
Heterogeneously Structured Ontologies
Integration, Connection, and Refinement

Oliver Kutz1 Dominik Lücke1 Till Mossakowski1,2

1 SFB/TR 8 Spatial Cognition, University of Bremen
Cartesium, Enrique-Schmidt Strasse

28359, Bremen, Germany
Email: {okutz,luecke}@informatik.uni-bremen.de

2 DFKI GmbH, Bremen, Germany
Cartesium, Enrique-Schmidt Strasse

28359, Bremen, Germany
Email: Till.Mossakowski@dfki.de

Abstract

This paper systematically applies tools and tech-
niques from the area of algebraic specification the-
ory to corresponding ontology structuring and design
tasks.

We employ the heterogeneous structuring mech-
anisms of the heterogeneous algebraic specification
language HetCasl for defining an abstract notion
of structured heterogeneous ontology. This approach
enables the designer to split up a heterogeneous on-
tology into semantically meaningful parts and employ
dedicated reasoning tools to them.

In particular, we distinguish three fundamentally
different kinds of combining heterogeneous ontologies:
integration, connection, and refinement.

Keywords: Ontology Design & Reasoning; Modular-
ity; Combination Techniques; Algebraic Specification

1 Introduction

Ontologies play an increasingly important role in var-
ious areas of Knowledge Representation ranging from
the life sciences and engineering domains to linguis-
tic semantics. In the process, ontologies are being
designed in a broad spectrum of logics, with consid-
erably varying expressivity and supporting quite dif-
ferent reasoning methods. Logics being used include
description logics like SROIQ(D) (Horrocks et al.
2006), relational database schemes, as well as first-
order and modal logics. While modularity, aligning
and re-using (parts of) ontologies has received con-
siderable attention recently,1 there is little work on
formal structuring and the aspect of heterogeneity.

We believe that a lot can be learned in this respect
from techniques developed for (algebraic) specifica-
tion in software engineering, and provide a systematic
account that parallels structuring techniques from al-
gebraic specification with typical problems found in
ontology design.

Our work builds on and generalises and extends
ideas of (Bench-Capon & Malcolm 1999), (Alagić &

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Knowledge Representation Ontology
Workshop (KROW 2008), Sydney, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 90, Thomas Meyer and Abhaya Nayak, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

1For work on modularity in ontologies compare the workshop
series (Haase et al. 2006, Cuenca Grau et al. 2007, Sattler &
Tamilin 2008), and for work on ontology alignment/matching com-
pare the textbook (Euzenat & Shvaiko 2007), as well as the
workshops of the ‘Ontology Alignment Evaluation Initiative’ (see
http://oaei.ontologymatching.org/).

Bernstein 2002), (Madhavan et al. 2002), and in par-
ticular (Goguen 2005, 2006). In recent publications,
we have discussed the problem of inheriting conser-
vativity properties from parts (or modules) of an on-
tology to an overall integration obtained through a
colimit operation (Kutz & Mossakowski 2007, 2008),
and analysed various alignment approaches from the
institutional viewpoint (Kutz et al. 2008).

This paper addresses the following:
(1) we develop a rather abstract view of hetero-
geneously structured ontologies encompassing essen-
tially all logics used in ontology design today and
allowing to model the most complex relationships
between various ontologies; (2) we systematise the
field of ‘combining ontologies’ by identifying three
classes of such combinations: integrations, connec-
tions, and refinements. The differentiating criteria
are the use of signatures in the overall combination
and the corresponding model-theoretic properties; (3)
we analyse how various well-known ontology design
and combination techniques fit into these abstract
categories, including structuring through conservative
extensions, ontology alignments, E-connections, and
database scheme–ontology reconciliation; (4) finally,
the appendix contains a discussion how the Heteroge-
neous Tool Set (Hets) can support various reasoning
and ontology engineering tasks; we also indicate the
current and planned tool support for existing ontol-
ogy languages and reasoners.

2 Heterogeneous Ontologies and Structuring

The study of modularity principles can be carried out
to a quite large extent independently of the details of
the underlying logical system that is used. The no-
tion of institutions was introduced by Goguen and
Burstall in the late 1970s exactly for this purpose (see
(Goguen & Burstall 1992)). They capture in a very
abstract and flexible way the notion of a logical sys-
tem by describing how, in any logical system, signa-
tures, models, sentences (axioms) and satisfaction (of
sentences in models) are related.

The importance of the notion of institutions lies
in the fact that a surprisingly large body of logical
notions and results can be developed in a way that is
completely independent of the specific nature of the
underlying institution.2

We assume some acquaintance with the basic no-
tions of category theory and refer to (Adámek et al.
1990) or (Mac Lane 1998) for an introduction. If C is
a category, Cop is the dual category where all arrows

2For an extensive treatment of model theory in this setting, see
(Diaconescu 2008).

http://oaei.ontologymatching.org/

are reversed. For a category C, we denote by |C| the
class of its objects.

Definition 1 (Institutions). An institution is a
quadruple I = (Sign,Sen,Mod, |=) consisting of

• a category Sign of signatures,

• a functor Sen : Sign −→ Set3 giving, for each
signature Σ, the set of sentences Sen(Σ), and
for each signature morphism σ : Σ −→ Σ′, the
sentence translation map Sen(σ) : Sen(Σ) −→
Sen(Σ′), where often Sen(σ)(ϕ) is written as
σ(ϕ),

• a functor Mod : Signop −→ CAT 4 giving,
for each signature Σ, the category of mod-
els Mod(Σ), and for each signature mor-
phism σ : Σ −→ Σ′, the reduct functor
Mod(σ) : Mod(Σ′) −→ Mod(Σ), where often
Mod(σ)(M ′) is written as M ′ �σ, and M ′ �σ is
called the σ-reduct of M ′, while M ′ is called a
σ-expansion of M ′�σ,

• a satisfaction relation |=Σ ⊆
|Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ : Σ−→Σ′ in Sign the following
satisfaction condition holds:

(?) M ′ |=Σ′ σ(ϕ) iff M ′�σ|=Σ ϕ

for eachM ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing
that truth is invariant under change of notation and
enlargement of context.5 ♦

Examples of institutions include, among others,
first- and higher-order classical logic, description log-
ics, and various (quantified) modal logics:

Example 1. First-order Logic. In the institu-
tion FOLms= of many-sorted first-order logic with
equality, signatures are many-sorted first-order sig-
natures, consisting of sorts and typed function and
predicate symbols. Signature morphisms map sym-
bols such that typing is preserved. Models are many-
sorted first-order structures. Sentences are first-order
formulas. Sentence translation means replacement of
the translated symbols. Model reduct means reassem-
bling the model’s components according to the signa-
ture morphism. Satisfaction is the usual satisfaction
of a first-order sentence in a first-order structure. ♦

Example 2. Relational Schemes. A signature
consists of a set of sorts and a set of relation symbols,
where each relation symbol is indexed with a string of
sorted field names. Signature morphisms map sorts,
relation symbols and field names. A model consists
of a carrier set for each sort, and an n-ary relation for
each relation symbol with n fields. A model reduction
just forgets the parts of a model that are not needed.
A sentence is a link (integrity constraint) between two
field names of two relation symbols. Sentence trans-
lation is just renaming. A link is satisfied in a model
if for each element occurring in the source field com-
ponent of a tuple in the source relation, the same
element also occurs in the target field component of
a tuple in the target relation. ♦

3Set is the category having all small sets as objects and func-
tions as arrows.

4CAT is the category of categories and functors. Strictly speak-
ing, CAT is not a category but only a so-called quasicategory,
which is a category that lives in a higher set-theoretic universe.

5Note, however, that non-monotonic formalisms can only indi-
rectly be covered this way, but compare, e.g., (Guerra 2001).

Example 3. Description Logics. Signatures of
the description logic ALC consist of a set of B of
atomic concepts and a set R of roles, while signature
morphisms provide respective mappings. Models are
single-sorted first-order structures that interpret con-
cepts as unary and roles as binary predicates. Sen-
tences are subsumption relations C1 v C2 between
concepts, where concepts follow the grammar

C ::= B | > |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

Sentence translation and reduct is defined similarly as
in FOL=. Satisfaction is the standard satisfaction of
description logics. ALCms is the many-sorted variant
of ALC. ALCO is obtained from ALC by extending
signatures with nominals.

The (sub-Boolean) description logic EL restricts
ALC as follows: C ::= B | > |C1 u C2 | ∃R.C.
SHOIN extends ALC with role hierarchies, transi-
tive and inverse roles, (unqualified) number restric-
tions, and nominals, etc. ♦

Example 4. Modal Logics. The modal logic S4u
has signatures as classical propositional logic, consist-
ing of propositional variables. Sentences are built as
in propositional logic, but add two unary modal op-
erators, � and �. Models are standard Kripke struc-
tures but based on reflexive and transitive relations.
Satisfaction is standard modal satisfaction, where �
is interpreted by the transitive reflexive relation, and
� by universal quantification over worlds.

The standard formulation of first-order modal
logic QS5 (due to Kripke) has signatures similar
to FOL=, including variables and predicate sym-
bols. Sentences follow the grammar for FOL=-
sentences using Booleans, quantifiers, and identity,
while adding the � operator, but leaving out con-
stants and function symbols. Models are constant-
domain first-order Kripke structures, with the usual
first-order modal satisfaction. ♦

2.1 Structured Ontologies

The essential advantage of the theory of institutions
is the possibility of providing structuring operations
and module concepts independently of the underlying
logical system. Hence, in the sequel, let us fix some
arbitrary institution I = (Sign,Sen,Mod, |=). The
basic structuring operation for ontologies is surely
that of importing other ontologies. The notion of de-
velopment graph captures this, and also renaming of
symbols.

Definition 2. A development graph is an acyclic,
directed graph6 DG = 〈N ,L〉. Here, N is a set of
nodes. Each node N ∈ N is labelled with a pair
(ΣN ,ΨN) such that ΣN is a signature and ΨN ⊆
Sen(ΣN) is the set of local axioms of N . L is a
set of directed links, so-called (global7) definition

links K
σ - N , annotated with a signature

morphism σ : ΣK → ΣN .
Given a node N ∈ N , its associated theory

ThDG(N) is inductively defined to consist of

• all the local axioms ΨN , and

• for each K
σ - N ∈ DG, all of ThDG(K)

translated by σ.

The class of models ModDG(N) of a node N is de-
fined as Mod(ThDG(N)). ♦

6In (Kutz & Mossakowski 2007, 2008), we have identified a
structured ontology with a diagram.

7There are also local and hiding definition links, which require
a more refined model-theoretic semantics.

Complementary to definition links, which define
the theories of related nodes, we also allow for the-
orem links with the help of which we are able
to postulate relations between different theories. A

(global) theorem link is an edge K
σ
- N ,

where σ : ΣK −→ ΣN . DG implies a theorem link

K
σ
- N (denoted DG |= K

σ
- N) iff

for all M ∈ModDG(N), M�σ∈ModDG(K).
A global definition (or also theorem) link

K
σ - N can be strengthened to a conserva-

tive extension link (denoted as K
σ

cons
- N);

it holds if every K-model has a σ-expansion to an N -
model. Such annotations can be seen as another kind
of proof obligations. Definitional extensions are in-
troduced in a similar way (annotated with def); here
the σ-expansion has to be unique.

Many languages for structuring, modularity and
alignment of ontologies can be mapped into this for-
malism of development graphs.8 In this paper, we use
the language Casl (Bidoit & Mosses 2004). A Casl
library consists of specification definitions of the form

spec <name> =
<spec>

end

A specification <spec> can be a basic specification
consisting of a signature and some axioms (with
syntax specific to the given institution). It corre-
sponds to a node with local axioms in a development
graph. Concerning structuring, specifications can be
extended or united, written <spec> then <spec> or
<spec> and <spec>, and leading to definition links
in the development graph. Extensions add some
new signature elements and axioms, and can be de-
clared to be conservative or definitional. Unions
unite the requirements of two specifications, thereby
intersecting their model classes. Renamings, writ-
ten <spec> with <signature-morphism>, rename a
specification along a signature morphism; again, this
leads to a definition link in the development graph.
The declaration view view1: sp1 to sp2 will gen-
erate a theorem link between the nodes representing
sp1 and sp2 in the development graph. Details of the
translation to development graphs, as well as a treat-
ment of hiding, can be found in (Mossakowski et al.
2006). Moreover, the appendix contains additional
details about the syntax of Casl (and HetCasl in-
troduced below) as well as example specifications.

2.2 Heterogeneous Ontologies

As (Schorlemmer & Kalfoglou 2008) argue convinc-
ingly, since ontologies are being written in many dif-
ferent formalisms, like relation schemata, description
logics, first-order logic, and modal (first-order) log-
ics, alignments of ontologies need to be constructed
across different institutions.

To obtain heterogeneous logical theories, one needs
to fix some graph of logics and logic translations, usu-
ally formalised as institutions and so-called institu-
tion comorphisms, see (Goguen & Roşu 2002). The
latter are again governed by the satisfaction condi-
tion, this time expressing that truth is invariant also
under change of notation across different logical for-
malisms:

8By ‘modularity’ we here refer to the notion of ‘ontological mod-
ule’ defined through conservativity properties, as it has been inves-
tigated for instance in Konev et al. (2008), Cuenca Grau, Horrocks,
Kazakov & Sattler (2008), Kutz & Mossakowski (2008).

M ′ |=J
Φ(Σ) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

Here, Φ(Σ) is the translation of signature Σ from in-
stitution I to institution J , αΣ(ϕ) is the translation of
the Σ-sentence ϕ to a Φ(Σ)-sentence, and βΣ(M ′) is
the translation (or perhaps: reduction) of the Φ(Σ)-
model M ′ to a Σ-model.

The so-called Grothendieck institution is a
technical device for giving a semantics to heteroge-
neous theories involving several institution (see Dia-
conescu 2002, Mossakowski 2002). The Grothendieck
institution is basically a flattening, or disjoint union,
of the logic graph. A signature in the Grothendieck
institution consists of a pair (L,Σ) where L is a
logic (institution) and Σ is a signature in the logic
L. Similarly, a Grothendieck signature morphism
(ρ, σ) : (L1,Σ1) → (L2,Σ2) consists of a logic trans-
lation ρ = (Φ, α, β) : L1 −→ L2 plus an L2-signature
morphism σ : Φ(Σ1) −→ Σ2. Sentences, models and
satisfaction in the Grothendieck institution are de-
fined in a componentwise manner.

We now arrive at the following:

Definition 3. An abstract structured heteroge-
neous ontology (w.r.t. some logic graph) is a node
O in a development graph DG in the corresponding
Grothendieck institution. We sometimes also identify
O with its theory ThDG(O); however, note that then
the structuring is lost. ♦

To be able to write down such heterogeneous on-
tologies in a concise manner, we extend Casl to
HetCasl as follows: HetCasl provides the no-
tation logic <logic-name>, which defines the in-
stitution of the following specifications until that
keyword occurs again. Also, a specification can
be translated along a comorphism; this is written
<spec> with logic <comorphism-name>. See the
extended example on Page 7 for the look-and-feel of
HetCasl specifications. Of course, abstract struc-
tured heterogeneous ontologies can be formulated in
different notations, and HetCasl is only one of them.
Another option would be an extension of OWL struc-
turing mechanisms by keywords dealing with hetero-
geneity.

3 Heterogeneous Integration

Informally, an integration of two ontologies O1, O2
into a third ontology O is any operation by which
O1, O2 are ‘re-interpreted’ from the (global) point of
view of O.

Definition 4. Given ontologies O1, O2, and an on-
tology O, in institutions I1, I2 and I, respectively, we
say that O heterogeneously integrates O1 and O2
if there are theorem links (i.e. theory interpretations)
λ1 : O1 7→ O and λ2 : O2 7→ O. ♦

Thus, given O1 |=I1 φ and O2 |=I2 ψ, we have
O |=I λ1(φ), λ2(ψ), i.e., consequence is preserved up-
wards.

In the approach of (Schorlemmer & Kalfoglou
2008), two ontologies O1 and O2 are aligned by
mapping them into a common reference ontology
O as follows: theories O1 and O2 are said to be
semantically integrated with respect to a the-
ory O if (1) there exist consequence-preserving sen-
tence translations α1 : O1 −→ O, α2 : O2 −→ O;
(2) there exist structure reducts β1 : Mod(O) −→
Mod(O1), β2 : Mod(O)−→Mod(O2); and (3) O is
consistent.

O

O1 α1

-

O2

�

α2

Figure 1: Integration into reference ontology

Example 5. (From Schorlemmer & Kalfoglou
2008, abridged) Suppose that O1 is a relational
scheme. It contains author of(person,paper) and
person(id,name) with a relationship from person
to id. O2 is a description logic theory. It contains
Article v ∃author .> u ∃title.>, etc.
The reference ontology O is a first-order theory. It
contains, among others:

∀x.(Working Person(x) → (Thing(x) ∧
∃y.(String(y) ∧ Name(x , y))))

∀x.(Researcher(x) → Working Person(x))

Theory interpretations α1, α2 can be given as follows:

α1(person(p, n)) = Researcher(p) ∧ String(n) ∧
Name(p,n)

α1(author of(p, a)) = Researcher(p) ∧ Article(a) ∧
Author(a, p) ∧ ∃j .(Journal(j)

∧ Has Article(j , a))

α2(Article(x)) = Paper(x)

♦

We see a number of problems with this approach (and
therefore we will reformulate the example as a het-
erogeneous refinement on Page 7). First, allowing for
arbitrary sentence maps αi is simply too liberal. For
example, αi could map every sentence to true.9 It
seems more reasonable to use signature morphisms
and their induced sentence translation maps instead.
This approach, however, is less flexible in one aspect:
with the approach of (Schorlemmer & Kalfoglou 2008)
(using first-order logic), a predicate symbol p may be
mapped to a formula ϕ. However, this is usually bet-
ter captured by allowing for derived signature mor-
phisms (see (Sannella & Burstall 1983)), which here
are just signature morphisms into a conservative ex-
tension (e.g. an extension by the definition p(x)⇔ ϕ).
Secondly, and more importantly perhaps, there may
simply be no suitable common reference ontology at
hand. Rather, the common super-ontology should be
suitably constructed from O1 and O2, identifying cer-
tain concepts, while keeping others distinct, leading
to the concept of V-alignment discussed in the next
section. Another possibility is to compare the two
ontologies using a view, leading to the concept of re-
finement discussed on Page 6.

4 Heterogeneous Connection

Intuitively, the difference between ‘integrations’ and
‘connections’ is that in the former we combine two
ontologies O1 and O2 using a typically large and
previously-known reference ontology O. The models
of O are typically much richer than those of O1 and
O2. By contrast, connection of two ontologies is done
in such a way that the respective theories, signatures,
and models are kept disjoint, and a (usually small
and flexible) bridge theory formulated (in a bridge
language) over a signature that goes across the sort

9(Schorlemmer & Kalfoglou 2008) suggest to solve this problem
by a possible restriction to conservative translations; however, even
then the translation mapping every theorem in Oi to true and
every non-theorem to false still is a valid but useless example.

structure of the components is used to link together
the two ontologies. Using the general approach of
colimits, an overall connection ontology can be auto-
matically computed from the bridge theory and the in-
volved ontologies. Moreover, the models of this over-
all ontology are obtained as amalgamations of mod-
els of the individual ontologies — no new structure
is added (expect from new definitions, which however
can always be interpreted uniquely).

4.1 Connection through Alignments

4.1.1 V-Alignments

(Zimmermann et al. 2006) address the problem of
alignment without a common reference ontology.
Given ontologies O1 and O2, an interface (for
O1, O2)〈

Σ, σ1 : Σ−→Sig(O1), σ2 : Σ−→Sig(O2)
〉

specifies that (using informal but suggestive notation)

• concepts σ1(c) in O1 and σ2(c) in O2 are identi-
fied for each concept c in Σ, regardless of whether
the concepts have the same name or not, and

• concepts in O1 \ σ(Σ1) and O2 \ σ(Σ2) are kept
distinct, again regardless of whether they have
the same name or not.

The resulting common ontology O is not given a pri-
ori, but rather it is computed from the aligned ontolo-
gies via the interface. This computation is a pushout
in the sense of category theory, which in this case
is just a disjoint union with identification of specific
parts (namely those given through 〈Σ, σ1, σ2〉).

V-alignments can thus deal with basic alignment
problems, such as synonymy (identifying different
symbols with the same meaning) and homonymy
(separating (accidentally) identical symbols with dif-
ferent meaning)—see Figure 2.

{Woman,River Bank,Financial Bank,Human Being}

�

O

O1

-

O2

�

�

{Woman,Bank,Person}
�

{Woman,Bank,Human}
Σ

σ2
-�

σ1

=

{Woman,Person}

Figure 2: V-alignment: integration through interface
(dashed arrows mean definition links automatically
computed via colimits)

Note that alignments are encoded entirely into the
interface; finding an appropriate alignment (i.e. an
interface 〈Σ, σ1, σ2〉) is a different problem, compare
(Euzenat & Shvaiko 2007), and independent from the
chosen formal representation.

Example 6. In Figure 2, the interface 〈Σ, σ1, σ2〉
specifies that the two instances of the concept Woman
as well as Person and Human are to be identified. This
yields two concepts Woman and Human Being in the
push-out ontology O obtained along the dashed ar-
rows. Because Bank does not appear in the interface,
it also determines that the two instances of Bank are
to be understood as homonyms, and thus generates
two new distinct concepts. ♦

However, notion such as polysemy are typically un-
derstood to relate terms that have a different, but re-
lated meaning, and can thus not be dealt with by
simply identifying symbols or keeping them apart.
This problem can be solved, however, by considering

E-connections a general form of alignment (see (Kutz
et al. 2008)). Similarly, (Zimmermann et al. 2006)
themselves raise the criticism that V-Alignments do
not cover the case where a concept Woman in O1 is
aligned with a concept Person in O2: here, the result-
ing ontology should turn Woman into a subconcept of
Person. This is not directly possible with the pushout
approach.

4.1.2 W-Alignments

In order to solve this problem of V-Alignments, (Zim-
mermann et al. 2006) introduce W-Alignments. They
consist of two V-Alignments, using an intermediate
bridge ontology B. The latter can be used to spec-
ify subconcept relationships like Woman v Person as
mentioned above.

{Woman}

�

{Woman v Person}

�

{Person}

�

O1 B O2

Σ1

-�

Σ2

-
�

=

{Woman}

=

{Person}

Figure 3: W-alignment: integration through bridge
ontology

(Zimmermann et al. 2006) list the behaviour of
compositions as a weak point of this approach. How-
ever, we see as the main weak point the rather loose
coupling of O1 and O2; indeed, the bridge ontology
is something like a super-ontology of a sub-ontology
and hence can be anything. Nevertheless, an advan-
tage of W-alignments over semantic integrations into
a reference ontology remains: it is not possible to
map sentences into the integration ontology in a com-
pletely arbitrary fashion. In (Kutz et al. 2008), we
have shown that various kinds of alignments can be
analysed as certain ‘shapes’ of diagrams that can be
represented and reasoned with in Hets.

4.2 Connection through Interface and Col-
imit

The general idea of combination through an interface
by computing a colimit is shown in Fig 4. Here, Σ1

O

O1

-

B

6

O2

�

Σ1
c

-�

Σ2

-
�

c

Figure 4: Connection through interface and colimit

is a subsignature of ontology O1, Σ2 a subsignature
of ontology O2, B an interface formalised in a bridge
logic such as FOLms=, and O the colimit ontology
computed from the diagram.

Example 5 can be reformulated in this setting by
taking O1 to be the relational scheme formalisation,
O2 the DL knowledge base, and B the necessary first-
order axioms to achieve the desired reconciliation.
The ‘reference ontology’ is now obtained as a pushout.
The complete specification for this scenario is given
in Appendix B.2.

4.3 E-Connections

Heterogeneous knowledge representation was a ma-
jor motivation also for the design of ‘modular on-
tology languages’, such as DDLs (Borgida & Serafini

2003) and E-connections (Kutz et al. 2002, 2004). We
here concentrate on the latter. E-connections were
originally conceived as a versatile and computation-
ally well-behaved technique for combining logics, but
were subsequently quickly adopted as a framework for
the combination of ontologies in the Semantic Web
(Cuenca Grau, Parsia & Sirin 2008).

We here show how the combination of ontolo-
gies via such modular languages can be re-formulated
as structured heterogeneous ontologies, and indicate
how this idea can be generalised to the institutional
level.

The general idea behind this combination method
is that the interpretation domains of the connected
logics are interpreted by disjoint (or sorted) vocab-
ulary and interconnected by means of link relations.
The language of the E-connection is then the union
of the original languages enriched with operators ca-
pable of talking about the link relations.
E-connections, just as DLs, offer an appealing

compromise between expressive power and compu-
tational complexity: although powerful enough to
express many interesting concepts, the coupling be-
tween the combined logics is sufficiently loose for
proving general results about the transfer of decid-
ability: if the connected logics are decidable, then
their connection will also be decidable.

For lack of space, we can only roughly sketch the
formal definitions, and refer the reader to (Kutz et al.
2004) for details.

We assume that the languages L1 and L2 of two
ontologies O1 and O2 are pairwise disjoint. To form
a connection CE(O1, O2), fix a non-empty set E =
{Ej | j ∈ J} of binary relation symbols. The basic
E-connection language is then defined inductively
by enriching the respective languages with the basic
E-connection-operators 〈Ej〉1 , 〈Ej〉2, interpreting the
link relations.

Fig. 5 displays the connection of two ontologies, by
means of a single link relation E. Here, the concept
〈E〉1 ({a}) of O1 ‘corresponds’ to the nominal {a} of
ontology O2: it collects the set of all those points in
O1 that ‘can be seen’ from a (in O2) along the relation
E.

t

Domain 1 Domain 2

〈E〉1 ({a})
{a}

〈E〉2 (t)

E

Figure 5: A two-dimensional connection.

Formally, the semantics is as follows: a structure

M =
〈
W1,W2, EM = (EM

j)j∈J
〉
,

where Wi = (Wi, .
Wi) is an interpretation of Oi for

i ∈ {1, 2} and EM
j ⊆W1×W2 for each j ∈ J , is called

an interpretation for CE(O1, O2). Given concepts
Ci of ontology Oi, for i = 1, 2, denoting subsets of
Wi, the semantics of the basic E-connection operators
is

(〈Ej〉1 C2)M = {x ∈W1 | ∃y ∈ CM
2 (x, y) ∈ EM

j }

(〈Ej〉2 C1)M = {x ∈W2 | ∃y ∈ CM
1 (x, y) ∈ EM

j }

CE(Sm1 ,Sm2)

Sm1] Sm2

6

Sm1

-

Sm2

�

∅

-
�

S1

6

S2

6

Figure 6: E-connections as a structured heteroge-
neous theory

E-connections can be considered as many-sorted
heterogeneous theories: component ontologies can be
formulated in different logics, but have to be build
from many-sorted vocabulary, and link relations are
interpreted as relations connecting the sorts of the
component logics.

The main difference between distributed descrip-
tion logics (DDLs) (Borgida & Serafini 2003) and var-
ious E-connections now lies in the expressivity of the
‘link language’ L connecting the different ontologies.
While the link language of DDL is a certain sub-
Boolean fragment of many sorted ALC, the basic link
language of E-connections is ALCIms.

Such many-sorted theories can easily be repre-
sented in a diagram as shown in Fig. 6. Here, we
first (conservatively) obtain a disjoint union Sm

1]Sm
2

as a pushout, where the component ontologies have
been turned into sorted variants (using an institu-
tion comorphism from the single-sorted to the many-
sorted logic), and the empty interface guarantees that
no symbols are shared at this point. An E-connec-
tion KB in language CE(Sm

1 ,Sm
2) is then obtained as

a (typically not conservative) theory extension.
The idea to ‘connect’ logics can be elegantly gen-

eralised to the institutional level (compare Baader
& Ghilardi (2007) who note that their ‘connections’
are an instance of a more general co-comma con-
struction), but details have to remain sketchy here.
However, it should be clear from the above that our
Grothendieck institution approach is general enough
to formally capture such connections.

Note that this generalises the E-connections of
(Kutz et al. 2002), the DDLs of (Borgida & Serafini
2003), as well as the connections of Baader & Ghilardi
(2007) in two important respects: first, the institu-
tional level generalises the term-based abstract de-
scription languages (ADS) that are an abstraction of
modal and description logics, and the rather general
definition of bridge theory similarly abstracts from
the languages previously employed for linking that
were similarly inspired by modal logic.

While there are no implemented, specialised al-
gorithms available deciding satisfiability in E-connec-
tions (except limited support in the Pellet system
(Cuenca Grau, Parsia & Sirin 2008) which is currently
being added to Hets as a supported prover), semi-
decidable reasoning for more expressive E-connections
is provided by Hets through suitable translation by
a comorphisms in a supported logic.

5 Heterogeneous Refinements

Integrations and connections are essentially symmet-
ric combination techniques in the sense that the order
in which component ontologies participate in the over-
all combination is irrelevant. Rather, the difference
lies in the way ‘local’ signatures are mapped into the
overall signature. In contrast to this a heterogeneous
refinement is a asymmetric technique, stating that all

O′1
σ
- O′2

O1

θ 6

O2

c η6

Figure 7: A refinement Diagram.

axioms of a ‘coarser’ ontology are also true in a ‘finer’
(refined) one.

Definition 5. Given two ontologies O1 and O2 in the
same logic, O2 is called a refinement of O1 if there
is a theorem link O1

σ−→ O2 that follows from the
underlying development graph.

Now let ontologies O1 and O2 in logics LO1 and
LO2 be given, such that there is a logic L with co-
morphisms LO1

θ−→ L and LO2

η−→ L, where η is
model-theoretically conservative.

The translations of the ontologies along the comor-
phism are referred to as O1

′ and O2
′. We call O2 a

heterogeneous refinement of O1 if there is a theo-
rem link O′1

σ−→ O′2 that follows from the underlying
development graph. ♦

Proposition 1. For a heterogeneous refinement, any
O2-model can be translated to an O1-model, and more-
over, logical consequence is preserved along refine-
ment: for σ(θ(ϕ)) = η(ψ), O1 |= ϕ implies O2 |=
η(ψ).

A heterogeneous refinement as given in Def. 5 is
depicted in Fig. 7 (here, c denotes conservativity). In
HetCasl, this concept is addressed by the notion of
view creating a proof obligation, as discussed in more
detail in Appendix. A.

The notion of a heterogeneous refinement also
leads to the definition of heterogeneous sub-ontology.

Definition 6. We call an ontology O1 a (heteroge-
neous) sub-ontology of O2 iff O2 is a (heterogeneous)
refinement of O1.

The standard notion of sub-ontology as a subset of
the axioms (Haase et al. 2005, Kalyanpur et al. 2007)
is recovered in the homogeneous case if σ additionally
is an injection.

Moreover, our abstract definition of refinement en-
tails the common definition in software engineering:
consider O1 to be a specification of a program in an
algebraic specification language, and O2 its imple-
mentation in a programming language. Refinements
are a common problem in the world of ontologies as
well: establish whether a domain ontology is consis-
tent with respect to the knowledge represented in a
foundational ontology. Consider a domain ontology
written in OWL-DL that is expected to refine the
abstract knowledge given in Dolce, written in FOL.
In this case, the domain ontology should be a hetero-
geneous refinement of Dolce (or of a part of Dolce,
if one considers hiding).

5.1 From Relational Scheme to Ontology

Recall Example 5 of a semantic integration into a ref-
erence ontology. The kind of integration required here
can be dealt with much more elegantly as a hetero-
geneous refinement. Consider the HetCasl specifi-
cation given in Fig. 9. Here, Biblio DL is a DL on-
tology about bibliographical information, written in
a concrete syntax close to Manchester Syntax (Hor-
ridge et al. 2006), and Biblio RS is the scheme of a

Biblio DL′ �................. Biblio RS′

Biblio DL

def 6

Biblio RS

def6

Figure 8: A view from RelScheme to HetDL.

relational database intended to capture similar knowl-
edge. Assume we want to show that the ontology is
a refinement of the database schema, as illustrated in
Fig. 8. A view Biblio RS in DL is used for this pur-

logic DL
spec Biblio_DL =

Class: Researcher
SubclassOf: name some Thing

Class: Article
SubclassOf: author some Thing, title some Thing

Class: Journal
SubclassOf: name some Thing, hasArticle some Thing,

impactFactor some Thing
end

logic RelScheme
spec Biblio_RS =

Tables
person(key id:integer, name:string)
author_of(person, paper:integer)
paper(key id:integer,title:string,

published_in:integer)
journal(key id:integer,name:string,

impact_factor:float)
Relationships

author_of[person] -> person[id] one_to_many
author_of[paper] -> paper[id] one_to_many
paper[published_in] -> journal[id] one_to_many

end

logic CASL
view Biblio_RS_in_DL : Biblio_RS to

{ Biblio_DL with logic DL -> CASL
then %def

preds
journal(j,n,f:Thing) <=>

Journal(j) /\ name(j,n) /\ impactFactor(j,f);
paper(a,t,j:Thing) <=>

Article(a) /\ Journal(j) /\ hasArticle(j,a) /\
title(a,t);

author_of(p,a:Thing) <=>
Researcher(p) /\ Article(a) /\ author(p,a);

person(p,n:Thing) <=> Researcher(p) /\ name(p,n)
} = logic RelationalScheme -> CASL

end

Figure 9: Heterogeneous specification in HetCasl.

pose, stating that the ontology satisfies the relational
scheme axioms (referential integrity constraints). Of
course, this is not possible literally, but rather the
ontology is mapped to first-order logic (Casl) and
then definitionally (look at the %def) extended to
Biblio DL′ with a definition of the database tables
in terms of the ontology classes and properties. Also,
Biblio RS is translated to first-order logic, yielding
Biblio RS′, and the view expresses a theory mor-
phism from Biblio RS′ to Biblio DL′.

The involved signature and theory morphisms
live in the Grothendieck institution. Thus, we can
avoid the use of arbitrary maps αi as in (Schorlem-
mer & Kalfoglou 2008), and instead rely entirely on
(Grothendieck) signature morphisms. Actually, the
above view is not provable—but it is if an inverse of
the role hasArticle is introduced and used to restrict
the class Article.

5.2 From Ontology to Relational Scheme

Dually, assume we are given an ontology that is sup-
posed to logically describe a database scheme.

Biblio DL′- Biblio RS′

Biblio DL

def 6

Biblio RS

def6

Figure 10: A view from HetDL to RelScheme.

We again use Biblio_RS and Biblio_DL, as given
in Fig. 9. We now have a heterogeneous refinement
from Biblio_DL to Biblio_RS, as depicted in Fig. 10.
The rest of the discussion is analogous to the previ-
ous section, and hence left out. The specification of
this refinement containing the integrity constraints is
given in Appendix B.1.

6 Outlook and Future Work

We have introduced an abstract framework for the
study of structured heterogeneous ontologies, allow-
ing for a systematic analysis of conceptual and algo-
rithmic problems in heterogeneous environments that
were previously considered rather disparate. In par-
ticular, we have analysed in detail a specific example
heterogeneous ontology from the literature, consisting
of a bibliographical database and a related ontology.
We have shown that these ontologies can be hetero-
geneously combined in different ways: (1) via integra-
tion in a common reference ontology, which is known
beforehand, (2) via connection through a bridge the-
ory, which operates directly on the involved ontologies
and allows for the automatic construction of a com-
bined ontology via colimits, and (3) via refinement,
which provides the strongest relation between the on-
tologies: namely, that each bibliographical database
satisfying the given relational scheme’s integrity con-
straints also gives rise to a model of the ontology,
and vice versa. It is not surprising that this strong
combination via refinement was only possible after
extending the ontology in a suitable way, leading to
a better matching between the relational scheme and
the ontology.

We believe that these general patterns of ontol-
ogy combination can also be found in other exam-
ples, also involving completely different application
domains (and not necessarily being connected with
databases). Indeed, the structured reasoning support
that our approach allows has already been used to
answer questions that ‘standard’ automated reason-
ing can not tackle: the consistency of the first-order
version of the foundational ontology Dolce (refor-
mulated as a HetCasl specification) can be verified
by model-checking a view into a finite specification of
a model for Dolce.

Currently, we are working on integrating a tool for
the discovery of theory morphisms into the Heteroge-
neous Tool Set, which would allow (semi)-automatic
structuring of ontologies.

Acknowledgements

Work on this paper has been supported by the Vigoni
program of the DAAD, by the DFG-funded collabo-
rative research center SFB/TR 8 ‘Spatial Cognition’
and by the German Federal Ministry of Education
and Research (Project 01 IW 07002 FormalSafe).

We thank John Bateman, Mihai Codescu, Joana
Hois, and Lutz Schröder for fruitful discussions.

References

Adámek, J., Herrlich, H. & Strecker, G. (1990), Ab-
stract and Concrete Categories, Wiley, New York.

Alagić, S. & Bernstein, P. A. (2002), A Model The-
ory for Generic Schema Management, in ‘Proc. of
DBPL-01’, Vol. 2397 of LNCS, Springer, pp. 228–
246.

Baader, F. & Ghilardi, S. (2007), ‘Connecting Many-
Sorted Theories’, The Journal of Symbolic Logic
72(2), 535–583.

Bench-Capon, T. J. M. & Malcolm, G. (1999),
Formalising Ontologies and Their Relations, in
‘Proc. of DEXA-99’, Vol. 1677 of LNCS, Springer,
pp. 250–259.

Bidoit, M. & Mosses, P. D. (2004), Casl User Man-
ual, LNCS Vol. 2900 (IFIP Series), Springer.

Borgida, A. & Serafini, L. (2003), ‘Distributed De-
scription Logics: Assimilating Information from
Peer Sources’, Journal of Data Semantics 1, 153–
184.

Codescu, M. & Mossakowski, T. (2008), Heteroge-
neous colimits, in F. Boulanger, C. Gaston & P.-Y.
Schobbens, eds, ‘MoVaH’08 Workshop on Model-
ing, Validation and Heterogeneity’.

CoFI (The Common Framework Initiative) (2004),
Casl Reference Manual, LNCS Vol. 2960 (IFIP Se-
ries), Springer.

Cuenca Grau, B., Honavar, V., Schlicht, A. & Wolter,
F., eds (2007), 2nd International Workshop on
Modular Ontologies (WoMO-07), Vol. 315, CEUR
Workshop Proceedings, (K-CAP) Whistler, BC,
Canada.

Cuenca Grau, B., Horrocks, I., Kazakov, Y. & Sattler,
U. (2008), ‘Modular Reuse of Ontologies: Theory
and Practice’, J. of Artificial Intelligence Research
(JAIR) 31. To appear.

Cuenca Grau, B., Parsia, B. & Sirin, E. (2008), Ontol-
ogy Integration Using E-connections, in H. Stuck-
enschmidt & S. Spaccapietra, eds, ‘Ontology Mod-
ularization’, Springer. To Appear.

Diaconescu, R. (2002), ‘Grothendieck institutions’,
Applied Categorical Structures 10, 383–402.

Diaconescu, R. (2008), Institution-independent Model
Theory, Studies in Universal Logic, Birkhäuser.

Euzenat, J. & Shvaiko, P. (2007), Ontology Matching,
Springer, Heidelberg.

Goguen, J. A. (2005), ‘Data, Schema, Ontology and
Logic Integration’, Logic J. of the IGPL 13, 685–
715.

Goguen, J. A. (2006), Information Integration in In-
stitutions, in L. Moss, ed., ‘Jon Barwise Memorial
Volume’, Indiana University Press. To appear.

Goguen, J. A. & Burstall, R. M. (1992), ‘Institutions:
Abstract Model Theory for Specification and Pro-
gramming’, Journal of the ACM 39, 95–146.

Goguen, J. A. & Roşu, G. (2002), ‘Institution mor-
phisms’, Formal aspects of computing 13, 274–307.

Guerra, S. (2001), ‘Composition of Default Specifica-
tions’, J. Log. Comput. 11(4), 559–578.

Haase, P., Honavar, V., Kutz, O., Sure, Y. & Tamilin,
A., eds (2006), 1st International Workshop on
Modular Ontologies (WoMO-06), Vol. 232, CEUR
Workshop Proceedings, (ISWC) Athens, Georgia,
USA.

Haase, P., van Harmelen, F., Huang, Z., Stucken-
schmidt, H. & Sure, Y. (2005), A framework for
handling inconsistency in changing ontologies, in
‘Proc. of the 4th International Semantic Web Con-
ference (ISWC-05)’, Vol. 3729 of LNCS, Springer,
pp. 353–367.

Horridge, M., Drummond, N., Goodwin, J., Rector,
A., Stevens, R. & Wang, H. H. (2006), The Manch-
ester OWL Syntax, in ‘OWL: Experiences and Di-
rections’.

Horrocks, I., Kutz, O. & Sattler, U. (2006), The Even
More Irresistible SROIQ, in ‘Proc. of the 10th Int.
Conf. on Principles of Knowledge Representation
and Reasoning (KR2006)’, AAAI Press, pp. 57–67.

Kalyanpur, A., Parsia, B., Horridge, M. & Sirin, E.
(2007), Finding all Justifications of OWL DL En-
tailments, in ‘Proc. of ISWC/ASWC2007’, LNCS
Vol. 4825, Springer, pp. 267–280.

Konev, B., Lutz, C., Walther, D. & Wolter, F. (2008),
Formal properties of modularization, in H. Stuck-
enschmidt & S. Spaccapietra, eds, ‘Ontology Mod-
ularization’, Springer.

Kutz, O., Lutz, C., Wolter, F. & Zakharyaschev,
M. (2004), ‘E-Connections of Abstract Description
Systems’, Artificial Intelligence 156(1), 1–73.

Kutz, O. & Mossakowski, T. (2007), Modules in Tran-
sition: Conservativity, Composition, and Colim-
its, in ‘2nd Int. Workshop on Modular Ontologies
(WoMO-07)’. K-CAP, Whistler BC, Canada.

Kutz, O. & Mossakowski, T. (2008), Conservativity
in Structured Ontologies, in ‘Proc. of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI-
08)’, Patras, Greece. Forthcoming.

Kutz, O., Mossakowski, T. & Codescu, M. (2008),
Shapes of Alignments: Construction, Combination,
and Computation, in U. Sattler & A. Tamilin, eds,
‘Proc of the 1st Workshop on Ontologies: Reason-
ing and Modularity (WORM-08)’, CEUR-WS, Vol-
348, ESWC, Tenerife, Spain.

Kutz, O., Wolter, F. & Zakharyaschev, M. (2002),
Connecting abstract description systems, in ‘Proc.
of the 8th Conference on Principles of Knowledge
Representation and Reasoning (KR-02)’, Morgan
Kaufmann, pp. 215–226.

Mac Lane, S. (1998), Categories for the Working
Mathematician, 2nd edn, Springer, Berlin.

Madhavan, J., Bernstein, P., Domingos, P. & Halevy,
A. (2002), Representing and reasoning about map-
pings between domain models, in ‘Proc. of AAAI
2002’, Edmonton, Canada.

Mossakowski, T. (2002), Comorphism-based
Grothendieck logics, in ‘Mathematical Foun-
dations of Computer Science’, Vol. 2420 of LNCS,
Springer, pp. 593–604.

Mossakowski, T., Autexier, S. & Hutter, D.
(2006), ‘Development graphs—proof management
for structured specifications’, Journal of Logic and
Algebraic Programming 67(1–2), 114–145.

Mossakowski, T., Maeder, C. & Lüttich, K. (2007a),
The Heterogeneous Tool Set, in O. Grumberg &
M. Huth, eds, ‘TACAS 2007’, Vol. 4424 of LNCS,
Springer, pp. 519–522.

Mossakowski, T., Maeder, C. & Lüttich, K. (2007b),
The Heterogeneous Tool Set, in B. Beckert, ed.,
‘VERIFY 2007’, Vol. 259, CEUR-WS.

Sannella, D. & Burstall, R. (1983), Structured theo-
ries in LCF, in ‘Proc. 8th Colloq. on Trees in Alge-
bra and Programming’, Vol. 159 of LNCS, Springer,
pp. 377–391.

Sattler, U. & Tamilin, A., eds (2008), Workshop on
Ontologies: Reasoning and Modularity (WORM-
08), Vol. 348, CEUR Workshop Proceedings,
ESWC, Tenerife, Spain.

Schorlemmer, M. & Kalfoglou, Y. (2008), ‘Institu-
tionalising Ontology-Based Semantic Integration’,
Journal of Applied Ontology. . To appear.

Wölfl, S., Mossakowski, T. & Schröder, L. (2007),
Qualitative constraint calculi: Heterogeneous ver-
ification of composition tables, in ‘Proc. FLAIRS
2007’, pp. 665–670.

Zimmermann, A., Krötzsch, M., Euzenat, J. & Hit-
zler, P. (2006), Formalizing Ontology Alignment
and its Operations with Category Theory, in ‘Proc.
of FOIS-06’, pp. 277–288.

Appendix

A Heterogeneous Reasoning with Hets

A heterogeneous proof calculus based on development
graphs, as they have been defined earlier in this pa-
per, is implemented in the Heterogeneous Tool Set
Hets (see (Mossakowski et al. 2007a,b)). It supports
a multitude of logics, given as institutions, that can
be used in formal specification. Examples are many-
sorted first-order logic FOLms= with equality under-
lying Casl and the description logic SROIQ(D)
(and its sublogics EL andALC) underlyingOWL 1.1.
Several concrete syntaxes for OWL are supported, in-
cluding Manchester Syntax (Horridge et al. 2006) and
its extension to SROIQ(D). Moreover, relational
schemes, as well as QS5 (using syntax of the Casl
language) are supported.

Between many of the logics, comorphisms are de-
fined and implemented. For most of them, a comor-
phism into Casl exists, allowing heterogeneous spec-
ifications. A heterogeneous proof calculus (see (CoFI
(The Common Framework Initiative) 2004)) for de-
velopment graphs shifting proof obligations between
nodes into nodes is implemented, too.

To prove obligations of a node (= in a single
logic), several (first-order) FOL (SPASS, Darwin) and
(higher-order) HOL (Isabelle) provers are inte-
grated into Hets, enabling proof support for het-
erogeneously specified ontologies. The DL reasoner
Pellet is supported as a consistency checker for on-
tologies.

The development graph calculus integrated into
Hets can be used for all the integration, connection,
and refinement techniques for ontologies discussed in
this paper: the verification of semantic integrations as
well as refinements are directly supported. In the case
colimit computation is needed, as in W-alignments,
this can be calculated via Hets’ built-in colimit fea-
ture described in (Codescu & Mossakowski 2008),
that also allows the ‘approximation’ of colimits.

A specific example for such a heterogeneous, multi-
level reasoning is provided by the verification of the
RCC composition tables (Wölfl et al. 2007). Here,
the majority of proof obligations can be resolved by
various, fully automatic reasoners. However, a proof
obligation requiring the second-order theory of real
numbers needs an interactive proof in the Isabelle
prover.

B Heterogeneous Specifications in HetCasl

In the following, we present additional specifications
for the interested reader.

B.1 Specification: From Ontology to Rela-
tional Scheme

We give the specification for Section 5.2. The speci-
fication Biblio_DL is written in HetDL, a concrete
Syntax for SROIQ(D), that is very closely related to
the Manchester Syntax (Horridge et al. 2006). Our
language is almost self-explanatory, and follows the
naming conventions of OWL.

E.g., the stanza

Class: Researcher
SubclassOf: name some string

defines a class Researcher that is a subclass of all
Things having a name of type string.

Biblio_RS is written in RelScheme, see Exam-
ple 2. Following the keyword Tables, the signature
of a specification is defined. It consists of a set of
tables, each having columns of a particular data
type. In person(key id:pointer, name:string),
a table with the name person is defined, having
the columns id and name with id being the key
of this table. If key occurs more than once in a
table, we have a compound key. The sentences
following the keyword Relationships define re-
lations between different tables. The sentence
author_of[person] -> person[id] one_to_many
means that the column person of the table
author_of is in one_to_many relationship with the
column id of person.

The view Biblio_DL_in_RS is written in Casl.
The link between Biblio_DL and Biblio_RS is estab-
lished via several Casl sentences. Please note that
the view here goes into the opposite direction com-
pared to the one in Fig. 9.

logic DL
spec Biblio_DL =

Class: Researcher
SubclassOf: name some string

ObjectProperty: hasArticle
InverseOf: hasJournal

Class: Article
SubclassOf: author some Thing, title some string,

hasJournal some Journal

Class: Journal
SubclassOf: name some string,

hasArticle some Thing,
impactFactor some integer

end

logic RelScheme
spec Biblio_RS =

Tables
person(key id:pointer, name:string)
author_of(person, paper:pointer)
paper(key id:pointer,title:string,

published_in:pointer)
journal(key id:pointer,name:string,

impact_factor:integer)

Relationships
author_of[person] -> person[id] one_to_many

author_of[paper] -> paper[id] one_to_many
paper[published_in] -> journal[id] one_to_many

end

logic CASL
view Biblio_DL_in_RS : Biblio_DL to
{ Biblio_RS with logic RelScheme -> CASL
then %def
preds Researcher(x:pointer) <=>

(exists n:string; a:pointer.
person(x,n) /\ author_of(x,a));

Article(x:pointer) <=>
(exists t:string; j:integer.paper(x,t,j));

Journal(x:pointer) <=>
(exists n:string; i:float.journal(x,n,i));

name(x:pointer;n:string) <=>
person(x,n);

hasArticle(x,j:pointer) <=>
(exists n,t:string; i:integer .
journal(x,n,i) /\ paper(j,t,x));

hasJournal(j,x:pointer) <=>
(exists n,t:string; i:integer .
journal(x,n,i) /\ paper(j,t,x));

author(a,p:pointer) <=>
(exists t,n:string; p:pointer .
paper(a,t,p) /\ person(p,n));

title(a:pointer; t:string) <=>
(exists p:pointer . paper(a,t,p));

impact_factor(j:pointer;f:integer) <=>
(exists n:string . journal(j,n,f));

}
end

Such a specification can be parsed and analysed
by the tool Hets, which displays it as a development
graph as in Fig. 11.

Figure 11: Development graph in Hets.

In this picture, red arrows are theorem links, and
outlined thick black arrows are heterogeneous defini-
tion links. The picture shows the situation shown in
the diagram of Fig. 10.

To prove this view, the development graph cal-
culus has to be applied first. Then a prover needs
to be invoked on the upper left node, that by now
has become red: a node with proof obligations. The
proof obligations can e.g. be proved with the SPASS
theorem prover.

B.2 Specification: Integration through Inter-
face and Colimit

In this section, an example specification for a W-
alignment is given.
logic DL
spec Biblio_DL =

Biblio_DL_Sign
then

Class: Researcher
SubclassOf: name some string

ObjectProperty: hasArticle
InverseOf: hasJournal

Class: Article
SubclassOf: author some Thing, title some string,

hasJournal some Journal

Class: Journal
SubclassOf: name some string,

hasArticle some Thing,
impactFactor some integer

end

spec Bibli_DL_Sign =
Class: Researcher
DataProperty: name

Class: Article
ObjectProperty: author
DataProperty: title
ObjectProperty: hasJournal

Class: Journal
ObjectProperty: hasArticle
DataProperty: impactFactor

end

logic RelScheme
spec Biblio_RS_Sign =

Tables
person(key id:pointer, name:string)
author_of(person, paper:pointer)
paper(key id:pointer,title:string,

published_in:pointer)
journal(key id:pointer,name:string,

impact_factor:integer)
end

spec Biblio_RS =
Biblio_RS_Sign

then
Relationships

author_of[person] -> person[id] one_to_many
author_of[paper] -> paper[id] one_to_many
paper[published_in] -> journal[id] one_to_many

end

logic CASL
spec Interface =

{Biblio_RS_Sign with logic RelScheme -> CASL}
and

{Biblio_DL_Sign with logic DL -> CASL
with Thing |-> pointer}

then
forall a,j,p,x:pointer;n,t:string;f:integer

. journal(j,n,f) <=> Journal(j) /\ name(j,n)
/\ impactFactor(j,f)

. paper(a,t,j) <=> Article(a) /\ Journal(j)
/\ hasArticle(j,a) /\ title(a,t)

. author_of(p,a) <=> Researcher(p) /\ Article(a)
/\ author(p,a)

. person(p,n) <=> Researcher(p) /\ name(p,n)

. Researcher(x) <=> (exists q:pointer;m:string .
person(x,m) /\ author(x,q))

. Article(x) <=> (exists q:pointer;m:string .
paper(x,m,q))

. Journal(x) <=> (exists m:string;i:integer .
journal(x,n,i))

end

The picture in figure 12 shows the development

Figure 12: W-alignment in Hets.

graph of the above specification in Hets. In this
figure, the outlined thick black arrows are heteroge-
neous definition links, while the normal black arrows
are definition links. The picture shows the situation
depicted in the diagram of Fig. 3. Its colimit can be
automatically computed by Hets.

	Introduction
	Heterogeneous Ontologies and Structuring
	Structured Ontologies
	Heterogeneous Ontologies

	Heterogeneous Integration
	Heterogeneous Connection
	Connection through Alignments
	V-Alignments
	W-Alignments

	Connection through Interface and Colimit
	E-Connections

	Heterogeneous Refinements
	From Relational Scheme to Ontology
	From Ontology to Relational Scheme

	Outlook and Future Work
	Heterogeneous Reasoning with Hets
	Heterogeneous Specifications in HetCasl
	Specification: From Ontology to Relational Scheme
	Specification: Integration through Interface and Colimit

