing a representation’ might be a
highly intentional act [6]. However, a representation
such as a histopathological image will not, itself,
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represent any knowledge unless it gets interpreted.
Knowledge within a domain is explicitly represented
only if the representations get systematically connected
with related interpretations, knowledge claims, and
reasoning over the representations. Therefore, besides
heterogeneity of PDs, biomedical ontology has to
deal with a heterogeneity of reasoning about PDs,
comprising different kinds of formal (or logical)
representations as well as various types of reasoning.
Conversely, the intended reasoning methods or types
over PDs also influence the choice of representation
of PDs because such representations are mediated by
domain specific methods and interventions, employed
in the imaging, measuring of the gene expression and
other diagnostic techniques [12]. For example, the
clinical representation of breast cancer goes beyond
the tumour imaging representation. According to the
standards of the TNM classificatory system [8], the
clinical classification of tumours might consider tumour
size (T), lymph nodes involvement (N), and presence
of metastasis (M). Of course tumour size is just one
feature and is not sufficient for the characterisation of
the tumour type. Cancer is a dynamic and complex
disease of an organism and the PDs go beyond the
characterisation of a tumour’s features captured in a
static picture. So, for example, knowledge about lymph
nodes’ status or proliferation marker KI-67 provides
additional information about a tumour’s phenotype.
Likewise, tumour markers provide a view on the PDs
through the specific interventions on the representation
such as staining samples in order to mark the presence
of hormone receptors. Had the estrogen receptor (ER)
been detected, the PD would have been described as
an ER positive tumour, which significantly differs from
an ER− (negative) tumour, which does not respond to
the endocrine therapy [7]. Thus, the therapeutic criteria
are also considered in the specification of the tumour
phenotypes.

2 A PLURALITY OF DOMAIN INTERESTS
Information technologies and formal tools such as
ontologies for knowledge representation (KR) are
aiming at the integration of heterogeneous knowledge
domains and different types of representations. Concur-
rently, clinicians and molecular oncologists are trying
to organise and apply the overwhelming and diverse
knowledge about cancer biology. Can these interests
of different disciplines meet in a constructive union,
while preserving the domain specific representations
and reasoning capabilities?

In this and the next section we outline some
of the requirements for achieving such a level of
interoperability.

We begin by giving a comparative analysis of the
distribution and character of knowledge involved in
the integration of heterogeneous types of knowledge
represented in knowledge bases (KBs). In particular,
we distinguish where, how, and by whom knowledge is
represented by characterising six epistemic groups, and
by discussing how membership to a group impacts the
representation as well as knowledge base types. Note
that these groups exhibit rich interdependencies and
partially overlap.

1. The characterisation of the epistemic groups starts
with the societal demands for problem solving,
such as, for example, the need for personalised
breast cancer therapy. The demands may be
represented in the form of standards, platforms
and funding policies. In a democratic society,
knowledge on this level can be represented as
common or shared knowledge available to the
members of society; knowledge can be distributed
through various channels or common-sense KBs.

2. The second epistemic group to be discussed is
at the level of an individual scientist whose
‘knowledge base’ is a collection of relevant
background knowledge, here to be understood
as cognitive representations placed in the mind,
arguably, in the form of conceptual maps (see [24]).

3. As the third epistemic group, we specify the
scientific communities, each of which is composed
of the specific disciplinary domain scientists
(clinicians, molecular biologists, bioinformaticians
etc.). This epistemic group establishes knowledge
within a scientific community as a received view,
having the form of explicit and inter-subjective
representations expressed in the respective scientific
languages, circulated through publications. Like in
group (1), knowledge can be distributed in various
ways, but related KBs will contain domain specific
knowledge.

4. The fourth group comprises scientific communities
formed around a particular problem (e.g. breast
cancer). As the group contains multidisciplinary
teams focused on a particular problem, knowledge
will need to be coordinated in such a way that
the used scientific terms and reference classes will
conform with knowledge within diverse domains.
For instance, the biomedical terms might be
structured into networks of terms that represent
how these terms are interrelated in the domain
knowledge. Thus, collaboration here results in
merging knowledge from different domains. The
representation of the merged knowledge coming
from different perspectives on the same problem
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might be a ‘unified semantic map’ (see group (2))
that serves as a semi-formal conceptual model and
an intermediate step towards the KB and the formal
ontology to be employed in KR.

5. The fifth is the communities of logicians and
ontologists who are formalising ontologies ac-
cording to the needs and specificities of a
particular field. Domain knowledge and the merged
domain knowledge will be expressed as ontologies
written in various formal languages (e.g. refining
foundational ontologies such as DOLCE [21],
BFO1, or GFO2 etc. formalised in OWL3, first-
order logic, etc.)

6. The sixth group involves computer scientists,
programmers and engineers, who are designing
databases and applying formal ontologies as well
as various reasoning tools to large datasets.
Technically, a representation built on top of a
database involves types and mapping relations
structuring the data, and can be considered
as meta-data. Here the representation integrates
the types and mappings with instances (data).
Epistemic accuracy of the mappings depends on
how well the mappings correspond to the scientific
knowledge and the empirical findings of the
represented domain (e.g. breast cancer). In contrast
to groups (2) and (3), knowledge in a KB is not
scattered over various representational spaces or
layers, but integrated into one.

Knowledge levels, groups, or layers have of course
been discussed previously in the AI literature. For
instance, Newell introduced an agent-based distinction
between the ‘knowledge level’ and the ‘symbol level’
in [23], and [1, 10, 11] analysed layers in formal
ontology design. In more detail, Brachman, in 1979,
introduced a classification of the primitives used in KR
systems at the time [1], distinguishing the following
four levels: (i) ‘Implementational’, (ii) ‘Logical’, (iii)
‘Conceptual’, and (iv) ‘Linguistic’. Guarino [10, 11]
added to these four layers yet another layer, namely
the ‘Epistemological Layer’ for the primitives, situated
between the ‘Logical’ and the ‘Conceptual’ layers. Our
approach differs in that it mainly aims at distinguishing
human agents as individuals and groups focused
around particular epistemic interests, whilst analysing
the corresponding impact on representation types. A
more detailed analysis of the relationship to previous
‘layering approaches’ is left for future work.

1 See http://www.ifomis.org/bfo/
2 See http://www.onto-med.de/ontologies/gfo/
3 See http://www.w3.org/TR/owl2-overview/

3 ONTOLOGY INTEROPERABILITY
We next discuss how the six epistemic groups impact
on representation types, choice of formalisms, kinds of
metadata, mappings, as well as reasoning. We begin by
inspecting the notion of an ontology itself.

A plurality of ontologies and formalisms
An often cited definition of the term ‘ontology’ in
computer science was given by Tom Gruber in 1992 [9]
(here heavily abridged).

A conceptualisation is an abstract, simplified view
of the world that we wish to represent for some
purpose. Every knowledge base, knowledge-based
system, or knowledge-level agent is committed to
some conceptualisation, explicitly or implicitly.

An ontology is an explicit specification of a
conceptualisation. [. . . ] For AI systems, “what
exists” is that which can be represented. [. . . ]
In such an ontology, definitions associate the
names of entities in the universe of discourse
(e.g., classes, relations, functions, or other objects)
with human-readable text describing what the
names mean, and formal axioms that constrain the
interpretation and well-formed use of these terms.
Formally, an ontology is the statement of a logical
theory. [9, p. 908–909]

This definition, whilst being controversial, still nicely
captures the main differences between the usage of the
term ‘ontology’ in philosophy vs. computer science and
artificial intelligence. Namely, consider the following
snippets from this definition:

• ‘simplified view of the world that we wish to
represent for some purpose’: an ontology as a
technical artefact is not intended to cover the
world in its entirety, but only chosen aspects
of the world, on specific levels of abstraction,
and for given purposes—largely independent of
particular metaphysical positions such as realism
and antirealism; here, group (4) will typically
informally specify the relevant domain knowledge,
whilst group (5) is in charge of establishing
an agreement on how to formally codify this
knowledge.

• ‘committed to some conceptualisation’: ontologies
presuppose various decisions concerning onto-
logical commitments. These originate partly in
common sense knowledge (group (1)), precisifi-
cations given by members of group (2), and
agreements as they are established in groups (3)
and (4). Finally, the formal implementation of the
ontological commitments is again left for groups
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(5) and (6), merging collaborative interests of
(1)–(6).

• “‘what exists” is that which can be represented’:
ontological commitments are dependent on the
expressive capabilities of selected representational
formalisms. The choice of an adequate formal
language can only be established as an interplay
between logician (group (5)), computer scientist
(group (6)), and the domain experts of (3) and (4).

• ‘representational vocabulary’ and ‘human-readable
text’: there is a ‘tension’ between the logical
vocabulary used, and the natural language concepts
and terms it is meant to capture, and, in the case
of e.g. breast cancer, various forms of scientific
representations such as graphs, mathematical
equations, images, 3D models etc. Reconciling
this tension requires deep interaction between the
various groups of domain experts and formal
logicians and computer scientists.

• ‘an ontology is the statement of a logical theory’:
on a technical level, an ontology is seen as
equivalent to a logical theory, written in a certain
formalism. Clearly, this task is for group (5),
respecting the requirements of group (6).

Heterogeneity of formal languages is particularly
important in the life sciences, where size of ontologies
and needed expressivity vary dramatically. For example,
whereas weak (i.e. sub-Boolean) DLs suffice for the
NCI thesaurus (containing about 45.000 concepts)
which is intended to become the reference terminology
for cancer research [26], other medical ontologies such
as GALEN4 require the full expressivity of the OWL
language (a decidable fragment of first-order logic),
while foundational ontologies typically require at least
full first-order logic (see [16]).

An example of a heterogeneous combination of
formalisms is discussed in [13], where it is shown that
in order to adequately represent the spatial structure of
molecules as they are described in chemical ontologies
such as ChEBI [2], ontology languages need to be
combined with formalisms such as monadic second-
order logic. We next investigate how such diversity
and heterogeneity is reflected in and how it originates
from the different group interests involved in the
representation of breast cancer phenotypes.

A plurality of mapping and reasoning types
In biomedical ontologies, metadata in the form of
tags, annotation, or more generally documentation,
is of particular importance. Indeed, many biomedical

4 See http://www.opengalen.org/
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Fig. 1. Knowledge granularity.

ontologies have an extremely shallow logical structure,
namely consist only of taxonomies, or even just of
sets of concepts, however accompanied with a rich
set of metadata. It is clear that the separation of the
epistemic groups from Section 2 has a direct impact
on the kinds of annotations and metadata that can be
expected to be generated. For instance, the particular
scientific communities (groups (2) and (3)) need not
associate identical sets of concepts as related to a term in
use. Had the ‘Human Epidermal growth factor Receptor
2’ (HER2, also known as ErbB2) been used as a
tumour marker in the community of clinical oncologists,
it would have been related to the diagnosis of an
aggressive tumour with a poor clinical outcome and a
low likelihood of a long term survival. On the other
hand, among the group of molecular biologists HER2
would be associated with the specific protein-protein
interactions that trigger the carcinogenic events.

As interests diverge among and within disciplines
concerning ways of describing a problem, distinguishing
similarities and difference makers will vary among
knowledge domains. So, HER2 will not be the
same difference maker for a clinician and for a
biologist. The main difference that will be relevant
for a clinician will be a difference in the patients
survival associated with the expression of HER2 [27].
The biologist who focuses on the cellular signalling
pathways might favour a differential expression of the
ErbB2 gene while comparing the phenotypes of two
types of cell lines [19]. Consequentially, justification
of asserted similarities and generalisations will ask
for a different kind of evidence in diverse domains.
Clinical evidence will be acquired through survival
analysis and clinical trials while biologists provide
evidence through diverse experimental and explanatory
methodologies [18]. Accordingly, the reasoning of
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the groups (2)–(4) influence the related mappings and
justifications implemented by the groups (5) and (6).

A relation between a term and its reference class
gets its justification within domain knowledge as
an adequate mapping relationship. The justification
is expressed through the claims that support the
mapping relations. Regarding the previous example,
‘HER2’ will be mapped onto a bad prognosis within
clinical knowledge, and the mapping will be justified
by the statistical data retrieved from the survival
analyses (see Fig. 1, Domain 1). Likewise, biological
knowledge provides an alternative mapping relation and
a related justification to the mapping between ‘HER2’
and ‘tumour aggressiveness’, e.g. protein interaction
pathways that result in cell proliferation and tumour
aggressiveness (see Fig. 1, Domain 2). These diverse
patterns of clinical and biomedical reasoning [3] can be
perceived as domain specific. A detailed analysis of the
mappings within and between knowledge domains asks
for a multidisciplinary approach involving a community
based process of knowledge production [5]. A group
of experts with a common interest is collaborating in
establishing standards that help them label and describe
the domain of interest [20].

4 DISCUSSION AND FUTURE WORK
Concurrently with the systematisation of epistemic
group levels, representation types and knowledge base
types, we intend to use the introduced distinctions
in order to characterise domain specific knowledge
representations for breast cancer phenotypes. Specif-
ically, we are interested in the problem of merging
knowledge from different domains and in analysing the
‘domain knowledge problems’ of [14] further through
inspecting a number of examples from molecular
oncology and clinical practice. Here, we have
demonstrated that such domain problems ask for a
plurality of onto-logical formalisms.

We have sketched the intertwined processes involved
in the integration of heterogeneous representations as
they originate from different epistemic groups that
are involved in complex domains such as breast
cancer research. Concerning formal representations
dealing with the heterogeneities of phenotypes, we
propose to endorse a framework that allows to
organise the various (domain) representations into
an interlinked modular structure, respecting the
plurality of formalisms, expressivities and aims, as
they are found across diverse scientific communities.
A further characterisation of the domain specific
epistemic interests, including a deeper understanding
of the characterised groups (1)–(6), would provide
a more sustainable integration of knowledge about

breast cancer, increasing interoperability of represented
information and, therefore, applicability of acquired
clinical and biological knowledge. A closer understand-
ing of the domain needs would also further support
decisions about which formalisms best suit a domain.
[15, 22] lay the foundation for a distributed ontology
language DOL, which will allow users to use their
own preferred ontology formalism whilst becoming
interoperable with other formalisms. At the heart of
this approach is a graph of ontology languages and
translations between them (see [17] for the theoretical
development).5 This graph enables users to:

• relate ontologies that are written in different
formalisms with various kinds of mappings,

• re-use ontology modules even if they have been
formulated in different formalisms, and

• re-use ontology tools like theorem provers and
module extractors along translations.

Indeed, we believe that no attempt at an integration
of knowledge can be epistemically sustainable unless
it respects the plurality of formal languages and tools,
methodologies and perspectives as they result from the
heterogeneity of the domain interests.
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