
The Onto-Logical Translation Graph

Till MOSSAKOWSKI a,1 and Oliver KUTZ b

a DFKI GmbH Bremen and University of Bremen
b Research Center on Spatial Cognition, University of Bremen

Abstract. We present an overview of the landscape of ontology languages, mostly
pertaining to the first-order paradigm. In particular, we present a uniform formali-
sation of these languages based on the institution theoretical framework, allowing
a systematic treatment and analysis of the translational relationships between the
various languages and a general analysis of properties of such translations. We also
discuss the importance of language translation from the point of view of ontologi-
cal modularity and logical pluralism, and for the borrowing of tools and reasoners
between languages.

Keywords. Ontology languages, logic translations, institution theory

Introduction and Motivation

Ontologies are nowadays being employed in a large number of diverse information-rich
domains. While the OWL standard has lead to an important unification of notation and
semantics, still many distinct formalisms are used for writing ontologies. Some of these,
as RDF, OBO and UML, can be seen more or less as fragments and notational variants
of OWL, while others, like F-logic and Common Logic (CL), clearly go beyond the ex-
pressiveness of OWL.2 Moreover, not only the underlying logics are different, but also
the modularity constructs.

In this paper, we face this diversity not by proposing yet another ontology language
that would subsume all the others, but by accepting the diverse reality and formulating
means (on a sound and formal semantic basis) to compare and integrate ontologies that
are written in different formalisms. This view is a bit different from that of unifying lan-
guages such as OWL and CL, which are meant to be “universal” formalisms (for a certain
domain/application field), into which everything else can be mapped and represented.
While such “universal” formalisms are clearly important and helpful for reducing the
diversity of formalisms, it is still a matter of fact that no single formalism will be the
Esperanto that is used by everybody. It is therefore important to both accept the existing
diversity of formalisms and to provide means of organising their coexistence in a way
that enables formal interoperability among ontologies.

In this work, we lay the foundation for a distributed ontology language (DOL),
which will allow users to use their own preferred ontology formalism while becoming

1Corresponding Author: Till Mossakowski, DFKI GmbH Bremen, Enrique-Schmidt Strasse 8, 28359
Bremen, Germany; E-mail: Till.Mossakowski@dfki.de.

2For uniformity, we here typeset all logics in the same font, slightly deviating from common usage.



2 Mossakowski and Kutz / The Onto-Logical Translation Graph

interoperable with other formalisms (see [23] for further details). The DOL language is
in particular intended to be at the core of a new ISO standardisation effort on ontology
interoperability (proposed in ISO/TC 37/SC 3). At the heart of our approach is a graph
of ontology languages and translations. This graph will enable users to

• relate ontologies that are written in different formalisms (e.g. prove that the OWL
version of the foundational ontology DOLCE is logically entailed by the first-order
version);

• re-use ontology modules even if they have been formulated in a different formal-
ism;

• re-use ontology tools like theorem provers and module extractors along transla-
tions between formalisms.

The paper is organised as follows. In Section 1, we recall institutions, which for-
malise the notion of logical system, and in Section 2, we will cast many known ontology
languages as institutions (largely following [24], but casting e.g. F-logic as an institution
for the first time). This is then repeated for institution comorphisms (formalising the no-
tion of logic translation) in Sections 3 and 4. The latter section contains the key contri-
bution of this work: a graph of comorphisms among logics used for ontologies, together
with their main properties.

1. Institutions: Formalising the Notion of Logical System

When relating different ontology formalisms, it is helpful to use a meta-notion that for-
malises the intuitive notion of logical system. Goguen and Burstall have introduced in-
stitutions [15] exactly for this purpose. We assume some acquaintance with the basic
notions of category theory and refer to [1] or [26] for an introduction.

Definition 1. An institution is a quadruple I = (Sign,Sen,Mod, |=) consisting of
the following:

• a category Sign of signatures and signature morphisms,
• a functor Sen : Sign−→Set3 giving, for each signature Σ, the set of sentences

Sen(Σ), and for each signature morphism σ : Σ−→Σ′, the sentence translation
map Sen(σ) : Sen(Σ)−→Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),

• a functor Mod : Signop−→CAT 4 giving, for each signature Σ, the category of
models Mod(Σ), and for each signature morphism σ : Σ−→Σ′, the reduct func-
tor Mod(σ) : Mod(Σ′)−→Mod(Σ), where often Mod(σ)(M ′) is written as
M ′�σ , and M ′�σ is called the σ-reduct of M ′, while M ′ is called a σ-expansion
of M ′�σ ,

• a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ : Σ−→Σ′ in Sign the following satisfaction condition holds:

(?) M ′ |=Σ′ σ(ϕ) iff M ′�σ|=Σ ϕ

3Set is the category having all small sets as objects and functions as arrows.
4CAT is the category of categories and functors. Strictly speaking, CAT is not a category but only a so-

called quasicategory, which is a category that lives in a higher set-theoretic universe.



Mossakowski and Kutz / The Onto-Logical Translation Graph 3

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant under
change of notation and context.5 a

A theory in an institution is a pair Th = 〈Σ,Γ〉 consisting of a signature Σ and a set
Γ of sentences over Σ. The models of Th are those Σ-models that satisfy Γ. Satisfiability
and logical consequence are defined in the standard way. Moreover, the following kernel
language of modular specifications [32] can be interpreted in any institution:

SP ::= 〈Σ,Γ〉 |SP1 ∪ SP2 |σ(SP ) |σ−1(SP )

with the following semantics:

Mod(〈Σ,Γ〉) = {M ∈Mod(Σ) |M |= Γ}
Mod(SP1 ∪ SP2) = Mod(SP1) ∩Mod(SP2)
Mod(σ(SP )) = {M |M |σ ∈Mod(SP )}
Mod(σ−1(SP )) = {M |σ |M ∈Mod(SP )}

Most modularity concepts used for ontologies can be mapped into this kernel language.

2. Ontology Languages as Institutions

We now cast a rather comprehensive list of well-known ontology languages as institu-
tions, largely following [24], but also extending the list of formalisms given there by
including F-logic, OBO, RDFS, and some modular ontology languages, but leaving out
some of the less often used formalisms, such as fuzzy and paraconsistent DL.

Definition 2 (Propositional Logic). The institution PL of propositional logic has sets Σ
(propositional symbols) as signatures, and functions σ : Σ1 → Σ2 between such sets as
signature morphisms. A Σ-modelM is a mapping from Σ to {true, false}. The reduct of
a Σ2-model M2 along σ : Σ1 → Σ2 is the Σ1-model given by the composition M2 ◦ σ.
Σ-sentences are built from Σ with the usual propositional connectives, and sentence
translation along a signature morphism just replaces the propositional symbols along
the morphism. Finally, satisfaction of a sentence in a model is defined by the standard
truth-table semantics. It is straightforward to see that the satisfaction condition holds. a

Propositional reasoning is at the core of ontology design. Boolean expressivity is
sufficient to axiomatise the taxonomic structure of an ontology by imposing disjointness
and sub- or super-concept relationships via implication and negation, as well as e.g. non-
empty overlap of concepts.

Definition 3 (Untyped First-order Logic). In the institution FOL= of untyped first-order
logic with equality, signatures are first-order signatures, consisting of a set of function
symbols with arities, and a set of predicate symbols with arities. Signature morphisms
map symbols such that arities are preserved. Models are first-order structures, and sen-
tences are first-order formulas. Sentence translation means replacement of the translated

5Note, however, that non-monotonic formalisms can only indirectly be covered this way, but compare, e.g.,
[18].



4 Mossakowski and Kutz / The Onto-Logical Translation Graph

symbols. Model reduct means reassembling the model’s components according to the
signature morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure. a

Definition 4 (Many-sorted First-order Logic). The institution FOLms= of many-sorted
first-order logic with equality is similar to FOL=, the main difference being that signa-
tures are many-sorted first-order signatures, consisting of sorts and typed function and
predicate symbols, and that formulas need to be well-typed. For details, see [15]. a

Although not strictly more expressive than untyped FOL=, introducing a sort structure
allows a cleaner and more principled design of first-order ontologies. Moreover, axioms
involving different sorts can be stated more succinctly, and static type checking gives
more control over correct modelling.

Definition 5 (Common Logic - CL). Common Logic (CL) has first been formalised as
an institution in [24]. A CL signature Σ (called vocabulary in CL terminology) consists
of a set of names, with a subset called the set of discourse names, and a set of sequence
markers. A signature morphism consists of two maps between these sets, such that the
property of being a discourse name is preserved and reflected.6 A Σ-model consists of a
set UR, the universe of reference, with a non-empty subset UD ⊆ UR, the universe of
discourse, and four mappings:

• rel from UR to subsets of UD∗ = {< x1, . . . , xn > |x1, . . . , xn ∈ UD} (i.e.,
the set of finite sequences of elements of UD);

• fun from UR to total functions from UD∗ into UD ;
• int from names in Σ to UR, such that int(v) is in UD if and only if v is a

discourse name;
• seq from sequence markers in Σ to UD∗.

Model reducts leave UR, UD , rel and fun untouched, while int and seq are composed
with the appropriate signature morphism component. A Σ-sentence is a first-order sen-
tence, where predications and function applications are written in a higher-order like
syntax as t(s). Here, t is an arbitrary term, and s is a sequence term, which can be a
sequence of terms t1 . . . tn, or a sequence marker. However, a predication t(s) is inter-
preted like the first-order formula holds(t, s), and a function application t(s) like the
first-order term app(t, s), where holds and app are fictitious symbols denoting the se-
mantic objects rel and fun . In this way, CL provides a first-order simulation of a higher-
order language. Quantification variables are partitioned into those for individuals and
those for sequences. Sentence translation along signature morphisms is done by simple
replacement of names and sequence markers. Interpretation of terms and formulae is as
in first-order logic, with the difference that the terms at predicate resp. function symbol
positions are interpreted with rel resp. fun in order to obtain the predicate resp. func-
tion, as discussed above. A further difference is the presence of sequence terms (namely
sequence markers and juxtapositions of terms), which denote sequences in UD∗, with
term juxtaposition interpreted by sequence concatenation. Note that sequences are essen-
tially a second-order feature. For details, see [11]. As an example, consider the DOLCE

formula ∀φ(φ(x)), corresponding to
∧
ψ∈Π(ψ(x)), where predicate variables φ, ψ range

6That is, a name is a discourse name if and only if its image under the signature morphism is.



Mossakowski and Kutz / The Onto-Logical Translation Graph 5

over a finite set Π of explicitly introduced universals. In CL, this is written, using standard
logical syntax (note that CL is agnostic about concrete syntax)

∀φ.Π(φ) −→ φ(x)

or in the often used Lisp-like syntax of the CL Interchange Format CLIF:

(forall (?phi) (if (pi ?phi) (?phi ?x)))

Sequence markers add even more flexibility. For example, it is possible to express
that a list of predicates is mutually disjoint as follows (using the sequence marker “. . .”):

mutually-disjoint(P)
mutually-disjoint(P Q . . .)←→
(∀x.¬(P (x) ∧Q(x))) ∧mutually-disjoint(P . . .) ∧mutually-disjoint(Q . . .)

a
For the rationale and methodology of CL and the possibility to define dialects cov-

ering different first-order languages, see [11].

Definition 6 (CASL). CASL (the Common Algebraic Specification Language, [4, 30])
provides an extension of many-sorted first-order logic with partial functions, subsorting
and so-called sort-generation constraints. While partial functions and subsorting do not
essentially add expressivity (they can be coded out), sort-generation constraints do: they
are many-sorted induction axioms (of a second-order nature) that can be used for the
definition of datatypes like natural numbers, lists, trees etc.

Definition 7 (Relational Schemes - Rel-S). This logic, first introduced in [21], is about
schemes for relational databases and their integrity constraints. A signature in this insti-
tution consists of a set of sorts and a set of relation symbols, where each relation symbol
is indexed with a string of sorted field names as in:

paper(key id : integer, title : string, published in : integer)
journal(key id : integer, name : string, impact factor : float)

Some sorts for the relational schema as integer, float and string are predefined
and equipped with default interpretations. The identifier key can be used as a prefix
to sorted field names to specify the primary (compound) key of the schema. Signature
morphisms map sorts, relation symbols and field names in a compatible way, such that
primary keys are preserved. A model consists of a carrier set for each sort, where some
sorts have predefined carrier sets, and an n-ary relation for each relation symbol with n
fields. Model reduction is like that of many-sorted first-order logic. A sentence is a link
(integrity constraint) between two field names of two relation symbols. For example, the
link

paper[published in] → journal[id] one to many

requires that the field published in of any paper coincides with the id of at least
one journal (the many-one character of this relationship is expressed by the keyword



6 Mossakowski and Kutz / The Onto-Logical Translation Graph

one to many). Other possible relationships are one to one and many to many. Sentence
translation is just renaming of relation symbols and of sorts. A link r[f ]→ s[g] t is satis-
fied in case of t = one to many if for each element in r[f ] there are zero or more occur-
rences of this element in s[g], but for each element in s[g] there is at most one occurrence
of an element in r[f ]. For t = one to one in both cases only one occurrence is allowed,
and for many to many there is no restriction on the number of occurrences. a

Definition 8 (Description Logics: OWL and its profiles EL,QL,RL). Signatures of the
description logic ALC consist of a set A of atomic concepts, a set R of roles and a
set I of individual constants, while signature morphisms provide respective mappings.
Models are single-sorted first-order structures that interpret concepts as unary and roles
as binary predicates. Sentences are subsumption relations C1 v C2 between concepts,
where concepts follow the grammar

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be ABox
sentences, which are membership assertions of individuals in concepts (written a : C
for a ∈ I) or pairs of individuals in roles (written R(a, b) for a, b ∈ I, R ∈ R). Sen-
tence translation and reduct is defined similarly as in FOL=. Satisfaction is the standard
satisfaction of description logics.

The logic SROIQ [19], which is the logical core of the Web Ontology Language
OWL 2 DL7 extendsALC with the following constructs: (i) complex role boxes (denoted
by SR): these can contain: complex role inclusions such as R ◦ S v S as well as
simple role hierarchies such as R v S, assertions for symmetric, transitive, reflexive,
asymmetric and disjoint roles (called RBox sentences), as well as the construct ∃R.Self
(collecting the set of ‘R-reflexive points’); (ii) nominals (denoted by O); (iii) inverse
roles (denoted by I); qualified and unqualified number restrictions (Q). For details on the
rather complex grammatical restrictions for SROIQ (e.g. regular role inclusions, simple
roles) compare [19], and see the example given below. SROIQ can be straightforwardly
rendered as an institutions following the previous examples, but compare also [25].

The OWL 2 specification contains three further DL fragments of SROIQ, called
profiles, namely EL, QL, and RL.8 These are obtained by imposing syntactic restrictions
on the language constructs and their usage, with the motivation that these fragments are
of lower expressivity and support specific computational tasks. For instance, RL is de-
signed to make it possible to implement reasoning systems using rule-based reasoning
engines, QL to support query answering over large amounts of data, and EL is a sub-
Boolean fragment sufficiently expressive e.g. for dealing with very large biomedical on-
tologies such as the NCI thesaurus. To sketch one of these profiles in some more detail,
the (sub-Boolean) description logic EL underlying EL has the same sentences as ALC
but restricts the concept language of ALC as follows:

C ::= B | > |C1 u C2 | ∃R.C

Given that EL, QL, and RL are obtained via syntactic restrictions but leaving the overall
SROIQ semantics intact, it is obvious that they are subinstitutions of SROIQ. a

7See also http://www.w3.org/TR/owl2-overview/
8See http://www.w3.org/TR/owl2-profiles/ for details of the specifications.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-profiles/


Mossakowski and Kutz / The Onto-Logical Translation Graph 7

Apart from some exceptions9, description logics can be seen as fragments of first-
order logic via the standard translation [2] that translates both the syntax and semantics
of various DLs into untyped first-order logic. A similar situation obtains in the case of
the OBO language designed for biomedical ontologies:

Definition 9 (OBO). OBO is a very popular ontology language in the area of biomedi-
cal ontology engineering. On the syntactic side, it is straightforward to describe the lan-
guage’s signatures and sentences in an institution theoretic style, but we here have to
leave out the details of such a description. On the semantic side, OBO is a curious case of
a language that has been used extensively and for which editors and even reasoners have
been successfully implemented, relying initially on only informally specified semantics.

Beginning with OBO version 1.2, and building on an agreement with the OBO com-
munity concerning the informal semantics, it was realised that formal semantics could
be (mostly10) borrowed from OWL, see [17]. In the most recent version of OBO, ver-
sion 1.4, the translation to OWL 2 as providing the formal semantics is now an official
part of the draft specification.11 This is an instance of borrowing model theory in the
sense of [9], by which an institution OBOOWL is obtained. Since the translation is still
partial, OBOOWL is only a subset of the full OBO 1.4. For instance, in order to preserve
decidability, SROIQ prohibits cardinality constraints on transitive object properties,
whilst the full OBO 1.4 allows this. To render the full OBO 1.4 as an institution, the
translation that defines the satisfaction relation between OBO sentences and the derived
semantics has to be extended beyond SROIQ. This is straightforward: the added con-
structs in OBO such as Boolean constructors on roles have a clear correspondent in DL
semantics, which makes it straightforward to complete the mapping of the semantics.

a

Definition 10 (RDF and RDFS). Following [25], we define the institutions for the Re-
source Description Framework (RDF) and RDF-Schema (RDFS), respectively. These are
based on a logic called bare RDF (bRDF), which consists of triples only (without any
predefined resources).

A signature Rs in bRDF is a set of resource references. For sub, pred, obj ∈ Rs,
a triple of the form (sub, pred, obj) is a sentence in bRDF, where sub, pred, obj rep-
resent subject name, predicate name, object name, respectively. An Rs-model M =
〈Rm, Pm, Sm, EXTm〉 consists of a set Rm of resources, a set Pm ⊆ Rm of predi-
cates, a mapping function Sm : Rs → Rm, and an extension function EXTm : Pm →
P(Rm × Rm) mapping every predicate to a set of pairs of resources. Satisfaction is
defined as follows:

M |=Rs (sub, pred, obj)⇔ (Sm(sub), (Sm(obj)) ∈ EXTm(Sm(pred)).

Both RDF and RDFS are built on top of bRDF by fixing a certain standard vocabu-
lary both as part of each signature and in the models. Actually, the standard vocabu-
lary is given by a certain theory. In case of RDF, it contains e.g. resources rdf:type

9For instance, adding transitive closure of roles or fixpoints to DLs makes them decidable fragments of
second-order logic [5].

10Some language constructs, such as ‘being necessarily false’ were seen to not have sufficiently clear se-
mantics, and were subsequently dropped from the OBO language.

11http://www.geneontology.org/GO.format.obo-1_4.shtml#OWL

http://www.geneontology.org/GO.format.obo-1_4.shtml#OWL


8 Mossakowski and Kutz / The Onto-Logical Translation Graph

and rdf:Property and rdf:subject, and sentences (rdf:type,rdf:type,
rdf:Property), and (rdf:subject,rdf:type,rdf:Property).

In the models, the standard vocabulary is interpreted with a fixed model. More-
over, for each RDF-model M = 〈Rm, Pm, Sm, EXTm〉, if p ∈ Pm, then it must hold
(p, Sm(rdf:Property)) ∈ EXTm(rdf:type). For RDFS, similar conditions are
formulated (here, for example also the subclass relation is fixed).

In the case of RDFS, the standard vocabulary contains more elements, like
rdf:domain, rdf:range, rdf:Resource, rdf:Literal, rdf:Datatype, rdf:Class, rdf:subClassOf,
rdf:subPropertyOf, rdf:member, rdf:Container, rdf:ContainerMembershipProperty.

There is also RDFSOWL, an extension of RDFS with resources like owl:Thing and
owl:oneOf, tailored towards the representation of OWL.

Definition 11 (Modular Ontology Languages: E-connections and DDL). E-connections
can be considered as many-sorted heterogeneous theories: component ontologies can be
formulated in different logics, but have to be built from many-sorted vocabulary, and link
relations are interpreted as relations connecting the sorts of the component logics.

The main difference between distributed description logics (DDLs) [6] and various
E-connections now lies in the expressivity of the ‘link language’ L connecting the differ-
ent ontologies. While the basic link language of DDL is a certain sub-Boolean fragment
of many sorted ALC, the basic link language of E-connections is ALCIms.12

The idea to ‘connect’ logics can be elegantly generalised to the institutional level
(compare [3] who note that their ‘connections’ are an instance of a more general co-
comma construction). Without giving the full details of such a generalisation, it should
be clear that, intuitively, we need to formalise the idea that an abstract connection of two
logics S1 and S2 is obtained by defining a bridge language L(E), where the elements
of E go across the sort-structure of the respective logics, and where theory extensions
(containing the bridge axioms) are defined over a new language defined from the disjoint
union of the original languages together with L(E), containing certain expressive means
applied (inductively) to the vocabulary of E .

Note that this generalises the E-connections of [22], the DDLs of [6], as well as
the connections of Baader and Ghilardi [3] in two important respects: first, the institu-
tional level generalises the term-based abstract description languages (ADS) that are an
abstraction of modal and description logics, and second, the rather general definition of
bridge theory similarly abstracts from the languages previously employed for linking that
were similarly inspired by modal logic operators.

Given this, the phrasing of DDL and E-connections as institutions is easily obtained
from the component institutions: the institution of DDLOWL is the institution whose com-
ponent logics are OWL based and whose bridge rules follow DDL restrictions, the in-
stitution of ECoOWL allows only OWL-based components, but allows the more general
bridge expressivity of E-connections,13 and ECoFOL=

is the institution whose compo-
nents can be build from full first-order logic, and whose bridge rules allow full first-order
logic over link relations.

12More precisely, ALCIms here comprises existential and universal restrictions on link relations (and their
inverses) with Booleans belonging to the components. This can be weakened to e.g. sub-Boolean DL, or
strengthened to more expressive many-sorted DLs involving e.g. number restrictions or Boolean operators on
links, see [22] for details.

13Note that allowing full OWL expressivity on the link language leads to undecidability also for OWL-based
components.



Mossakowski and Kutz / The Onto-Logical Translation Graph 9

It should then be rather clear that e.g. E-connections of OWL ontologies can be
encoded within ‘many-sorted’ SROIQ, with additional syntactic restrictions capturing
the allowed bridge axioms, see also Section 4. a

Definition 12 (F-Logic). F-logic [20] is an object-oriented extension of first-order logic.
For simplicity, we here treat the monotonic part of F-logic only, since this is a logic in the
classical sense and can hence be formalised as an institution. The non-monotonic part
should be formalised with methods like logic programming over an institution, see [13].

F-logic inherits signatures from FOL=. Sentences are first-order sentences with
equality, with the following additional formulas:

• is-a assertions O : C expressing membership of an object in a class,
• subclass assertions C :: D,
• object atoms of the form O[me], where the me is a method expression14.

Method expression have the following forms:

• non-inheritable scalar expressions ScalarMethod @ t1, . . . tn → t,
• non-inheritable set-valued expressions SetMethod @ t1, . . . tn � {u1, . . . , um},
• inheritable scalar expressions ScalarMethod @ t1, . . . tn•→ t,
• inheritable set-valued expressions SetMethod @ t1, . . . tn•� {u1, . . . , um},
• scalar signature expressions ScalarMethod @ t1, . . . tn ⇒ (u1, . . . , um),
• set-valued signature expressions SetMethod @ t1, . . . tn ⇒⇒ (u1, . . . , um).

Here, ScalarMethod, SetMethod and the ti and ui are terms.
Models are first-order structures (unsorted, that is, over a universe U ) equipped with

additional components serving for the interpretation of the additional syntax:

• : is interpreted with a binary relation ε, and :: with an irreflexive partial order ≺,
such that aεB and b � c imply aεc,

• for u ∈ U and each n ≥ 0, there are

∗ partial functions In→(u), In•→(u) : Un+1 −→◦ U ,
∗ partial functions In�(u), In•�(u) : Un+1 −→◦ P(U),
∗ partial anti-monotonic functions In⇒(u), In⇒⇒(u) : Un+1 −→◦ P↑(U), where
P↑(U) is the set of upward-closed (w.r.t. ≺) subsets of U .

Satisfaction is defined like for first-order logic, where : and :: are interpreted with ε and
≺, respectively. An object atom O[ScalarMethod @ t1, . . . tn → t] holds in a model M
under a variable valuation ν, if In→(ν(ScalarMethod))(ν(O), ν(t1), . . . , ν(tn)) is defined
and equal to ν(t); similarly for •→. O[SetMethod @ t1, . . . tn � {u1, . . . , um}] holds in
M w.r.t. ν, if In�(ν(SetMethod))(ν(O), ν(t1), . . . , ν(tn)) is defined and contains the set
{ν(u1), . . . , ν(um)}; similarly for •�,⇒ and⇒⇒.

Having so many different arrows with the same semantics seems superfluous at first
sight; their use will become clear when looking at type-checking and non-monotonic in-
ference, which are defined on top of the logic given here. For this, as well as the rationale
and the methodology for the use of F-logic in the field of object-oriented modelling, see
[20]. a

14object molecules O[me1; . . . ;men] abbreviate conjunctions of object atoms.



10 Mossakowski and Kutz / The Onto-Logical Translation Graph

Definition 13 (HOL). [7] presents an institution for a higher-order logic extending
Church’s type theory [10] with polymorphism; this is basically the higher-order logic
used in modern interactive theorem provers like Isabelle/HOL [31] (one additional fea-
ture of Isabelle are type classes).

3. Institution Comorphisms: Formalising Logic Translations

We will formalise ontology languages (logics) as institutions and ontology language
translations as so-called institution comorphisms, see [16, 29]:

Definition 14 (Institution Comorphism). Given two institutions I and J with I =(
SignI ,ModI ,SenI , |=I

)
and J =

(
SignJ ,ModJ ,SenJ , |=J

)
, an institution co-

morphism from I to J consists of a functor Φ : SignI −→ SignJ , and natural trans-
formations β : ModJ ◦ Φ =⇒ModI and α : SenI =⇒ SenJ ◦ Φ, such that

M ′ |=J
Φ(Σ) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

holds, called the satisfaction condition.

Here, Φ(Σ) is the translation of signature Σ from institution I to institution J , αΣ(ϕ) is
the translation of the Σ-sentence ϕ to a Φ(Σ)-sentence, and βΣ(M ′) is the translation
(or perhaps better: reduction) of the Φ(Σ)-model M ′ to a Σ-model.

A simple theoroidal comorphism is like a comorphism, except that the signature
translation functor Φ maps to the category of theories over the target institution.

A simple example is given by considering the well-known translation of OWL into
untyped first-order logic, mapping concepts to unary and roles to binary predicates. We
will give the details of this paradigmatic case in Section 4.

The practical usefulness of institution comorphisms grows with their properties.
An important property is model expansion, which is similar to conservative extension
and ensures that logical consequence is represented faithfully. The amalgamation prop-
erty ensures good interaction with modular specifications. Finally, subinstitution comor-
phisms capture the notion of sublogic.

Definition 15. An institution comorphism is model-expansive, if each model translation
βΣ is surjective on objects.

Let ρ = (Φ, α, β) : I −→ J be an institution comorphism and let D be a class of
signature morphisms in I . Then ρ is said to have the (weak)D-amalgamation property,
if for each signature morphism σ : Σ1−→Σ2 ∈ D, the diagram

ModI(Σ2)

ModI(σ)

��

ModJ(Φ(Σ2))

ModJ (Φ(σ))

��

βΣ2
oo

ModI(Σ1) ModJ(Φ(Σ1))
βΣ1

oo



Mossakowski and Kutz / The Onto-Logical Translation Graph 11

admits (weak) amalgamation, i.e. any for any two models M2 ∈ModI(Σ2) and M ′1 ∈
ModJ(Φ(Σ1)) withM2|σ = βΣ1

(M ′1), there is a unique (not necessarily unique)M ′2 ∈
ModJ(Φ(Σ2)) with βΣ2(M ′2) = M2 and M ′2|Φ(σ) = M ′1. In case that D consists
of all signature morphisms, the (weak) D-amalgamation property is also called (weak)
D-exactness. If we omitD, we understand it to consist of all monomorphisms (typically,
these are the injective morphisms).

An institution comorphism ρ = (Φ, α, β) : I−→J is said to be model-isomorphic
if for each Σ ∈ SignI , βΣ is an isomorphism. It is a subinstitution comorphism [27],
if moreover Φ is an embedding and each αΣ is injective. The intuition is that theo-
ries should be embedded, while models should be represented exactly (such that model-
theoretic results carry over).

It is easy to see that a model-isomorphic comorphism also is model-expansive and
exact. Examples will be given in Section 4.

The crucial results for comorphisms with good properties are “borrowing” results,
that is, a proof calculus or theorem prover capturing logical consequence in the target
logic of the comorphism can be borrowed for deciding logical consequence also in the
source logic.

Proposition 16 (Borrowing [9]). Let ρ = (Φ, α, β) : I −→ J be an institution comor-
phism, Σ a signature in I and Γ ∪ {ϕ} a set of Σ-sentences. Then

Γ |=I
Σ ϕ =⇒ αΣ(Γ) |=J

Φ(Σ) αΣ(ϕ),

Γ satisfiable ⇐= αΣ(Γ) satisfiable,

and if ρ is model-expansive, also the converse directions hold. Moreover, if SP is a
modular specification and ρ is exact, then [8]

SP |=I
Σ ϕ⇐⇒ ρ(SP ) |=J

Φ(Σ) αΣ(ϕ),

SP satisfiable ⇐⇒ ρ(SP ) satisfiable,

where ρ(SP ) is the translation of SP using Φ and α.

4. The Onto-Logical Translation Graph

Little work has been devoted to the general problem of translation between ontolo-
gies formulated in different logical languages and/or vocabularies. One such approach
is given in [14], who discuss translations between OWL ontologies. They use so-called
bridging axioms (formulated in first-order) to relate the meaning of terms in different
ontologies,15 and present an algorithm to find such translations. More prominent in the
ontology engineering world are of course the standard translation into first-order logic,

15Not to be confused with the ‘bridge axioms’ in DDL [6].



12 Mossakowski and Kutz / The Onto-Logical Translation Graph

CL

HOL

PL

OWL

FOL=

FOLms=

OBOOWL

EL QL RL

DDLOWL

ECoOWL

ECoFOL
F-logic

bRDF

RDF

RDFS

RDFSOWL

Rel-S

subinstitution

theoroidal subinstitution

simultaneously exact and 
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic 

OBO 1.4

CASL

Figure 1. Logic translations between ontology languages

which essentially ‘coincides’ with the direct semantics of OWL, and more interestingly
the case of OBO discussed above, where the logic translation delivers a definition of
formal semantics for the OBO language (which it itself does not have).

We here present an overview of logic-translations between the common ontology
languages as introduced above. Note that the resulting graph of logics and translations
can be used in several ways: one way is to take some logic high up in the graph, like HOL,
and map every ontology into it. While this universal, all-purpose approach may make
sense from a semantic point of view, it makes little sense from a practical point of view:
a more distributed, multilateral and pluralist approach has the advantage that specialised
tools can be used, whilst still interfacing ontologies written in different languages.

Subinstitutions: EL → OWL, QL → OWL and RL → OWL and FOL= → FOLms=

are obvious subinstitutions.
OWL → FOL= is a straight-forward extension of the standard translation [5]

mapping individuals to constants, classes to unary predicates and roles to
binary predicates.

ECoOWL → ECoFOL=

uses OWL → FOL= twice, at the level of the base logic
and at the level of the bridge rules.

PL → FOLms= is a subinstitution by mapping propositional variables to nullary
predicates.



Mossakowski and Kutz / The Onto-Logical Translation Graph 13

OBOOWL → OWL: signatures and sentences are translated according to the OBO
standard, whereas the model translation is the identity (due to borrowing of
model theory).

OBO1.4 → FOL= extends the composition OBOOWL → OWL → FOL= by
an explicit straight-forward coding of the additional features not present in
OBOOWL.

bRDF → FOL= The subinstitution comorphism from bRDF to FOL= maps
a a bRDF signature Rs to the FOL= signature Φ(Rs) which has Rs as
set of constants, and moreover is equipped with a unary predicate P and a
ternary predicate EXT . A bRDF-sentence (sub, pred, obj) is translated to
EXT (sub, pred, obj). Finally, a FOL=-model of Φ(Rs) is translated to the
bRDF which has the model’s universe as set of resources Rm, while Pm is
given by the interpretation of P and Sm by the interpretation of the constants.
EXTm can be easily constructed from the interpretation of EXT .

FOL= → F-logic is an obvious subinstitution.
bRDF → RDF: this is an obvious inclusion, except that bRDF resources need

to be renamed if they happen to have a predefined meaning in RDF. The
model translation needs to forget the fixed parts of RDF models, since this
part can always reconstructed in a unique way, we get an isomorphic model
translation. RDF→ RDFS and RDFS→ RDFSOWL are similar.

DDLOWL → ECoOWL is a subinstitution, because all DLL bridge rules are
ECoOWL bridge rules.

OWL → DDLOWL and FOL= → ECoFOL=

are obvious subinstitutions: every-
thing is mapped into one component.

ECoFOL=

→ FOLms= maps each component to a sort, and function and predi-
cates symbols are typed with the sort of their respective component.

Simple theoroidal subinstitutions: RDF→ FOL=: this is a straightforward extension
of bRDF → RDF, axiomatising explicitly the extra conditions imposed on
models. RDFS → FOL= and RDFSOWL → FOL= are similar. The theory
of the fixed part is (after translation to FOL=) added to the translations of
signatures.

FOLms= → FOL= is a theoroidal subinstitution comorphism: a many-sorted
signature is translated to an unsorted one by turning each sort into a unary
predicate (these are called sort predicates), and each function and predicate
symbol is translated by erasing its typing information in the signature, while
turning it into a sentence, using the sort predicates. A sentence is translated
by erasing the type information and relativising quantifiers to the sort predi-
cates. A model is translated by turning the interpretations of sort predicates
into carrier sets, and keeping functions and predicates.

ECoOWL → OWL uses a similar technique: the different components are mapped
into classes, which are then used to relativise (using intersection with these
classes) sentences.

F-logic → FOL=: the additional ingredients of F-logic are two binary relations
and a bunch of partial functions; all these can be coded as (suitably axioma-
tised) predicates in a straightforward way. Note that the translated signatures
become infinite due to the parameterisation of I→ etc. over the natural num-
bers.



14 Mossakowski and Kutz / The Onto-Logical Translation Graph

CL → CASL: specifies the theory of lists and the implicit components of CL
models explicitly in CASL.

CASL→ HOL codes out partiality and subsorting using standard methods, while
induction axioms are translated to their explicit second-order Peano-style for-
mulation, see [28] for details.

Rel-S → FOLms=: database tables are mapped to predicates, and the involved
datatypes are specified in FOL=16. Integrity constraints are expressible as
first-order sentences, and given a first-order model, its predicates are con-
strued as database tables.

Simultaneously exact and model-expansive comorphisms: PL → FOL= translates
propositional variables to nullary predicates. The model translation forgets
the universe (and is hence not an isomorphism). A theoroidal variant adds
(to the signature translation) the axiom ∀x, y . x = y enforcing a singleton
universe (then, the model translation is at least an equivalence of categories).
The translation PL→ CL is similar.

PL→ OWL is a each propositional variable in a signature is mapped to an atomic
OWL class. Additionally, the signature translation globally adds one individ-
ual a and the axiom > v {a} expressing that the domain consists of a single
point. A propositional sentence (i.e. a Boolean combination of propositional
variables) is mapped to membership of a in the corresponding OWL class
term (i.e. a Boolean combination of atomic classes) — note that this can be
expressed either as ABox statement a : C or as TBox statement {a} ⊆ C. In
order to translate an OWL model, for each atomic class A (resulting from a
propositional variable A), a : A is evaluated, and the result is assigned to the
propositional variable A. The satisfaction condition is straightforward.

FOL= → CL: the signature translation maps constants, function symbols and
predicates to names. Sentences are left untouched. From a CL-model, it is
possible to extract a FOL=-model by restricting functions and predicates to
those sequences that have the length of the arity of the symbol (note that this
restriction is the reason for not getting an isomorphism).

bRDF → OWL: a bRDF signature is translated to OWL by providing a class P
and three roles sub, pred and obj (these reify the extension relation), and
one individual per bRDF resource. A bRDF triple (s, p, o) is translated to the
OWL sentence

> v ∃U.(∃sub.{s} u ∃pred.{p} u ∃obj.{o}).

From an OWL model I, obtain a bRDF model by inheriting the universe and
the interpretation of individuals (then turned into resources). The interpreta-
tion P I of P gives Pm, and EXTm is obtained by de-reifying, i.e.

EXTm(x) := {(y, z)|∃u.(u, x) ∈ predI , (u, y) ∈ subI , (u, z, ) ∈ objI}.

RDF → OWL is defined similarly. The theory of RDF built-ins is (after
translation to OWL) added to any signature translation. This ensures that the
model translation can add the built-ins.

16Strictly speaking, for a complete specification of inductive datatypes, second-order logic is needed; in this
case, the translation ends in HOL.



Mossakowski and Kutz / The Onto-Logical Translation Graph 15

OWL → RDFSOWL: this is the RDF serialisation of OWL, formalised as a co-
morphism in [25].

Model-expansive comorphisms: OWL → F-logic: translations from OWL to F-logic
are discussed in [12].

5. Conclusion

We argued that there is a multitude of logics and languages in practical use for the spec-
ification of ontologies that calls for logical pluralism, understood pragmatically. In order
to achieve ontology interoperability despite of this pluralism, it is crucial to establish and
formalise translations among these logics. We have done this, using so-called institution
comorphisms. As Proposition 16 shows, problems of logical consequence and satisfia-
bility can be translated along such translations in a sound and complete way, opening the
door for re-use of tools like theorem provers and model finders. It turns out that this is the
case even if logical consequence and satisfiability of modular ontologies is concerned:
by Proposition 16, nearly all of our translations (with the exception of some translations
of OWL to F-logic) interact well with modularity.

While we have clarified and summarised the relations among different ontology lan-
guages at the semantic level, we have not touched the methodological level. Methodol-
ogy concerns the way certain features are formalised using logic, as well as the prag-
matic level of logic. In order to make ontologies interoperable across different logics,
their methodologies (which also may vary within one logic) have to be considered as
well. Moreover, some methodologies may also lead to further logic translations that need
to be considered. This is left for future work, together with the study of more languages,
such as UML as well as some non-classical formalisms that are being used for ontologies.
Also, different modularity concepts should be studied and compared.

Acknowledgement

Work on this paper has been supported by the DFG-funded Research Center on Spatial
Cognition (SFB/TR 8).

References

[1] ADÁMEK, J., HERRLICH, H., AND STRECKER, G. Abstract and Concrete Categories. Wiley, New
York, 1990. Freely available at http://www.math.uni-bremen.de/~dmb/acc.pdf.

[2] BAADER, F., CALVANESE, D., MCGUINNESS, D., NARDI, D., AND PATEL-SCHNEIDER, P. F., Eds.
The Description Logic Handbook. Cambridge University Press, 2003.

[3] BAADER, F., AND GHILARDI, S. Connecting Many-Sorted Theories. The Journal of Symbolic Logic 72,
2 (2007), 535–583.

[4] BIDOIT, M., AND MOSSES, P. D. CASL User Manual, vol. 2900 of Lecture Notes in Computer Science.
Springer, 2004. Freely available at http://www.cofi.info.

[5] BORGIDA, A. On the Relative Expressiveness of Description Logics and Predicate Logics. Artificial
Intelligence 82, 1–2 (1996), 353–367.

[6] BORGIDA, A., AND SERAFINI, L. Distributed Description Logics: Assimilating Information from Peer
Sources. Journal of Data Semantics 1 (2003), 153–184.

http://www.math.uni-bremen.de/~dmb/acc.pdf
http://www.cofi.info


16 Mossakowski and Kutz / The Onto-Logical Translation Graph

[7] BORZYSZKOWSKI, T. Higher-order logic and theorem proving for structured specifications. In WADT
(1999), D. Bert, C. Choppy, and P. D. Mosses, Eds., vol. 1827 of Lecture Notes in Computer Science,
Springer, pp. 401–418.

[8] BORZYSZKOWSKI, T. Logical systems for structured specifications. Theoretical Computer Science 286
(2002), 197–245.

[9] CERIOLI, M., AND MESEGUER, J. May I borrow your logic? (transporting logical structures along
maps). Theoretical Computer Science 173 (1997), 311–347.

[10] CHURCH, A. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5, 1 (1940),
56–69.

[11] COMMON LOGIC WORKING GROUP. Common Logic: Abstract syntax and semantics. Tech. rep., 2003.
[12] DE BRUIJN, J., AND HEYMANS, S. On the Relationship between Description Logic-based and F-Logic-

based Ontologies. Fundam. Inf. 82 (August 2008), 213–236.
[13] DIACONESCU, R. Institution-independent Model Theory. Birkhäuser, 2008.
[14] DOU, D., AND MCDERMOT, D. Towards theory translation. In Declarative Agent Languages and

Technologies IV (2007), Springer.
[15] GOGUEN, J. A., AND BURSTALL, R. M. Institutions: Abstract Model Theory for Specification and

Programming. Journal of the ACM 39 (1992), 95–146.
[16] GOGUEN, J. A., AND ROŞU, G. Institution morphisms. Formal aspects of computing 13 (2002), 274–

307.
[17] GOLBREICH, C., HORRIDGE, M., HORROCKS, I., MOTIK, B., AND SHEARER, R. OBO and OWL:

Leveraging Semantic Web Technologies for the Life Sciences. In Proc. of ISWC-07 (Busan, Korea,
November 11-15 2007), K. A. et al., Ed., vol. 4825 of LNCS, Springer, pp. 169–182.

[18] GUERRA, S. Composition of Default Specifications. J. Log. Comput. 11, 4 (2001), 559–578.
[19] HORROCKS, I., KUTZ, O., AND SATTLER, U. The Even More Irresistible SROIQ. In Proc. of the

10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006) (June 2006), AAAI
Press, pp. 57–67.

[20] KIFER, M., LAUSEN, G., AND WU, J. Logical Foundations of Object-Oriented and Frame-Based Lan-
guages. Journal of the ACM 42 (July 1995), 741–843.

[21] KUTZ, O., LÜCKE, D., AND MOSSAKOWSKI, T. Heterogeneously Structured Ontologies—Integration,
Connection, and Refinement. In Advances in Ontologies. Proc. of the KR-08 Ontology Workshop (KROW
2008) (Sydney, Australia, 2008), T. Meyer and M. A. Orgun, Eds., vol. 90 of CRPIT, ACS, pp. 41–50.

[22] KUTZ, O., LUTZ, C., WOLTER, F., AND ZAKHARYASCHEV, M. E-Connections of Abstract Description
Systems. Artificial Intelligence 156, 1 (2004), 1–73.

[23] KUTZ, O., MOSSAKOWSKI, T., GALINSKI, C., AND LANGE, C. Towards a Standard for Heterogeneous
Ontology Integration and Interoperability. In Proc. of the First International Conference on Terminology,
Languages and Content Resources (LaRC-11) (Seoul, South Korea, June 2011).

[24] KUTZ, O., MOSSAKOWSKI, T., AND LÜCKE, D. Carnap, Goguen, and the Hyperontologies: Logical
Pluralism and Heterogeneous Structuring in Ontology Design. Logica Universalis 4, 2 (2010), 255–333.
Special Issue on ‘Is Logic Universal?’.

[25] LUCANU, D., LI, Y.-F., AND DONG, J. S. Semantic Web Languages—Towards an Institutional Perspec-
tive. In Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion
of His 65th Birthday (2006), K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, Eds., vol. 4060 of Lecture
Notes in Computer Science, Springer, pp. 99–123.

[26] MAC LANE, S. Categories for the Working Mathematician, 2nd ed. Springer, Berlin, 1998.
[27] MESEGUER, J. General logics. In Logic Colloquium 87. North Holland, 1989, pp. 275–329.
[28] MOSSAKOWSKI, T. Relating CASL with other specification languages: the institution level. Theoretical

Computer Science 286 (2002), 367–475.
[29] MOSSAKOWSKI, T., TARLECKI, A., AND DIACONESCU, R. What is a logic translation? Logica Uni-

versalis 3, 1 (2009), 95–124. Winner of the Universal Logic 2007 Contest.
[30] MOSSES, P. D., Ed. CASL Reference Manual, vol. 2960 of Lecture Notes in Computer Science. Springer,

2004. Freely available at http://www.cofi.info.
[31] NIPKOW, T., PAULSON, L. C., AND WENZEL, M. Isabelle/HOL—A Proof Assistant for Higher-Order

Logic, vol. 2283 of LNCS. Springer, 2002.
[32] SANNELLA, D., AND TARLECKI, A. Specifications in an arbitrary institution. Information and Compu-

tation 76 (1988), 165–210.

http://www.cofi.info

