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Abstract

Combining knowledge representation and reasoning formalisms like description
logics (DLs), temporal logics, and logics of space, is worthwhile but difficult. It is
worthwhile because usually realistic application domains comprise various aspects
of the world, thus requiring suitable combinations of formalisms modeling each of
these aspects. It is difficult because the computational behavior of the resulting
hybrids is often much worth than the behavior of its components. In this paper
we propose a combination method which is robust in the computational sense and
still allows for certain interactions between the combined systems. The combination
method, called E-connection, will be defined and investigated for so-called abstract
description systems (ADS) which include all standard description logics, various
logics of time and space, modal logics, and epistemic logics. The main theoretical
result is that every E-connection of any finite number of decidable ADSs is decidable
as well. Four instances of E-connections of ADSs will be discussed: (1) the E-
connection of DLs with the logic MS intended for quantitative reasoning about
space, (2) the E-connection of DLs with the logic S4u (containing RCC-8) that can
be used for qualitative reasoning about space, (3) the E-connection of two DLs
(ALCO and SHIQ), and (4) the E-connection of DLs with propositional temporal
logic PTL and S4u.
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1 Introduction

Combining knowledge representation and reasoning formalisms is worthwhile but dif-
ficult. It is worthwhile because usually realistic application domains comprise various
aspects of the world around us, thus requiring suitable combinations of formalisms
modeling each of these aspects. It is difficult because the computational behavior of
the resulting hybrids is often much worse than the behavior of the combined compo-
nents; see, e.g., [11, 14, 16]. To be more specific, consider three examples related to
description logics.

(i) Classical description logics (DLs) represent knowledge at a rather abstract logical
level. To cope with applications which require predefined predicates or temporal and
spatial dimensions, combinations of DLs with concrete domains such as the natural
numbers equipped with predicates like <, Allen’s interval logic [1], or region connection
calculus RCC-8 [29] have been proposed [7, 19]. The addition of a concrete domain to
a DL is a rather sensitive operation as far as the preservation of its nice computational
properties is concerned: even ‘weak’ DLs combined with ‘weak’ concrete domains can
become undecidable; see, e.g., [8, 18, 28]. In fact, to investigate DLs with concrete
domains is rather hard and requires developing new techniques, cf. [27].

(ii) Standard DLs have been designed to represent static knowledge which is time-
and agent-independent. To take into account the dynamic aspects of knowledge, DLs
have been extended with temporal, dynamic, epistemic and other intentional opera-
tors [25, 9, 10, 13, 2, 39, 41]. The resulting formalisms become ‘many-dimensional’
and sometimes show rather nasty computational behavior: combinations of simple de-
scription logics (say, ALC) with simple temporal logics (say, propositional temporal
logic PTL) can be highly undecidable [10, 41, 40, 16]. These logics also require new
approaches [41, 16], and it is still unclear whether practical reasoning systems can be
developed for many-dimensional logics, cf. [26].

(iii) Often there is a need to combine two or more description logics: while one
part of the application domain may require constructors of DL1, another part can only
be represented using constructors of DL2. Putting the constructors of DL1 and DL2

together to form a new DL may result in an undecidable logic, even if both components
are decidable. As an example, consider the DLs ALCF (extending ALC with functional
roles (or features) and the same-as constructor (or agreement) on chains of functional
roles) and ALC+,◦,t (extending ALC with the transitive closure, composition, and
union of roles). For both DLs, the subsumption of concept descriptions is known to be
decidable [21, 32, 6]. However, the subsumption problem for their union ALCF+,◦,t

is undecidable [3]. Recently, fusions (or independent joints) have been proposed as a
more robust way of combining DLs [5, 4, 36]. But even fusions behave badly if the class
of models is not closed under disjoint unions, which is the case when nominals or the
negation of roles are required [5, 4] (or if we combine logics of time and space—while
linear orders are natural models of time, their disjoint unions are certainly not).

In this situation, a natural question arises as to whether there exist at all sufficiently
general and useful ways of combining representation and reasoning systems preserving
their good computational properties. The main aim of this paper is to give a posi-
tive answer to this question. We propose a combination method which is robust in the
computational sense and still allows for certain interactions between the combined com-
ponents. Given n ‘description systems’ L1, . . . , Ln talking about domains D1, . . . , Dn,
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we form a new language L containing the languages Li, 1 ≤ i ≤ n, and talking about
the disjoint union

⋃n
i=1

Di, in which the Di are connected by a finite number of re-
lations Ej ⊆ D1 × · · · × Dn, 1 ≤ j ≤ m. The fragments Li of L still talk about Di;
moreover, the super-language L contains n×m extra (n− 1)-ary operators E i

j which,
given an input (X1, . . . , Xi−1, Xi+1, . . . , Xn), for X` ⊆ D`, return the set of all x ∈ Di

such that
∀` 6= i ∃x` ∈ X` (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ Ej .

In other words, E i
j(X1, . . . , Xi−1, Xi+1, . . . Xn) is the value of the i-th factor of

(X1 × · · · ×Xi−1 ×Di ×Xi+1 × · · · ×Xn) ∩Ej.

We call L an E-connection of L1, . . . , Ln.
This is a rough idea. To make it more precise, we use the notion of abstract de-

scription system (ADS, for short) introduced in [5, 4]. Basically, all description, modal,
temporal, epistemic and similar logics (in particular, modal logics of space) can be
conceived of as ADSs. For this reason, ADSs form a right level of abstraction to study
combinations of knowledge representation formalisms such as DLs, temporal logics
(TLs, for short), spatial logics (SLs), etc. The main technical result of this paper is
the following theorem: every E-connection of any finite number of decidable ADSs is
decidable as well.

Here are three simple examples of E-connections; in more detail they will be dis-
cussed in Section 4.

DL–SL: A DL L1 (say, ALC or SHIQ [22]) talks about a domain D1 of abstract
objects. A spatial logic L2 (say, qualitative S4u [35, 12, 33, 16] or quantitative MS
of [34, 24]) talks about a spatial domain D2. An obvious E-connection is given by the
relation E ⊆ D1×D2 defined by taking (x, y) ∈ E iff y belongs to the spatial extension
of x whenever x occupies some space. Then, given an L1-concept C, say, river, the
operator E2(C) provides us with the spatial extension of all rivers. Conversely, given a
spatial region X of L2, say, the Alps, E1(X) provides the concept comprising all objects
the spatial extensions of which have a non-empty intersection with X. The concept
country u E1(X) would denote then the union of all alpine countries.

DL–TL: Now, let L3 be a temporal logic (say, point-based PTL [15] or Halpern-
Shoham’s logic of intervals HS [20]) and let D3 be a set of time points or, respectively,
time intervals interpreting L3. In this case, a natural relation E ⊆ D1×D3 is given by
taking (x, y) ∈ E iff y belongs to the life-span of x.

DL–SL–TL: Further, we can combine all L1, L2, L3 above into a single formalism
by defining a ternary relation E ⊆ D1 ×D2 ×D3 such that (x, y, z) ∈ E iff y belongs
to the spatial extension of x at moment (interval) z.

2 Abstract description systems

An abstract description system consists of an abstract description language and a class
of admissible models specifying the intended semantics.

Definition 1. An abstract description language (ADL) is determined by a countably
infinite set V of set variables, a countably infinite set X of object variables, a (possibly
infinite) sequence (Ri)i∈R of relation symbols of arity mi, i ∈ R, and a (possibly infinite)
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sequence (fi)i∈I of function symbols of arity ni, i ∈ I. The terms tj of the ADL are
built as follows:

t ::= x | ¬t | t1 ∧ t2 | t1 ∨ t2 | fi(t1, . . . , tni
),

where x ∈ V and the Boolean operators ¬, ∧, ∨ are different from all the fi. The term
assertions of the ADL are of the form

• t1 v t2, where t1 and t2 are terms,

and the object assertions are

• Ri(a1, . . . , ami
), for a1, . . . , ami

∈ X and i ∈ R;

• a : t, for a ∈ X and t a term.

The sets of term and object assertions together form the set of the ADL-assertions.

Examples

(1) We remind the reader that ALC-concept expressions C are composed from concept
names by means of the operators u, ¬, ∀R, and ∃R, where R is a role name. The
concept expressions of ALC (or any other standard description logic extending ALC)
can be regarded as terms C ] of an ADL ALC]. Namely, with each concept name A
we associate a set-variable A], and with each role R we associate two unary function
symbols f∀R and f∃R. And then we put inductively:

(C uD)] = C] ∧D]

(¬C)] = ¬C]

(∀R.C)] = f∀R(C])

(∃R.C)] = f∃R(C])

The object names of ALC are treated as object variables of ALC ] and the role names
as its binary relations. Thus, term assertions of ALC ] correspond to general TBoxes,
while object assertions correspond to ABoxes. (The connection between roles R and
the function symbols f∀R and f∃R is fixed by choosing a proper class of admissible
models; see below.) For transformations of more expressive DLs into ADLs consult
[5, 4].

(2) The language of the logic S4u (i.e., Lewis’s modal system S4 with the universal
modality), with topological spaces as the intended interpretations, consists of set vari-
ables X1, . . . (in the modal context, propositional variables), the interior operator I

(the necessity operator), the closure operator C (the possibility operator), the universal
quantifier 2∀ (the universal box), and the Booleans [35, 12, 33]. The corresponding ADL

S4]
u would contain then the set variables X ]

1
, . . . , the unary function symbols fI , fC ,

f
2∀

, and the Booleans (but no relation symbols). Besides, according to the definition,

S4]
u must contain a countably infinite set of object variables ai. The translation ] of

S4u-formulas into terms of S4]
u is obvious; for example,

(2ϕ)] = f2(ϕ]), for 2 ∈ {I ,C,2∀}.

Note, however, that S4]
u allows for object assertions of the form ai : t] which have no

analogs in S4u.
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(3) The logic of metric spaces MS of [34, 24]1 consists of terms constructed from
set variables Xi and nominals Ni using the Booleans and the operators A≤r, E≤r, A>r

and E>r, for r ∈ Q+. Intuitively, given a set X in a metric space, E≤rX is the set of all
points in the space located at distance ≤ r from (at least one point in) X. A point is in
A>rX iff the whole complement of its r-neighborhood is in X. Again, terms t of MS
can be translated into terms t] of an ADL MS] by associating with every nominal Ni

a 0-ary function symbol fNi
and with the operators A≤r, E≤r, A>r, E>r corresponding

unary function symbols fA≤r
, fE≤r

, fA>r , fE≤r
, and then proceeding as above. The

location variables of MS correspond to the object variables of MS ].
(4) In the same way the propositional temporal language PTL, in which formulas

are composed from propositional variables by means of the Booleans and the binary
operators U (‘until’) and S (‘since’), can be represented as an ADL PTL]. In this case we
associate with U and S binary function symbols fU and fS . Note again that PTL] allows
for object assertions ai : t] which have no analogs in PTL. However, since our intended
flow of time is 〈N, <〉, object variables can be represented as p∧¬(>Up)∧¬(>Sp). As
in (2) and (3), PTL] contains no relation symbols.

The semantics of ADLs is defined via abstract description models.

Definition 2. An abstract description model (ADM) for an ADL L is a structure of
the form

A =
〈

W,VA,XA, F A, RA

〉

,

where VA = (xA)x∈V , XA = (aA)a∈X , F A = (fA
i )i∈I , RA = (RA

i )i∈R, W is a non-empty
set, xA ⊆ W , aA ∈ W , each fA

i is a function mapping ni-tuples 〈X1, . . . , Xni
〉 of subsets

of W to a subset of W , and the RA
i are mi-ary relations on W . The value tA ⊆ W of

an L-term t in A is defined inductively by taking

(t1 ∧ t2)
A = tA1 ∩ tA2 , (t1 ∨ t2)

A = tA1 ∪ tA2 ,

(¬t)A = W \ (t)A, (fi(t1, . . . , tk))
A = fA

i (tA1 , . . . , tAk ).

The truth-relation A |= ϕ for an L-assertion ϕ is defined in the obvious way:

• A |= Ri(a1, . . . , ami
) iff RA

i (aA
1 , . . . , aA

mi
),

• A |= a : t iff aA ∈ tA,

• A |= t1 v t2 iff tA1 ⊆ tA2 .

If A |= ϕ holds, we say that ϕ is satisfied in A.

Definition 3. An abstract description system (ADS) is a pair (L,M), where L is an
ADL and M is a class of ADMs for L that is closed under the following operation:
if A =

〈

W,VA,XA, F A, RA
〉

is in M, and VA′ = (xA′)x∈V , XA′ = (aA′)a∈X are new

assignments to set and object variables in W then A′ =
〈

W,VA′ ,XA′ , F A, RA

〉

∈M.

Let us now return to examples (1)–(4) above and supply the ADLs ALC ], S4]
u, MS]

and PTL] with their intended ADMs.

1The logic we consider here is called MS2 in [34] and MS] in [24].

4



Examples (cont.)

(1) For ALC], the class M of ADMs is defined as follows. For any ALC-model

I =
〈

∆, AI
1 , . . . , RI

1 , . . . , aI1 , . . .
〉

,

M contains the model M =
〈

∆,VM,XM, F M, RM
〉

, where F consists of the function
symbols f∀Ri

and f∃Ri
, and R is the set of all role names of ALC:

– (A])M = AI , for all concept names A;

– aM = aI , for all object names a;

– RM
i = RI

i , for all roles Ri;

– f∀Ri
X = {d ∈ ∆ | ∀d′ ∈ ∆ (dRI

i d′ → d′ ∈ X)}, for all role names Ri;

– f∃Ri
X = {d ∈ ∆ | ∃d′ ∈ ∆ (dRI

i d′ ∧ d′ ∈ X)}, for all role names Ri.

(2) An S4u-model I =
〈

T, I, C, XI
1 , . . .

〉

consists of a topological space 〈T, I〉, where I

is an interior operator mapping subsets X of T to their interior I(X) and satisfying
the equations I(X ∩ Y ) = I(X) ∩ I(Y ), II(X) = I(X), I(X) ⊆ X and I(T ) = T for all
X,Y ⊆ T , C is the closure operator defined by C(X) = T − I(T −X), and the X I

i are
subsets of T (interpreting the set variables of S4u). Of course, the operators I and C

of S4u are interpreted by I and C, respectively. We define the class M of ADMs for
S4]

u by taking, for every such S4u-model I, the ADMs

M =
〈

T,VM,XM, fM
I , fM

C , fM

2∀

〉

,

where (X]
i )

M = XI
i , aM ∈ ∆, for a ∈ X , fM

I
= I, fM

C
= C and, for every Y ⊆ T ,

fM

2∀
Y =

{

∅ if Y 6= T
T if Y = T.

(3) An MS-model I =
〈

W, δ,XI
1 , . . . , NI

1 , . . . aI1 , . . .
〉

consists of a metric space 〈W, δ〉
together with interpretations of set variables Xi as subsets XI

i of W , location variables
ai as elements aIi of W , and nominals Ni as singleton subsets N I

i of W . Every such
model I gives rise to the ADM

M =
〈

W,VM,XM, F M

〉

for MS ], where (X]
i )

M = XI
i , aM

i = aIi , and F M consists of all functions fNi
, fA≤r

,
fE≤r

, fA>r , fE>r , for r ∈ Q+, defined by

fM
Ni

= NI
i

fM
A≤r

(Y ) = {w ∈ W | ∀x ∈ W (δ(w, x) ≤ r → x ∈ Y )}

fM
E≤r

(Y ) = {w ∈ W | ∃x ∈ W (δ(w, x) ≤ r ∧ x ∈ Y )}

fM
A>r

(Y ) = {w ∈ W | ∀x ∈ W (δ(w, x) > r → x ∈ Y )}

fM

E>r
(Y ) = {w ∈ W | ∃x ∈ W (δ(w, x) > r ∧ x ∈ Y )}

(4) The class of ADMs for PTL] consists of structures

M =
〈

N,VM,XM, F M

〉

,
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in which F M contains two binary functions defined by taking, for all Y,Z ⊆ N,

fM
U (Y,Z) = {u ∈ N | ∃z > u(z ∈ Z ∧ ∀y ∈ (u, z)y ∈ Y )}

fM
S (Y,Z) = {u ∈ N | ∃z < u(z ∈ Z ∧ ∀y ∈ (z, u)y ∈ Y )},

where (u, v) = {w ∈ N | u < w < v}.
The main reasoning task for ADSs we are concerned with is the satisfiability problem

for finite sets of assertions. In DL, this corresponds to the satisfiability of ABoxes with
respect to general TBoxes.

Definition 4. Let S = (L,M) be an ADS. A finite set Γ of L-assertions is called
satisfiable in S if there is an ADM A ∈M which satisfies all assertions in Γ.

The satisfiability problem for an ADS S restricted to sets Γ of object assertions
will be called the A-satisfiability problem for S. The following theorem is an almost
immediate consequence of the decidability of the corresponding logics, consult [17] for
S4u, [34] for MS, and [15] for PTL.

Theorem 5. The satisfiability problem is decidable for the ADSs S4]
u, MS], and PTL].

It is also decidable for L] whenever L is a DL with a decidable satisfiability problem for
ABoxes with respect to general TBoxes.

3 Connections of ADSs

We are in a position now to define E-connections formally. Suppose that we have
ADSs Si = (Li,Mi), for 1 ≤ i ≤ n, with disjoint vocabularies apart from the Boolean
operators.2 Let E be a set of n×m function symbols E i

j of arity n− 1, for 1 ≤ j ≤ m,
1 ≤ i ≤ n. Define by induction the notions of i-term and i-assertion of the E-connection
C = C(S1, . . . ,Sn), for 1 ≤ i ≤ n:

• every set variable of Li is an i-term;

• the set of i-terms is closed under ¬, ∧, ∨, and the non-Boolean function symbols
of Li;

• if (t1, . . . , ti−1, ti+1, . . . , tn) is a sequence of j-terms, for j 6= i,
then E i

k(t1, . . . , ti−1, ti+1, . . . , tn), for 1 ≤ k ≤ m, are i-terms;

• if (a1, . . . , ai−1, ai+1, . . . , an) is a sequence of object variables aj from Lj, for j 6= i,
then the E i

k(a1, . . . , ai−1, ai+1, . . . , an), 1 ≤ k ≤ m, are i-terms.

The i-term assertions of C are of the form t1 v t2, where t1 and t2 are i-terms. The
i-object assertions are all expressions of the form R`(a1, . . . , am`

) and a : t, where R` is
a relation symbol of Li, a and the ak are object variables of Li, and t an i-term. The
sets of all i-term and i-object assertions, 1 ≤ i ≤ n, together form the set of assertions
of the E-connection C.

A structure of the form M = 〈(Wi)i≤n, (Ej)j≤m)〉, where Ej ⊆ W1 × · · · ×Wn and

Wi =
〈

Wi,V
W
i ,XW

i , F W
i , RW

i

〉

∈ Mi, is called a model for C. The extension tM ⊆ Wi

2It is to be noted that this condition is different from the one required for fusions of ADSs in [5, 4]:
when forming fusions, we assume that the set of set variables and object variables of the ADSs to be
combined coincide. In the case of E-connections these sets of symbols should be disjoint, since they are
used in the combined system to represent knowledge about disjoint domains.
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of an i-term t is defined by simultaneous induction. For set and object variables X and
a of Li, we put XM = XWi and aM = aWi . The inductive steps for the Booleans and
function symbols of Li are as before. The new clauses are:

(E i
j(t1, . . . , ti−1, ti+1, . . . , tn))M = {x ∈ Wi | ∃̀

6=i

x` ∈ tM` (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ Ej},

and

(E i
j(a1, . . . , ai−1, ai+1, . . . , an))M = {x ∈ Wi | (a1, . . . , ai−1, x, ai+1, . . . , an) ∈ Ej}.

The truth-relation |= between models M for C and assertions of C is defined in the
obvious manner:

• M |= ti v t2 iff tM1 ⊆ tM2 ;

• M |= a : t iff aM ∈ tM;

• M |= Ri(a1, . . . , am) iff RM
i (aM

1 , . . . , aM
mi

).

A set Γ of assertions of C is called satisfiable if there is a model for C in which all
assertions in Γ are true. And an assertion ϕ follows from a set of assertions Γ in C if
M |= ϕ whenever M |= Γ, for every model M for C. Note that the problem whether an
assertion follows from a set of assertions can be reduced to the satisfiability problem.
For example, t1 v t2 follows from Γ iff Γ ∪ {a : t1 ∧ ¬t2}, a a fresh object variable, is
not satisfiable. Note that, for any n object variables ai ∈ Xi we have

M |= ai : E i
j(a1, . . . , ai−1, ai+1, . . . , an) iff Ej(a

M
1 , . . . , aM

n )

Hence, we can state that the tuple
〈

aM
1 , . . . , aM

n

〉

is an instance of the relation Ej.

The main results of this paper are as follows:

Theorem 6. (i) Suppose that the satisfiability problem for each of the ADSs Si, 1 ≤
i ≤ n, is decidable. Then the satisfiability problem for any E-connection of the Si is
decidable as well.

(ii) If the Si are decidable in EXPTIME, then the E-connection is decidable in
2EXPTIME.

Corollary 7. The satisfiability problem for any E-connection of DLs with decidable
satisfiability problems for ABoxes with respect to general TBoxes and logics like PTL,
MS, and S4u is decidable.

We know of no example where the Si are decidable in EXPTIME but the E-
connection is 2EXPTIME-hard. It is an open problem whether such ADSs exist.

It is of interest that A-satisfiability is not preserved under E-connections. More
precisely, the following ‘negative’ result holds, where ALCF is the extension of ALC
with functional roles and the same-as constructor (it is known that A-satisfiability for
ALCF is decidable [21, 27] while satisfiability is not [3]):

Theorem 8. Let S be an arbitrary ADS. Then the A-satisfiability problem for any
E-connection C(ALCF ,S) with a non-empty E is undecidable.

Before presenting the proofs, we illustrate the notion of E-connection with illumi-
native examples.
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4 Examples of E-connections

In this section we give four examples of E-connections using the representation for-
malisms introduced above. Our aim is to demonstrate the versatility of the combina-
tion technique and to outline its limits. The first three examples are ‘two-dimensional,’
while the fourth one connects three ADSs. To simplify notation, we will not distinguish
between description, spatial, metric, or temporal logics and the corresponding ADSs.

C(ALC, MS): Suppose that you are developing a KR&R system for an estate agency.
You imagine yourself to be a customer hunting for a house in London. What kind of
requirements (constraints) could you have? Perhaps something like this:

(A) The house should not be too far from King’s College, not more than 5 miles.

(B) The house should be close to shops, say, within 1 mile.

(C) There should be a ‘green zone’ around the house, at least within 2 miles in each direction.

(D) There must be a sports center around, and moreover, all sports centers of the district
should be reachable on foot, i.e., they should be within, say, 3 miles.

(E) Public transport should easily be accessible: whenever you are not more than 8 miles
away from home, the nearest bus stop or tube station should be reachable within 1 mile.

(F) The house should have a telephone.

(G) The neighbors shouldn’t have children.

The terminology may require some clarification, so perhaps you may also need state-
ments like

(H) All supermarkets are shops.

(Oh, you forgot about the most important constraint, the price, but let us deal with it
a bit later.)

The resulting constraints (A)–(H) contain two kinds of knowledge. (F)–(H) can be
classified as conceptual knowledge which is captured by almost any description logic,
say, ALC:

(F) house : ∃has.Telephone

(G) house : ∀neighbor.∀child.⊥

(H) Supermarket v Shop

(A)–(E) speak about distances and can be represented in the logic MS of metric spaces:

(A) house v E≤5King’s college

(B) house v E≤1Shop

(C) house v A≤2Green zone

(D) house v (E≤3Sports center) u (A>3¬Sports center)

(E) house v A≤8E≤1Public transport

(Here, house and King’s college are nominals of MS, while Shop, Green zone, etc. are
set variables.)

However, we can’t just join these two knowledge bases together without connecting
them. They speak about the same things, but from different points of view. For
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instance, in (H) ‘shop’ is used as a concept , while (B) deals with the space occupied by
shops. Without connecting these different aspects we can’t deduce from the knowledge
base that a supermarket within 1 mile is sufficient to satisfy constraint (B). The required
interaction can be easily captured by an E-connection between ALC and MS. Indeed,
take roles has, neighbor, child, concepts Telephone, Supermarket, Shop, Green zone etc.,
and a nominal King’s college ofMS. Now, using the constructors E 2 and E1 connecting
ALC- andMS-models, we can represent constraints (A)–(H) as the concept Good house

defined by the following knowledge base in C(ALC,MS):

Good house = House uWell located u ∃has.Telephone u

∀neighbor.∀child.⊥

Well located = E1
(

E≤5King’s college u A≤2E
2(Green zone)

u E≤1E
2(Shop) u E≤3E

2(Sports center)

u A>3E
2(¬Sports center)

u A≤8E≤1E
2(Public transport)

)

Supermarket v Shop

If we want to specify also that the house should be of reasonable price, the ADS
ALC] can be extended with a suitable concrete domain dealing with natural numbers
so that the resulting ADS is still decidable [5, 4]. The E-connection will be decidable
as well.

By using a satisfiability checking algorithm for satisfiability in arbitrary metric
spaces we can verify only that the requirements are consistent. To answer the query
whether such a house really exists in London, we need a suitable map of London as our
metric space and the agency’s knowledge base about properties.

C(ALCO, S4u): Now imagine that you are employed by the EU parliament to de-
velop a geographical information system about Europe. One part of the task is easy.
You take the description logic ALCO (extending ALC with nominals, i.e., concept
names which have to be interpreted as singleton sets [31, 23]) and, using concepts
Country, Treaty, etc., nominals EU, Schengen treaty, object names Spain, Luxembourg,
UK, etc., and a role member, write

Luxembourg : ∃member.EU u ∃member.Schengen treaty

Iceland : ∃member.Schengen treaty u ¬∃member.EU

France : Country

Schengen treaty v Treaty

∃member.Schengen treaty v Country, etc.

After that you have to say something about the geography of Europe. To this end
you can use the spatial logic RCC-8 [29, 12, 30, 37] or the more expressive formalism
of S4u in which one can encode the topological meaning of the RCC-8 predicates—DC

(disconnected), EQ (equal), EC (externally connected), NTPP (non-tangential proper
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part), etc.—as term assertions of S4u (see e.g., [12, 37]), say,

DC(X,Y ) as ¬3∃(X ∧ Y ),

EQ(X,Y ) as 2∀ (X ↔ Y ),

EC(X,Y ) as 3∃(X ∧ Y ) ∧ ¬3∃(IX ∧ IY ),

NTPP(X,Y ) as 2∀ (¬X ∨ IY ) ∧3∃(¬X ∧ Y ).

Using an E-connection between ALCO and S4u you can then continue:

EQ(E2(EU), E2(Portugal) t . . . )

EC(E2(France), E2(Luxembourg))

NTPP(E2(Luxembourg), E2(∃member.Schengen Treaty))

Austria : E1(alps)

i.e., ‘the space occupied by the EU is the space occupied by its members,’ ‘France and
Luxembourg have a common border,’ ‘if you cross the border of Luxembourg, then
you enter a member of the Schengen Treaty,’ ‘Austria is an alpine country’ (alps is
a set variable of S4u). Of course, to ensure that the spatial extensions of the EU,
France, etc. are not degenerate and to comply with requirements of RCC-8, you should
guarantee that all mentioned spatial regions are interpreted by regular closed sets, i.e.,
E2(EU) = CIE2(EU), E2(France) = CIE2(France), etc.

Suppose now that you want to test your system and ask whether France is a member
of the Schengen treaty, i.e., France v ∃member.Schengen treaty. The answer will be
“Don’t know!” because you did not tell your system that the spatial extensions of any
two countries do not overlap. If you add, for example,

IE2(Country u ¬∃member.Schengen treaty) v ¬I(E 2(∃member.Schengen treaty))

(‘the members of the Schengen treaty do not overlap with the non-Schengen countries’)
to the knowledge base, then the answer to the query will be “Yes!”

C(SHIQ, ALCO): Having satisfied your boss in the EU parliament with the con-
structed GIS, you get a new task: develop a knowledge base regulating relations between
people in the EU (citizenship, jobs, etc.). On the one hand, you already have the ALCO
knowledge base describing countries in the EU from the previous example. But on the
other hand, you must also be able to express laws like (i) ‘no citizen of the EU may
have more than one spouse,’ (ii) ‘all children of UK citizens are UK citizens,’ or (iii) ‘a
person living in the UK is either child of somebody who is a UK citizen or has a work
permit in the UK, or the person is a UK citizen or has a work permit in the UK her-
self.’ This means, in particular, that you need more constructors than are provided by
ALCO, say, qualified number restrictions and inverse roles. It is known, however, that
inverse roles, number restrictions, and nominals are difficult to handle algorithmically
in one system [23]. The fusion of ALCO with, say, SHIQ of [22], having the required
constructors, doesn’t help either because transfer results for fusions are available so far
only for DLs whose models are closed under disjoint unions [5, 4]—which is not the
case if nominals are allowed as concept constructors. It seems that a perspective way
to attack this problem is to connect SHIQ with ALCO.
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Let E contain three binary relations between the domains of SHIQ (people, com-
panies, etc.) and ALCO (countries): xSy means that x is a citizen of y, xLy means
that x lives in y, and xWy that x has a work permit in y. For example, L1(UK) denotes
all people living in the UK, while S1(UK) all UK citizens. The subsumptions below
represent the regulations (i)–(iii):

S1(EU) v ¬∃≥2married.>

∃child of.S1(UK) v S1(UK)

L1(UK) v ∃child of−1.
(

S1(UK) tW1(UK)
)

t S1(UK) tW1(UK)

C(ALCO, S4u, PTL) “The EU is developing,” said your boss, “we are going to have
new members by 2005.” So you extend the connection C(ALCO,S4u) with one more
ADS—propositional temporal logic PTL. Now, besides nominals EU, etc. and object
names Germany, etc. of ALCO and set variables alps, Basel, etc. of S4u, we have
nominals 0, 1, . . . interpreting time points (n can be regarded as an abbreviation for
¬©n

P >∧©
n−1

P >, where ©P ϕ stands for ⊥Sϕ). The ternary relation E(x, y, z) means
now that at moment z (from the domain of PTL) point y (in the domain of S4u) belongs
to the spatial region occupied by object x (in the domain of ALCO). Then we can say,
for example:

E2(Poland, 2005) v E2(EU, 2005)

PO(E2(Austria, 1914), E2(Italy, 1950))

2F¬E
3(Basel,EU),

i.e., ‘in 2005, the territory of Poland will belong to the territory occupied by the EU,’
‘the territory of Austria in 1914 partially overlaps the territory of Italy in 1950,’ ‘no
part of Basel will ever belong to the EU.’

5 Proof

We prove Theorem 6 for the connection C = C(S1,S2) between two ADSs Si = (Li,Mi),
for i = 1, 2, by one relation E. The extra function symbols E 1 and E2 of the connection
are then unary. The general case of connections between n ADSs is treated analogously.

Let Γ be a finite set of assertion of C. Denote by obi(Γ) the set of object names
from Li which occur in Γ, i = 1, 2. Let 1 = 0, 0 = 1, and

oi(Γ) = {E i¬E ia | a ∈ obi(Γ)}.

Note that aM 6∈ (E i¬E ia)M, for any model M for C and object name a of Li. For
every i-term t of the form E is, where s is a term or an object name of Li occurring in
Γ′ = Γ ∪ o1(Γ) ∪ o2(Γ), we introduce a fresh set variable xt of Li. Given an i-term t,
denote by suri(t)—the surrogate of t—the term which results from t by replacing all
subterms t′ = E is of t that are not within the scope of an E i by xt′ . Clearly, suri(t)
belongs to the language Li.

11



Denote by Θi, i = 1, 2, the closure under negation of the set of i-terms which occur
in Γ′. Without loss of generality we can identify ¬¬t with t. Thus, Θi is finite. The
i-consistency-set C(Θi) is defined as the set {tc | c ⊆ Θi}, where

tc =
∧

{χ | χ ∈ c} ∧
∧

{¬χ | χ ∈ Θi \ c}.

Sometimes we will identify t ∈ C(Θi) with the set of its conjuncts; then s ∈ t means
that s is a conjunct of t. By >i we denote xi ∨¬xi, where xi is a set variable from Li.

We are now ready to reduce the satisfiability in the connection C to the satisfiability
problem in the components (L1,M1) and (L2,M2):

Theorem 9. Γ is satisfiable iff there exist sets ∆1 ⊆ C(Θ1) and ∆2 ⊆ C(Θ2), a relation
e ⊆ ∆1 ×∆2, and for each t ∈ ∆i, i = 1, 2, a fresh object name at from Li for which
the following hold: there are functions σi from obi(Γ) into ∆i such that E i¬E ia 6∈ σi(a),
for any a ∈ obi(Γ), the union Γi of the sets

{suri(
∨

∆i) = >i};

{at : suri(t) | t ∈ ∆i};

{a : suri(σi(a)) | a ∈ obi(Γ)};

{(a : suri(t)) | (a : t) ∈ Γ an i-term assertion};

{suri(t1) v suri(t2) | t1 v t2 ∈ Γ an i-term assertion};

{Rj(a1, . . . , amj
) ∈ Γ | Rj(a1, . . . , amj

) an i-object assertion};

is (Li,Mi)-satisfiable, and

1. for all E1s ∈ Θ1, s a 2-term, and t ∈ ∆1, we have E1s ∈ t iff there is t′ ∈ ∆2 with
(t, t′) ∈ e and s ∈ t′,

2. for all E1a ∈ Θ1, a ∈ ob2(Γ), and t ∈ ∆1, we have E1a ∈ t iff (t, σ2(a)) ∈ e,

3. for all E2s ∈ Θ2, s a 1-term, and t ∈ ∆2, we have E2s ∈ t iff there is t′ ∈ ∆1 with
(t′, t) ∈ e and s ∈ t′,

4. for all E2a ∈ Θ2, a ∈ ob2(Γ), and t ∈ ∆2, we have E2a ∈ t iff (σ1(a), t) ∈ e.

Proof. (⇒) Suppose Γ is satisfiable in C. Take a model M = ((W1,W2), E) which
satisfies Γ. Let, for d ∈ Wi,

t(d) =
∧

{t ∈ Θi | d ∈ tM}

and let ∆i = {t(d)|d ∈ Wi}. Take a fresh object name at from Li for every t ∈ ∆i.
Define, for a ∈ obi(Γ),

σi(a) =
∧

{t ∈ Θi | a
M ∈ tM} ∈ ∆i

and define e ⊆ ∆1×∆2 by taking (t, t′) ∈ e iff there are d1 ∈ W1 and d2 ∈ W2 such that
t = t(d1), t′ = t(d2), and d1Ed2. It remains to check that ∆i, σi and e are as required.

First, we show that Γi is (Li,Mi)-satisfiable. Take the model

Wi =
〈

Wi,V
Wi
i ,XWi

i , RWi
i , F Wi

i

〉

.
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Wi is almost as required. We just have to give the appropriate values to the fresh set

variables xt and the fresh object names at. To this end put x
W′

i
t = tM for every t = Eis,

xW′
i = xWi for the remaining variables, and a

W′
i

t ∈ tM for every t ∈ ∆i and aW′
i = aWi

for the remaining object names. Note that

W
′ =

〈

Wi,V
W′

i

i ,X
W′

i

i , RWi

i , F Wi

i

〉

∈Mi.

This follows from the closure conditions for the class Mi. To prove that W′
i |= Γi, it is

enough to show by induction that for all d ∈ Wi and s ∈ Θi, we have d ∈ (suri(s))
W′

i

iff d ∈ sM. We leave this to the reader. Thus, the sets Γi are (Li,Mi)-satisfiable.
Now we check that e satisfies conditions (1)–(4).
(1) Suppose E1s ∈ Θ1, s is a 2-term and t ∈ ∆1. Assume first that E1s ∈ t. Let

t = t(d) for some d ∈ W1. Then there is d′ ∈ W2 with dEd′ and d′ ∈ sM. But then
s ∈ t(d′) and (t, t(d′)) ∈ e. Assume now that (t, t′) ∈ e and s ∈ t′. Then there are
d ∈ W1 and d′ ∈ W2 with t = t(d) and t′ = t(d′) and dEd′. We have d′ ∈ sW and so
d ∈ (E1s)M. Hence E1s ∈ t.

(3) is proved in the same manner.
(2) Suppose E1a ∈ Θ1 and t ∈ ∆1. Assume first that E1a ∈ t. Then, for any d ∈ W1

with t(d) = t we have dEaM. Hence (t, t(aM)) ∈ e and so (t, σ2(a)) ∈ e. Conversely,
let (t, σ2(a)) ∈ e. Then E2¬E1a 6∈ σ2(a). By (3), ¬E1a 6∈ t. Hence E1a ∈ t.

(4) is proved in the same manner as (2).
(⇐) Suppose that ∆i, σi and e satisfying the conditions of the theorem are given.

We construct a model satisfying Γ. To this end take Wi ∈ Mi satisfying Γi, i = 1, 2.
Let, for d ∈ Wi,

t(d) =
∧

{t ∈ Θi | d ∈ (suri(t))
Wi}.

Now define E ⊆ W1 × W2 by taking dEd′ iff (t(d), t(d′)) ∈ e. We show that M =
(W1,W2, E) satisfies Γ. To this end we show by simultaneous induction for i = 1, 2
and all d ∈ Wi and s ∈ Θi, that d ∈ (suri(s))

Wi iff d ∈ sM. For set-variables the
claim follows from the definition. Also the steps for the Boolean operators and for the
function symbols of Li, i = 1, 2, are clear. It remains to consider the cases t = E is,
i = 1, 2. Let us assume i = 1, the case i = 2 is similar.

Suppose first that t = E1s for a 2-term s and that d ∈ (sur1(E
1s))W1 . Then

E1s ∈ t(d). We know that

W1 |= sur1(
∨

∆1) = >1

and so t(d) ∈ ∆1. By (1), we find t′ ∈ ∆2 with (t(d), t′) ∈ e and s ∈ t′. We know that

W2 |= at′ : sur2(t
′),

and so we find d′ ∈ W2 with t′ = t(d′). Hence dEd′. From s ∈ t′ we obtain
d′ ∈ (sur2(s))

M2 and by the induction hypothesis d′ ∈ sM. Now d ∈ (E1s)M follows.
Conversely, suppose d ∈ (E1s)M. We find d′ ∈ W2 with dEd′ and d′ ∈ sM. By the
induction hypothesis, d′ ∈ (sur2(s))

W2 and so s ∈ t(d′). By definition (t(d), t(d′)) ∈ e
and so, by (1), E1s ∈ t(d) which implies d ∈ (sur1(E

1s))W1 .
Suppose now that t = E1a for an object name a of L2. Since d ∈ (sur1(E

1a))W1 ,
we have E1a ∈ t(d). As above we know that t(d) ∈ ∆1. By (2) (t, σ2(a)) ∈ e. We also
know that

W2 |= a : sur2(σ2(a)).
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Hence dEaW2 , which implies d ∈ (E1a)M. Conversely, suppose that d ∈ (E1a)M. Then
dEaM, and so (t(d), t(aM)) ∈ e. We have t(aM) = σ2(a) and therefore (t(d), σ2(a)) ∈ e,
which implies, by (2), that E1a ∈ t(d). This means d ∈ (sur1(E

1a))W1 . 2

Theorem 6 follows from Theorem 9. Indeed, since the sets C(Θi) are finite, Theo-
rem 9 provides us with a decision procedure for C if decision procedures for (Li,Mi),
i = 1, 2, are known. To decide whether a set Γ is satisfiable, ‘guess’ sets ∆1 ⊆ C(Θ1)
and ∆2 ⊆ C(Θ2), functions σi : obi(Γ) → ∆i, i = 1, 2, and a relation e ⊆ ∆1 × ∆2

and check whether they satisfy the conditions listed in the formulation of the theorem.
Regarding the complexity of the obtained decision procedure, the costly step is guess-
ing the right sets ∆i. The cardinality of the sets C(Θi) is exponential in the size of Γ.
Thus, there are double exponentially many different subsets to be chosen from. Since
the cardinality of the chosen sets ∆i may be exponential in the size of Γ, also the size
of Γ1 and Γ2 may be exponential in Γ (because of the big disjunction over the ∆i).

6 A-Satisfiability

Here we show that A-satisfiability is not preserved under connections. To this end, recall
that ALCF is the extension of ALC by functional roles and the same-as constructor
(see the introduction). A-satisfiability for ALCF is decidable [27], while satisfiability
itself is not [3].

Proof. of Theorem 8. Let (L,M) be an arbitrary ADS. We show that for any finite
set Γ of general TBox-axioms and any assertion a : t of ALCF , there exists a set Γ∗ of
object assertions of C = C(ALCF , (L,M)) such that Γ ∪ {a : t} is satisfiable iff Γ∗ is
satisfiable in the connection. Suppose Γ and a : t are given. We may assume that Γ
consists of axioms of the form u = >. Denote by R the set of all roles which occur in
Γ ∪ {t}. We put Ais = ¬E i¬s. Let b be an object name of (L,M).

Define Γ∗ as the union of the sets

{a : E1(b)} ∪ {b : A2f∀RE
1(b) | R ∈ R},

{a : t} ∪ {b : A2u | (u = >) ∈ Γ}.

Suppose Γ∪{a : t} is satisfied in an ALCF -model W1 with domain ∆. Define a model
M for C by taking an arbitrary model W2 with domain W for (L,M) and putting
E = ∆×W . It is easily checked that M |= Γ∗.

Conversely, let us suppose that M |= Γ∗ for a C-model M = (W1,W2, E). Let ∆ be
the domain of W1. Denote by ∆′ the minimal subset of ∆ containing aM and satisfying
the following closure condition for all d, d′ ∈ ∆:

if d ∈ ∆′ and ∃S ∈ R dSMd′ then d′ ∈ ∆′.

The model W′
1, defined as the substructure of W1 induced by ∆′, satisfies Γ ∪ {a : t}.

To see this, it is sufficient to show that uM ⊇ ∆′ for every term u with u = > ∈ Γ.
Note that d ∈ uM whenever (d, bM) ∈ E, because b : A2u ∈ Γ∗. Hence it is enough to
prove that for all d ∈ ∆′, (d, bM) ∈ E.

Since a : E1(b) ∈ Γ∗, (aM, bM) ∈ E. Suppose d ∈ ∆′, dSd′ for some S ∈ R, and
(d, bM) ∈ E. We have b ∈ A2f∀RE

1(b), and so d ∈ f∀RE
1(b). This implies d′ ∈ E1(b),

from which (d′, bM) ∈ E. 2

14



Note that in the proof we only used the following properties of ALCF : (1) ABox-
reasoning (without general TBox-axioms) is decidable, (2) reasoning with general TBoxes
is undecidable, (3) an ALCF-concept applies to an object d iff it applies to d in the
generated substructure based on ∆′ as defined above. Condition (3) applies to all
standard description logics. This means that, roughly speaking, the A-satisfiability
problem for an E-connection of two ADS is undecidable, whenever at least one ADS
has an undecidable satisfiability problem.

7 Undefinability

Given that the E-connection of any finite number of decidable ADSs is decidable as well,
it is clear that the interaction between the components has to be rather limited. Yet, it
is not obvious what exactly can and what can’t be expressed in the combined language.
We have gone into great depth to provide examples of potentially useful E-connections.
This section is devoted to sheding some light on the question of expressivity.

As is well known, undefinability results in modal logic—such as the undefinability of
the irreflexivity of a Kripke frame—are usually gained by the concept of bisimulation.
In what is to follow, we will lift the concept of bisimulations to the case of E-connections
and will then give some simple examples of undefinable properties of E-connections.

We will work with the following definition of definability :

Definition 10. Let C be an E-connection. A property P of models of C is definable
in C iff there exists a finite set Γ of assertions of C such that for all models M of C the
following holds: M has P iff M |= Γ.

Bisimulations for ADSs

As ADSs abstract from the concret definition of a given logic, it is difficult to come
up with a notion of bisimulation that is non-trivial in the sense that it reflects certain
properties of the logics under investigation (as is the case with bisimulations for modal
logics where the semantic definition of modal operators is reflected in the definition of
bisimulations).

So let us use a rather straightforward definition of bisimulation that simply pins
down exactly what is needed to ensure that two models are indistinguishable.3

Definition 11. Let (L,M) be an ADS, and let

Wk =
〈

Wk,V
Wk ,XWk , F Wk , RWk

〉

,

k = 1, 2, be two abstract description models from the class M.
We say that W1 and W2 are locally bisimilar, in symbols W1 
 W2, if there exists

a non-empty binary relation 
⊆ W1 ×W2, such that the following holds:

(a) For all object variables a ∈ L, aW1 
 aW2 and R(aW1

1
, . . . , aW1

n ) iff R(aW2

1
, . . . , aW2

n );

(b) If u 
 v, then u ∈ xW1 iff v ∈ xW2 ;

3If one is interested in particular classes of logics, this definition of bisimulation can be accordingly
strengthened.
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(c) If u 
 v, then u ∈ fW1

i (tW1) iff v ∈ fW2

i (tW2).

Further, we say that W1 and W2 are globally bisimilar, in symbols W1 
G W2, if they
are locally bisimilar and the relation 
⊆ W1 ×W2 is global in the sense that for all
u ∈ W1 there is some v ∈ W2 such that u 
 v, and, conversely, for all v ∈ W2 there is
some u ∈ W1 such that u 
 v.

Proposition 12. Let S = (L,M) be an ADS and Wk, k = 1, 2, any two abstract
description models from the class M that are locally bisimilar, W1 
 W2. Then:

(i) For all terms t of L and all points u ∈ W1, v ∈ W2 such that u 
 v it holds that
u ∈ tW1 iff v ∈ tW2;

(ii) W1 |= φ if and only if W2 |= φ, for all object assertions φ of L;

(iii) If W1 
G W2, then W1 |= t1 v t2 if and only if W2 |= t1 v t2, for all term
assertions t1 v t2.

Proof. Claim (i) follows directly from items (b) and (c) of Definition 11 (with the
Boolean connectives being a trivial inductive step) and (ii) follows from (i) and item
(a).

For the proof of the third claim, suppose that 
 is global. Assume that W1 |= t1 v
t2. If tW2

1
= ∅, then W2 |= t1 v t2 follows. So assume otherwise. Take any v ∈ tW2

1
. By

globality, there is a u ∈ W1 such that u 
 v. Hence u ∈ tW1

1
by (i). By assumption,

u ∈ tW1

2
as well, whence v ∈ tW2

2
by (i). 2

Bisimulations for E-connections

We will now extend the notion of bisimulation for ADSs to E-connections.

Definition 13. Let Si = (Li,Mi), i = 1, . . . , n, be n ADSs and let C = C(S1, . . . ,Sn)

be the corresponding E-connection. Two models M1 =
〈

(W1
i)i≤n, (E1

j )j≤m)
〉

and

M2 =
〈

(W2
i)i≤n, (E2

j )j≤m)
〉

for C are called E-bisimilar, symbolically M1 
E M2, if

there are global relations 
i (i = 1, . . . , n) satisfying conditions (a)–(c) from definition
11 such that the following holds for any j:

(d) If 〈u1, . . . , un〉 ∈ E1
j and ui 
i vi for some i, then there are v1, . . . , vi−1, vi+1, . . . , vn

such that 〈v1, . . . , vn〉 ∈ E2
j and uk 
k vk for all k.

(e) If 〈v1, . . . , vn〉 ∈ E2
j and ui 
i vi for some i, then there are u1, . . . , ui−1, ui+1, . . . , un

such that 〈u1, . . . , un〉 ∈ E1
j and uk 
k vk for all k.

Proposition 14. Let C = C(S1, . . . ,Sn) be an E-connection and suppose that M1

E

M2. Then for all assertions φ of C it holds that:

M
1 |= φ iff M

2 |= φ,

i.e., E-bisimilar models are indistinguishable by means of assertions.
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Proof. For simplicity, let us assume that the E-connection is 2-dimensional, i.e. C =
C(S1,S2), and contains only two new function symbols, E 1 and E2. Suppose φ = E1(t)
with t a 2-term. We prove that for all u1 ∈ W 1

1 and v1 ∈ W 2
1 with u1 
1 v1

u1 ∈ (E1(t))M1

iff v1 ∈ (E1(t))M2

The case φ = E2(s) can be treated similarly. From this and the fact that the 
i are
global bisimulations, the claim follows.

So suppose that u1 ∈ (E1(t))M1

, i.e. that there is a u2 ∈ tM
1

such that 〈u1, u2〉 ∈ E1.
Since u1 
1 v1, it follows that there is a v2 such that 〈v1, v2〉 ∈ E2 and u2 
2 v2. Hence
v2 ∈ tM

2

, whence v1 ∈ (E1(t))M2

. 2

Examples

Let us now give a few examples of undefinable properties of E-connections. For brevity,
we will restrict the examples to the case of 2-dimensional E-connections.

Theorem 15. Let R and S be role names.
(i) The property

(†) ∀x∀y∀z(xRy → (xEz → yEz))

is not definable in the E-connections C(ALC,MS), C(ALCO,S4u) and C(SHIQ,ALCO).
(ii) The property

(‡) ∀x∀y(xRy ∧ xEx′ ∧ yEy′ → x′Sy′)

is not definable in the E-connection C(SHIQ,ALCO).

Proof. Our strategy will be to give appropriate pairs of models for the respective
E-connections, one model satisfying the given property, the other not, and provide a
bisimulation between them. This shows that the properties (†) and (‡) are not definable.

Let us prove (i) and consider first the case of the E-connection C(SHIQ,ALCO).
We treat this case rather detailed and will be briefer in the remaining cases. To vi-
sualize the models we define below, compare Figure 1. Let M1 = 〈W1,W2, E〉 be
a model for C(SHIQ,ALCO) with Wi =

〈

Wi,V
Wi ,XWi , F Wi , RWi

〉

where W1 =
{a1, a2, b1, b2, o1}, xW1 = ∅ for all x ∈ V and aW1 = o1 for all a ∈ X . There is
one (non-trivial) role name R with RW1 = {〈a1, b1〉 , 〈a2, b2〉}

4 and function symbols
f∀R, f∃R, f∃R−1 , f∀R−1 , f∃≤n

, f∀≤n
, f∃≥n

and f∀≥n
for n ∈ N which are interpreted as

defined on page 5. Further, let W2 = {c1, c2, o2}, xW2 = ∅ for all x ∈ V and aW2 = o2

for all a ∈ X . We assume that in W2 all roles are interpreted by the empty set. For
every nominal o of ALCO we have a 0-ary function symbol fo which we interpret as
fW2

o = {o2}. Finally let

E = {〈a1, c1〉 , 〈a2, c2〉 , 〈b1, c1〉 , 〈b2, c2〉}.

Next, let the model M2 = 〈W′
1,W

′
2, E

′〉 with W ′
1 = {a′1, a

′
2, b

′
1, b

′
2, o

′
1} and W ′

2 =
{c′1, c

′
2, o

′
2} be defined just like M1 except for E ′ which is given by

E′ = {
〈

a′1, c
′
2

〉

,
〈

a′2, c
′
1

〉

,
〈

b′1, c
′
1

〉

,
〈

b′2, c
′
2

〉

}.

4For other roles S assume S
W1 = ∅.
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It should be obvious that M1 satisfies (†), while M2 doesn’t. We claim that the relation

 defined by


 := {
〈

a1, a
′
1

〉

,
〈

a1, a
′
2

〉

,
〈

a2, a
′
1

〉

,
〈

a2, a
′
2

〉

,
〈

b1, b
′
1

〉

,
〈

b1, b
′
2

〉

,
〈

b2, b
′
1

〉

,
〈

b2, b
′
2

〉

,
〈

c1, c
′
1

〉

,
〈

c1, c
′
2

〉

,
〈

c2, c
′
1

〉

,
〈

c2, c
′
2

〉

,
〈

o1, o
′
1

〉

,
〈

o2, o
′
2

〉

}

is a global bisimulation between M1 and M2. First, it is obvious that 
 is global and
that conditions (a) and (b) from Definition 11 are satisfied. Let us check condition (c).
Suppose that u 
 v with u ∈ W1 and v ∈ W2. By (b) it is clear that u ∈ tW1 iff v ∈ tW2

for all set terms t without occurences of function symbols. Then, u ∈ f W1

∃R (tW1) iff u
has a R successor u′ in W1 such that u′ ∈ tW1 iff v has a R successor v′ in W2 such
that v′ ∈ tW2 iff v ∈ fW2

∃R (tW2), according to the definition of 
 and the induction
hypotheses. We leave it to the reader to check the cases of the other function symbols
in a similar manner.

It remains to establish that conditions (d) and (e) of the definition of E-bisimulation
hold. We show only (d). There is a total of 16 cases to be considered. We go through
some of them and leave the rest to the reader.

(1) We have 〈a1, c1〉 ∈ E and four possibilities to instantiate the antecedent of (d).
If the cases a1 
 a′1 and c1 
 c′2, choose a′1 
 c′2. In the cases a1 
 a′2 and c1 
 c′1,
choose a′2 
 c′1. In all cases (d) is satisfied.

(2) We have 〈b2, c2〉 ∈ E and again four possibilities to instantiate the antecedent
of (d). If the cases b2 
 b′1 and c2 
 c′1, choose b′1 
 c′1. In the cases b2 
 b′2 and
c2 
 c′2, choose b′2 
 c′2. Again, in all cases (d) is satisfied.

It should be clear how to check the remaining cases. We have thus shown that 


defines an E-bisimulation between the models M1 and M2.

Let us now briefly discuss which modifications are needed in the cases of the E-
connections C(ALC,MS) and C(ALCO,S4u). Roughly, we can use the same models as

(†)

R

R R

R

E

¬(†)




E′

b
′
1

b1 b2

a1 a2

c1
c2

c
′
1

c
′
2

b
′
2

a
′
2a

′
1

o1

o
′
1

o2

o
′
2

Figure 1: E-bisimilar models for C(SHIQ,ALCO)
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before. But this time, to interpret the distance operators ofMS and the interior/closure
operators as well as the universal modalities of S4u, we need to specify metrics d/d′ (in
the case of MS) and topologies T/T′ (in the case of S4u) for M/M′, respectively. A
straightforward solution to this problem is to choose the discret metric in the case of
MS—i.e., the metric d such that d(x, y) = 0 iff x = y and d(x, y) = 1, otherwise—and
to choose the topology induced by the discret metric in the case of S4u. The above
proof can then be mimicked without further major modifications.

R R

(‡)SS

E

SS

b2

E′

¬(‡)




R R

b1
d1

d2

a
′
2a

′
1

b
′
2

a1
a2

c1 c2

b
′
1

d
′
1

d
′
2

c
′
1

o1
o2

o
′
1

o
′
2c
′
2

Figure 2: E-bisimilar models for C(SHIQ,ALCO)

For the proof of the second claim, we ask the reader to follow the lines of the proof
of (i) and restore the details from Figure 2. 2

For example, since we cannot express (†), we cannot say that the spatial extension
of the capital of any country is included in the spatial extension of that country without
enumerating the countries). Similarly, since (‡) is non-expressible, we cannot say that
any child of any person who is a citizen of some country is a citizen of that same
country.

8 Discussion

The investigation of combination methods for KR&R-formalisms consists, to a large
extent, of the analysis of the trade-off between possible interactions of the components
in the combined system and its computational properties. In this paper we studied a
combination method which was proved to be extremely robust in the computational
sense. Of course, the price for this is that the interaction between the components is
limited. For example, in C(ALCO,S4u,PTL) it is not possible to say that Germany
and France were always externally connected or that the territory of the EU will never
contract. Assertions of this type require more interaction between the components. We
hope that starting from E-connections as a ‘harmless’ way of combining formalisms, it
is possible to develop and study a hierarchy of more and more interactive combinations
in a systematic manner.

Finally, note that the term ‘harmless’ used above is a bit misleading. Theorem 6
shows that decidability is inherited by the E-connection from its components. How-
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ever, even if we have ‘practical’ algorithms for the components we do not obtain from
our rather abstract model-theoretic proof a ‘practical’ algorithm for the E-connection.
Moreover, it is unlikely that a ‘practical’ version of this general transfer result exists at
all. Nevertheless, the proof of Theorem 6 indicates that in many cases existing practi-
cal decision procedures for the components can be combined so as to obtain practical
decision procedures for the E-connection. We are currently working on such ‘practical’
combination techniques.
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