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Abstract. There is a diversity of ontology languages in use, among them OWL,
RDF, OBO, Common Logic, and F-logic. Related languages such as UML
class diagrams, entity-relationship diagrams and object role modelling pro-
vide bridges from ontology modelling to applications, e.g. in software engi-
neering and databases. Also in model-driven engineering, there is a diversity
of diagrams: UML consists of 15 different diagram types, and SysML pro-
vides further types. Finally, in software and hardware specification, a variety
of formalisms are in use, like Z, VDM, first-order logic, temporal logic etc.

Another diversity appears at the level of ontology, model and specifi-
cation modularity and relations among ontologies, specifications and models.
There is ontology matching and alignment, module extraction, interpolation,
ontologies linked by bridges, interpretation and refinement, and combination
of ontologies, models and specifications.

The Distributed Ontology, Modeling and Specification Language (DOL)
aims at providing a unified metalanguage for handling this diversity. In par-
ticular, DOL provides constructs for (1) “as-is” use of ontologies, models and
specifications (OMS) formulated in a specific ontology, modelling or speci-
fication language, (2) OMS formalised in heterogeneous logics, (3) modular
OMS, (4) mappings between OMS, and (5) networks of OMS. This paper
sketches the design of the DOL language. DOL has been submitted as a pro-
posal within the OntoIOp (Ontology, Model, Specification Integration and
Interoperability) standardisation activity of the Object Management Group
(OMG).
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1. Introduction
Logical languages are used in several fields of computing for the development of for-
mal, machine-processable texts that carry a formal semantics. Among those fields



are 1) Ontologies formalising domain knowledge, 2) (formal) Models of systems,
and 3) the formal Specification of systems. Ontologies, models and specifications
will (for the purpose of this paper) henceforth be abbreviated as OMS.

An OMS provides formal descriptions which range in scope from domain
knowledge and activities (ontologies, models) to properties and behaviours of hard-
ware and software systems (models, specifications). While the use of OMS varies
considerably, there are two recurring challenges: reusability and interoperability.

Reusability is an issue because the development of OMS is typically done
manually by experts and, thus, an expensive process. Hence, it is desirable to be
able to reuse existing OMS during the development of new OMS. This presupposes
a framework that allows to build structured OMS by identifying modules and their
relationships to each other. For example, it requires the ability to combine two
existing OMS in a way that handles the namespaces of the OMS in an appropriate
way. Further, the reuse of an existing OMS often requires that the OMS is adapted
for its new purpose. For example, the adaption may require the extension of the
OMS by new axioms, or the extraction of a subset of the OMS, or the change of
its semantics from open world to closed world.

The interoperability challenge is closely related to the reusability challenge.
Since the development of OMS is not an exact science and is usually driven by
project specific requirements, two OMS that have been developed independently
will represent the same domain in different and, often, conflicting ways. They may
differ, for example, with respect to the terminology, or with respect to the defi-
nitions of the underlying concepts, or with respect to the perspective from which
they represent their domain. Thus, in a situation where two independently devel-
oped OMS are supposed to be reused as modules of a larger OMS, the differences
between these OMS will typically prevent them from working together properly.
Overcoming this lack of interoperability may require an alignment or even an in-
tegration of these OMS. This typically involves the identification of synonyms,
homonyms, and the development of bridge axioms, which connect the two OMS
appropriately.

Both the reusability and the interoperability challenges are amplified by the
diversity of OMS languages that are in use. For ontologies these include OWL,
RDF, OBO, Common Logic, and F-logic. Related languages such as UML class dia-
grams, entity-relationship diagrams and object role modelling provide bridges from
ontology modelling to applications, e.g., in software engineering and databases.
Also in model-driven engineering, there is a diversity of diagrams: UML consists
of 15 different diagram types, and SysML provides further types. Finally, in soft-
ware and hardware specification, a variety of formalisms are in use, like Z, VDM,
first-order logic, temporal logic etc. These languages do not just differ with re-
spect to their syntax, but with respect to their semantics and to their levels of
expressiveness.

To address both challenges we propose the Distributed Ontology, Modeling
and Specification Language (DOL). DOL is a metalanguage that enables the reuse,
integration, and alignment of existing OMS – even if they are written in different
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formalisms. The underlying methodological stance is that it would be futile to
attempt to develop yet another OMS language that would subsume all the others;
instead we have to accept the diversity of OMS languages and the diversity of
perspectives that are represented by different OMS. DOL provides a sound and
formal semantic basis for specifying structured OMS, which may reuse as modules
several existing OMS (possibly written in different languages) without requiring
any changes to these modules. Further, DOL allows to specify mappings between
different OMS (e.g., alignments and logical entailments).
In particular, DOL enjoys the following distinctive features:
• modular OMS and OMS networks are specially supported,
• OMS can not only be aligned (as in BioPortal [40] and NeON [17]), but also
combined along alignments,

• mappings between OMS (interpretation of theories, conservative extensions
etc.) are supported,

• it supports a variety of OMS languages (OWL, RDF, Common Logic, first-
order logic, CASL; planned: UML, relational database schema, F-logic, dis-
tributed description logics, and more),

• OMS can be translated to other OMS languages, and compared with OMS
in other languages,

• heterogeneous OMS (i.e., structured OMS with modules written in different
languages) can be built,

• OMS languages and OMS language translations are first-class citizens and
are available on the Web as linked data.

The paper is organised as follows: we first discuss the theoretical foundations of
DOL in Section 2, followed by a sketch of the DOL language itself in Section 3.
Section 4 briefly discusses the DOL-enabled, web-based OMS repository engine
Ontohub, and Section 5 concludes.

2. Foundations of the Distributed Ontology, Modeling and
Specification Language (DOL)

The Distributed Ontology, Modeling and Specification Language (DOL)1 aims
at providing a unified framework for (1) “as-is” use of OMS formulated in a
specific OMS language, (2) modular OMS, (3) mappings between OMS, (4) OMS
networks, and (5) OMS formalised in heterogeneous logics. Historically, the design
of DOL has inherited many ideas and features (1) discussed in the Workshop
on Modular Ontologies series [16, 15, 43, 24, 28, 45], (2) from the Alignment
API [10], (3) from CLEAR, ASL and specifications in an arbitrary institution [5,
47, 41, 42], and (4) from the CASL (Common Algebraic Specification Language)

1DOL has formerly been standardised within ISO/TC 37/SC 3. The OntoIOp (Ontology, Mod-
elling and Specification Integration and Interoperability) activity is now being continued at OMG,
see the project page at http://ontoiop.org.
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and HetCASL (CASL’s heterogeneous extension) languages, standardised in IFIP
WG 1.32 (Foundations of System Specification) [2, 30, 35, 25].

A library in DOL consists of modules formalised in basic OMS languages,
such as OWL (based on description logic) or Common Logic (based on first-order
logic with some second-order features). These modules are serialised in the existing
syntaxes of these languages in order to facilitate reuse of existing OMS. DOL adds
a meta-level on top, which allows for expressing heterogeneous OMS and mappings
between OMS.3 Such mappings include (heterogeneous) imports and alignments,
conservative extensions (important for studying OMS modules), and theory inter-
pretations (important for reusing proofs). Thus, DOL gives OMS interoperability
a formal grounding and makes heterogeneous OMS and services based on them
amenable to automated verification. The basic syntax and semantics of DOL has
been introduced in [38, 37], and the general theory of heterogeneous specifica-
tions for OMS in [27]. DOL uses internationalised resource identifiers (IRIs, the
Unicode-aware superset of URIs) for all entities of OMS libraries to make them
referenceable on the Web.

2.1. Foundations
The large variety of logical languages in use can be captured at an abstract level
using the concept of institutions [12]. This allows us to develop results indepen-
dently of the particularities of a logical system and to use the notions of institution
and logical language interchangeably throughout the rest of the paper.

The main idea is to collect the non-logical symbols of the language in signa-
tures and to assign to each signature the set of sentences that can be formed with
its symbols. For each signature, we provide means for extracting the symbols it
consists of, together with their kind. Signature morphisms are mappings between
signatures. We do not assume any details except that signature morphisms can
be composed and that there are identity morphisms; this amounts to a category
of signatures. Readers unfamiliar with category theory may replace this with a
partial order (signature morphisms are then just inclusions). See [37] for details of
this simplified foundation.

Institutions also provide a model theory, which introduces semantics for the
language and gives a satisfaction relation between the models and the sentences
of a signature. The main restriction imposed is the satisfaction condition, which
captures the idea that truth is invariant under change of notation (and enlargement
of context) along signature morphisms. This relies on two further components
of institutions: the translation of sentences along signature morphisms, and the
reduction of models against signature morphisms (generalising the notion of model
reduct known from logic).

2See http://ifipwg13.informatik.uni-bremen.de
3The languages that we call “basic” OMS languages here are usually limited to one logic and do
not provide meta-theoretical constructs.
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Definition 2.1. An institution [12] is a quadruple I = (Sign,Sen,Mod, |=) con-
sisting of the following:
• a category Sign of signatures and signature morphisms,
• a functor Sen : Sign→ Set4 giving, for each signature Σ, the set of sentences

Sen(Σ), and for each signature morphism σ : Σ → Σ′, the sentence transla-
tion map Sen(σ) : Sen(Σ)→ Sen(Σ′), where often Sen(σ)(ϕ) is written as
σ(ϕ),

• a functor Mod : Signop → Cat5 giving, for each signature Σ, the category
of models Mod(Σ), and for each signature morphism σ : Σ−→Σ′, the reduct
functor Mod(σ) : Mod(Σ′) →Mod(Σ), where often Mod(σ)(M ′) is writ-
ten as M ′|σ, and M ′|σ is called the σ-reduct of M ′, while M ′ is called a
σ-expansion of M ′|σ,

• a satisfaction relation |Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,
such that for each σ : Σ−→Σ′ in Sign the following satisfaction condition holds:

(?) M ′ |=Σ′ σ(ϕ) iff M ′|σ |=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ). �

It is also possible to complement an institution with a proof theory, introduc-
ing a derivability relation between sentences, formalised as an entailment system
[33]. In particular, this can be done for all logics that have so far been in use in
DOL.
Example. OWL signatures consist of sets of atomic classes, individuals, object
and data properties. OWL signature morphisms map classes to classes, individu-
als to individuals, object properties to object properties and data properties to
data properties. For an OWL signature Σ, sentences are subsumption relations
between classes or properties, membership assertions of individuals in classes and
pairs of individuals in properties, complex role inclusions, and some more. Sen-
tence translation along a signature morphism simply replaces non-logical symbols
with their image along the morphism. The kinds of symbols are class, individual,
object property and data property, respectively, and the set of symbols of a sig-
nature is the union of its sets of classes, individuals and properties. Models are
(unsorted) first-order structures that interpret concepts as unary and properties
as binary predicates, and individuals as elements of the universe of the structure,
and satisfaction is the standard satisfaction of description logics. This gives us an
institution for OWL.

Strictly speaking, this institution captures OWL 2 DL without restrictions
in the sense of [44]. The reason is that in an institution, the sentences can be
used for arbitrary formation of theories. This is related to the presence of DOL’s
union operator on OMS. OWL 2 DL’s specific restrictions on theory formation
can be modelled inside this institution, as a constraint on OMS. This constraint is

4Set is the category having all sets as objects and functions as arrows.
5Cat is the category of categories and functors. Strictly speaking, Cat is not a category but only
a so-called quasicategory, which is a category that lives in a higher set-theoretic universe.
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generally not preserved under unions or extensions. DOL’s multi-logic capability
allows the clean distinction between ordinary OWL 2 DL and OWL 2 DL without
restrictions.

In this framework, a basic OMS O over an institution I is a pair (Σ, E) where
Σ is a signature and E is a set of Σ-sentences. Given a basic OMS O, we denote
by Sig(O) the signature of the OMS. An OMS morphism σ : (Σ1, E1)→ (Σ2, E2)
is a signature morphism σ : Σ1 → Σ2 such that σ(E1) is a logical consequence of
E2. Here, in an arbitrary institution, notions like logical consequence, satisfiability
etc. can be defined in the standard way.

In the following we will need to assume existence of inclusions between signa-
tures and of their unions. These concepts can be captured in a categorical setting
using inclusion systems [11]. However, inclusion systems are too strong for our
purposes and therefore we will work under weaker assumptions.

Definition 2.2. An inclusive category [14] is a category having a broad subcate-
gory6 which is a partially ordered class with finite products and coproducts, called
intersection (denoted ∩) and union (denoted ∪) such that for each pair of objects
A,B, A ∪B is a pushout of A ∩B in the category.

A category has pushouts which preserve inclusions iff there exists a pushout

A

��

� � // A′

��
B
� � // B′

for each span where one arrow is an inclusion.
A functor between two inclusive categories is inclusive if it takes inclusions

in the source category to inclusions in the target category.

Definition 2.3. An institution is weakly inclusive if
• Sign is inclusive and has pushouts which preserve inclusions,
• Sen is inclusive, and
• each model category have a broad subcategory of inclusions.

Let I be a weakly inclusive institution. We say that I has differences, if there
is a binary operation \ on signatures, such that for each pair of signatures Σ1,Σ2,
we have:
1. Σ1 \ Σ2 ⊆ Σ1
2. (Σ1 \ Σ2) ∩ Σ2 = ∅
3. for any Σ with the properties 1. and 2. above, Σ ⊆ Σ1 \ Σ2.

6That is, with the same objects as the original category.
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2.2. Translations between Institutions
Several notions of translations between institutions can be introduced. The most
frequently used variant are institution comorphisms [13]. A comorphism from in-
stitution L1 to institution L2 maps L1-signatures to L2-signatures along a functor
Φ and Σ-sentences in L1 to Φ(Σ)-sentences in L2, for each L1-signature Σ, while
Φ(Σ)-models are mapped to Σ-models. Again, a satisfaction condition has to be
fulfilled. For institution morphisms [13], the directions of the translation of sen-
tences and models are reversed.

Definition 2.4. An institution comorphism from an institution I = (SignI , ModI ,
SenI , |=I) to an institution J = (SignJ ,ModJ ,SenJ , |=J) consists of a functor
Φ : SignI −→ SignJ , and two natural transformations β : ModJ ◦ Φ =⇒ModI
and α : SenI =⇒ SenJ ◦ Φ, such that

M ′ |=J
Φ(Σ) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

holds, called the satisfaction condition. �

Here, Φ(Σ) is the translation of the signature Σ from institution I to institution
J , αΣ(ϕ) is the translation of the Σ-sentence ϕ to a Φ(Σ)-sentence, and βΣ(M ′) is
the translation (or perhaps better: reduction) of the Φ(Σ)-modelM ′ to a Σ-model.
The naturality of α and β mean that for each signature morphism σ : Σ → Σ′ in
I the following squares commute:

SenI(Σ)

SenI(σ)
��

αΣ // SenJ(Φ(Σ))

SenJ (Φ(σ))
��

ModJ(Φ(Σ′))
βΣ′ //

ModJ (Φ(σ))
��

ModI(Σ′)

ModI(σ)
��

SenI(Σ′)
αΣ′
// SenJ(Φ(Σ′)) ModJ(Φ(Σ))

βΣ

// ModI(Σ)

Definition 2.5. An institution morphism from an institution I = (SignI , ModI ,
SenI , |=I) to an institution J = (SignJ ,ModJ ,SenJ , |=J) consists of a functor
Φ : SignI −→ SignJ , and two natural transformations β : ModI =⇒ModJ ◦ Φ
and α : SenJ ◦ Φ =⇒ SenI , such that

M |=I
Σ αΣ(ϕ)⇔ βΦ(Σ)(M) |=J

Φ(Σ) ϕ.

holds, called the satisfaction condition.

Mappings of institutions are split along the following dichotomies:
• translation versus projection: a translation embeds or encodes a logic into an-
other one, while a projection is a forgetful operation (e.g. the projection from
first-order logic to propositional logic forgets predicates with arity greater
than zero). It is an interesting informal observation that translations can be
formalised as institution comorphisms, and projections as institution mor-
phisms.
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• plain mapping versus simple theoroidal mapping [13]: while a plain mapping
needs to map signatures to signatures, a (simple) theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatisation of a transitivity predicate for properties.
Mappings can also be classified according to their accuracy; see [36] for de-

tails. Sublogics are the most accurate mappings: they are syntactic subsets. Em-
beddings come close to sublogics, like injective functions come close to subsets. A
mapping can be faithful in the sense that logical consequence (or logical deduction)
is preserved and reflected, that is, inference systems and reasoning engines for the
target logic can be reused for the source logic (along the mapping). (Weak) exact-
ness is a technical property that guarantees this faithfulness even in the presences
of OMS structuring operations [4].

2.3. A Graph of Logic Translations
Figure 1 is a revised and extended version of the graph of logics and translations
introduced in [36]. New nodes include UML class diagrams, OWL-Full (i.e. OWL
with an RDF semantics instead of description logic semantics), and Common Logic
without second-order features (CL−). We have defined the translations between
most of these logics in earlier publications [38, 36]. The definitions of the DOL
conformance of some central standard OMS languages and translations among
them will be given as annexes to the standard and published in an open registry,
which is also the place where the remaining definitions will be maintained.

3. The Language DOL
3.1. DOL Syntax and Semantics
The DOL language is not “yet another OMS language”, but a metalanguage for
expressing relations between OMS. Therefore, any OMS written in any conforming
OMS language also is a DOL OMS. Therefore, when working with DOL users can
reuse OMS as they are, no changes are required.
DOL provides abstract syntax categories for:
1. OMS (ontologies, models and specifications). Basic OMS are OMS that are

written in some OMS language (e.g., OWL or CASL). A modular or struc-
tured OMS is written in a modular way, with the help of DOL structuring
operations. A heterogeneous OMS is a modular OMS that involves modules,
which are written in different OMS languages. The semantics of OMS is given
by a signature and a class of models. In some cases, we can additionally pro-
vide a theory-level semantics of OMS, as a signature and a class of sentences
that, if it exists, agrees with the model-level semantics (that is, the model
class is equal to the class of models satisfying the theory). We call an OMS
flattenable if it has a theory-level semantics and elusive if it only admits a
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Schema.org

Figure 1. The current logic translation graph for DOL-
conforming languages

model-level semantics. Whether an OMS is flattenable can be decided based
on the structuring operations on OMS, as follows:

: Flattenable OMS: basic OMS are flattenable; if all their components
OMS are flattenable, then the following operations on OMS yield flat-
tenable OMS: extension, union, translation, interpolate/forget, extract,
reference, qualification, combination.

: Elusive OMS: the reduction, minimisation, or maximisation of an OMS
is elusive; further, any OMS containing an elusive OMS is elusive.7

For detailed definitions of these types of OMS, see Section 3.2.
2. OMS mappings. They denote relations between two OMS or OMS networks,

typically along a signature morphism. Some mappings may also involve other
OMS or other signatures. Examples of OMS mappings are interpretations
(specifying a logical consequence relationship between OMS), equivalences of
OMS (specifying that their model classes are in bijective correspondence),
conservative extensions (between OMS and their modules), OMS alignment.
They are presented in Section 3.3.

3. Networks of OMS. Networks are graphs with nodes labelled with OMS and
edges labelled with OMS mappings. The edges show how two OMS are inter-
linked. The rationale behind networks is that they provide a way to specify

7Note that extension, union, translation, reference, qualification and combination are defined for
flattenable and elusive OMS, while interpolate/forget and extract are only defined for flattenable
OMS.
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or model complex distributed systems (or domains), where a single OMS
would become too complex (this especially can be the case if the OMS are
formulated in different OMS languages). Instead, the different OMS of the
network provide different viewpoints on the system, while their compatibility
is ensured via mappings. Networks are discussed in Section 3.4.

4. Libraries of OMS. OMS, mappings and networks are organised in libraries.
A library consists of a list of declarations involving (possibly modular and/or
heterogeneous) OMS. These declarations can be definitions (assigning a name
to an OMS, OMS mapping or network of OMS) and qualifications of the
current language, logic and/or serialisation. This is detailed in Section 3.5.
The semantics of DOL is based on a fixed (but in principle arbitrary) logic

graph. A logic graph is given by a collection of institutions, institution morphisms
and institution comorphisms (serving as logics, logic reductions and logic trans-
lations). Moreover, some of the institution comorphisms are marked as default
translations and some of the institution morphisms are marked as default projec-
tion (but only at most one between a given source and target institution).

We assume that for each institution in the logic graph there is a trivial
signature ∅ with model class M∅ and such that there exists a unique signature
morphism from ∅ to any signature of the institution. Moreover we assume the
existence of a designated error logic in the graph, and a partial union operation
on logics, denoted

⋃
: L1

⋃
L2 = (L, ρ1 : L1 → L, ρ2 : L2 → L), when defined.

3.2. Modular and Heterogeneous OMS
Modular and heterogeneous OMS are generated by the following grammar, where
Σ is a signature, ∆ is a set of sentences over Σ, σ a signature morphism, I an
institution, ρ an institution comorphism and µ an institution morphism8:
OMS ::= 〈I,Σ,∆〉

| IRI

| OMS and OMS | OMS then OMS

| OMS with σ | OMS with translation ρ

| OMS reveal Σ | OMS hide Σ | OMS hide along µ

| OMS keep Σ [keep I] | OMS keep I | OMS forget Σ [keep I]

| OMS extract Σ | OMS remove Σ
| OMS select 〈Σ,∆〉 | OMS reject 〈Σ,∆〉
| minimize OMS | maximize OMS

| combine Network

The semantics of an OMS O has four components:
• the institution of O, denoted Inst(O),
• the signature of O, denoted Sign(O) (which is a signature in Inst(O)),
• the models of O, denoted Mod(O) (which is a class of models over Sign(O)),

8This is a mathematically abstracted version of DOL. In reality, signatures are represented by
symbol sets, and signature morphisms by symbol maps. The details of passing from symbol sets
(resp. maps) to signatures (resp. signature morphisms) are left out here. Also, we have left out
OMS bridges, since their design is still being discussed.
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• the axioms of O, denoted Ax(O) (which is a set of sentences over Sign(O)).9

For elusive OMS, Ax(O) is undefined. For flattenable OMS, Mod(O) can be
obtained as Mod(O) = {M ∈Mod(Sign(O)) |M |= Ax(O)}.

In the following we discuss the different kinds of (possibly modular and/or
heterogeneous) OMS.

3.2.1. Basic OMS

A basic OMS O written inline, in a conforming OMS language and serialisation.
The semantics is inherited from the OMS language I10 and results in a theory
〈Σ,∆〉 (therefore, for simplicity, in the syntax above, we have identified the basic
OMS with 〈I,Σ,∆〉). O can also be an OMS fragment, which means that some of
the symbols or axioms may refer to symbols declared outside O (i.e. in an imported
OMS). This is mainly used for extensions and equivalences. Here are two sample
ontologies in OWL (using Manchester syntax) and Common Logic (using CLIF):
Class: Woman EquivalentTo: Person and Female

ObjectProperty: hasParent

(cl-module PreOrder

(forall (x) (le x x))

(forall (x y z) (if (and (le x y) (le y z)) (le x z))))

Formally,
• Inst(I,Σ,∆) = I
• Sign(I,Σ,∆) = Σ
• Mod(I,Σ,∆) = {M ∈Mod(Σ) |M |= ∆}
• Ax(I,Σ,∆) = ∆.

3.2.2. IRI reference

An IRI reference to an OMS existing on the Web11, possibly abbreviated using
prefixes.12 For example:
<http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl>

or alternatively

9The theory of O, written, Th(O), is the closure of Ax(O) under logical entailment. Note,
however, that throughout the text we use ‘theory’ also more informally as denoting some set of
axioms in a particular signature and logic.
10I is normally determined by the context of the enclosing library and passed around as an
additional parameter of the semantics. For simplicity, here we let I become part of the basic
OMS.
11Note that not all OMS can be downloaded by dereferencing their IRIs. Implementing a cata-
logue mechanism in DOL-aware applications might remedy this problem.
12Some of the following listings abbreviate IRIs using prefixes but omit the prefix bindings for
readability.
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%prefix(

co-ode: <http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/> )%

co-ode:pizza.owl

The semantics of such an IRI reference would require a global environment map-
ping IRIs to (semantics of) OMS. However, for simplicity, we omit the global
environment (and therefore also the semantics of IRI references) here.

3.2.3. Extension

An extension of an OMS by new symbols and axioms, written O1 then O2, where
O2 is an OMS (fragment) in a conforming OMS language. The resulting signature
is that of O1, augmented with the symbols in O2. A model of an extension OMS is a
model of this signature, that satisfies the axioms on O2 and is (when appropriately
reduced) a model of O1. An extension can optionally be marked as conservative
(%mcons or %ccons after the “then”). The semantics is that each O1-model must
have at least one expansion to the whole extension O1 then O2 (for %mcons) resp.
that each logical consequence of O1 then O2 is already one of O1 if it is over the
signature of O1 (for %ccons). In case that O2 does not introduce any new symbols,
the keyword %implied can be used instead of %ccons or %mcons; the extension
then merely states intended logical consequences. The keyword %def stands for
definitional extensions. This is similar to %mcons, but the model expansion must
always exist uniquely. The following OWL ontology is an example for the latter:
Class Person

Class Female

then %def

Class: Woman EquivalentTo: Person and Female

The semantics of O = O1 then O2 is
• Inst(O) = Inst(O1) = InstO1(O2)
• Sign(O) = Sign(O1) ∪ SignO1(O2)
• Mod(O) = {M ∈Mod(Sign(O)) |M |Sign(Oi) ∈Mod(Oi), for i = 1, 2}
• Ax(O) = Ax(O1) ∪AxO1(O2)

where O2 is analysed in the context of previous declarations in O1, as indicated
by adding an index in its semantics.

3.2.4. Union

A union of two self-contained OMS (not fragments), written O1 and O2. Models
of this union are those models that are (perhaps after appropriate reduction)
models of both O1 and O2. For example, the class of commutative monoids can
be expressed as
algebra:Monoid and algebra:Commutative
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Forming a union of OMS is a particularly common operation in the RDF logic,
where it is known as merging graphs [18, section 0.3]; however, the RDF language
provides no explicit syntax for this operation. When multiple RDF ontologies
(“graphs”) contain statements about the same symbol (“resource”), i.e., syntacti-
cally, triples having the same subject, the effect is that in the merged graph the
resource will have all properties that have previously been stated about it sepa-
rately. Different kinds of properties, e.g. multilingual labels, geodata, or outgoing
links to external graphs, are often maintained in different RDF graphs, which are
then merged; consider the following excerpt:
{ :OVGU rdfs:label "Otto-von-Guericke-Universität Magdeburg"@de . } and

{ :OVGU geo:lat "52.1403"^^xsd:float . } and

{ :OVGU owl:sameAs13

<http://de.dbpedia.org/page/OvGU> . }

The semantics of O = O1 and O2 is
• Inst(O) = I where Inst(O1)

⋃
Inst(O2) = (I, (Φ1, α1, β1) : Inst(O1) →

I, (Φ2, α2, β2) : Inst(O2)→ I)
• Sign(O) = Φ1(Sign(O1)) ∪ Φ2(Sign(O2))
• Mod(O) = {M ∈Mod(Sign(O)) | βΣi

(M |Φi(Sign(Oi))) ∈Mod(Oi), for i =
1, 2}
• Ax(O) = α1(Ax(O1)) ∪ α2(Ax(O2)).

3.2.5. Translation

A translation of an OMS to a different signature (written O with σ, where σ is
a signature morphism) or into some OMS language (written O with translation
ρ, where ρ is an institution comorphism). For example, we can combine an OWL
ontology with a first-order axiom (formulated in Common Logic) as follows:
logic OWL : {

ObjectProperty: isProperPartOf

Characteristics: Asymmetric

SubPropertyOf: isPartOf }

with translation OWL22CommonLogic

then

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))

Note that OWL can express transitivity, but not together with asymmetry.
The semantics of O = O′ with σ is
• Inst(O) = Inst(O′)
• Sign(O) = Σ′ where σ : Sign(O′)→ Σ′
• Mod(O) = {M ∈Mod(Σ′) |M |σ ∈Mod(O′)}

13While owl:sameAs is borrowed from the vocabulary of OWL, it is commonly used in the RDF
logic to link to resources in external graphs, which should be treated as if their IRI were the
same as the subject’s IRI.

13



• Ax(O) = σ(Ax(O′)).

The semantics of O = O′ with translation ρ is
• Inst(O) = I, where ρ = (Φ, α, β) : Inst(O′)→ I
• Sign(O) = Φ(Sign(O))
• Mod(O) = {M ∈Mod(Sign(O)) | βSign(O)(M) ∈Mod(O′)}
• Ax(O) = αSign(O)(Ax(O′)).

3.2.6. Reduction

A reduction of an OMS to a smaller signature Σ is written O reveal Σ. Alterna-
tively, it can be written O hide Σ, where Σ is the set of symbols to be hidden (i.e.
this is equivalent to O reveal Sig(O)\Σ). The effect is an existential quantification
over all hidden symbols. For example, when specifying a group in sorted first-order
logic, using the CASL language,
sort Elem

ops 0: Elem; __+__: Elem * Elem -> Elem; inv: Elem -> Elem

forall x, y, z : Elem

. 0 + x = x

. x + (y + z) = (x + y) + z

. x + inv(x) = 0

reveal Elem, 0, __+__

revealing everything except the inverse operation inv results in a specification of
the class of all monoids that can be extended with an inverse operation, i.e. the
class of all groups with inverse left implicit.
Here is an example of hiding:
ontology Pizza = %% a simplified remake of the Pizza ontology [19]

Individual: TomatoTopping

Individual: MozzarellaTopping DifferentFrom: TomatoTopping

ObjectProperty: hasTopping

Class: VegetarianTopping

EquivalentTo: { TomatoTopping, MozzarellaTopping, ... }

Class: VegetarianPizza SubClassOf: some hasTopping VegetarianTopping

...

end

ontology Pizza_hide_VegetarianTopping =

Pizza hide VegetarianTopping

end

A reduction to a less expressive logic is written O hide along µ, where µ is an
institution morphism. This is a common operation in TBox/ABox settings, where
an ontology in an expressive language provides the terminology (TBox) used in
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assertions (ABox) stated in a logic that is less expressive but scales to larger data
sets; OWL DL (whose logic is SROIQ) vs. RDF is a typical language combination:
ontology TBoxABox =

Pizza hide along OWL22RDF

then logic RDF : {

:myPizza :hasTopping

[ a :TomatoTopping ], [ a :MozzarellaTopping ] .

}

The semantics of O = O′ reveal Σ′ is
• Inst(O) = Inst(O′)
• Sign(O) = Σ′
• Mod(O) = {M |ι |M ∈Mod(O′)} where ι : Σ′ → Sign(O′) is the inclusion
• Ax(O) is undefined.
The semantics of O = O′ hide Σ′ is

• Inst(O) = Inst(O′)
• Sign(O) = Sign(O′) \ Σ′
• Mod(O) = {M |ι | M ∈ Mod(O′)} where ι : Sign(O′) \ Σ′ → Sign(O′) is
the inclusion

• Ax(O) is undefined.
The semantics of O = O′ hide along µ is

• Inst(O) = I where µ = (Φ, α, β) : Inst(O)→ I
• Sign(O) = Φ(Sign(O′))
• Mod(O) = {βSign(O′)(M) |M ∈Mod(O′)}
• Ax(O) is undefined.

3.2.7. Filtering

A filtering O select 〈Σ,∆〉, which selects those sentences from O that have sig-
nature Σ, plus those in ∆ (where ∆ is a subset Ax(O)). It can also be written
O reject 〈Σ,∆〉, where Σ is the set of symbols and ∆ the set of axioms to be
hidden. For example, we can select all axioms of Galen14 involving Drugs, Joints,
or Bodyparts by:
logic OWL

ontology myGalen =

<http://example.org/GALEN/galen.owl>

select Drugs, Joints, Bodyparts

end

The semantics of O = O′ select 〈Σ,∆〉 is defined only if Σ ⊆ Sign(O) and ∆ ⊆
Ax(O), and in that case, it is given by

14We assume that GALEN is available as an OWL ontology.
15



• Inst(O) = Inst(O′)
• Sign(O) = Σ′ where Σ′ is the smallest signature with Σ ⊆ Σ′ and ∆ ⊆

Sen(Σ)15

• Ax(O) = (Ax(O′) ∩ Sen(Sign(O))) ∪∆
• Mod(O) is the class of all Ax(O)-models.

The semantics of O = O′ reject (Σ,∆) is
• Inst(O) = Inst(O′)
• Sign(O) = Sign(O′) \ Σ
• Ax(O) = Ax(O′) ∩ Sen(Sign(O)) \∆
• Mod(O) is the class of all Ax(O)-models.

3.2.8. Interpolation

An approximation [31] (or technically, uniform interpolation) of an OMS, either
in a subsignature or a sublogic (written O keep Σ, O keep Σ keep L or O keep L,
where Σ is a signature and L is a logic). The effect is that sentences not expressible
in Σ (resp. L) are weakened or removed, but the resulting theory still has the same
consequences, as fas as these are expressible in Σ (and/or L). Technically, this is
a uniform interpolant [46, 32]. For example, we can interpolate the first-order
DOLCE mereology in OWL:16

DOLCE_Mereology keep OWL

Dually, O forget Σ or O forget Σ keep L interpolates O with the signature Sig(O)\
Σ, i.e. Σ specifies the symbols that need to be left out (and optionally, L specifies
a sublogic that needs to be targeted). Cf. the notion of forgetting in [46, 32]. For
example,
Pizza forget VegetarianTopping

This has both a model-theoretic and a theory-level semantics, i.e., it yields a
theory in the reduced signature (without VegetarianTopping). In contrast, Pizza
hide VegetarianTopping has only a model-level semantics (see also the comparison
in section 3.2.12).
The semantics of O = O′ keep Σ keep I is
• Inst(O) = I and (Φ, α, β) : Inst(O′)→ I is the default projection (in case I

is missing, it is the identity on Inst(O′))
• Sign(O) = Φ(Σ)
• Ax(O) = α−1

Sign(O′)(Ax(O′)•) ∩ SenI(Sign(O))17, i.e. that part of Ax(O′)
that can be expressed in the smaller signature and logic

• Mod(O) is the class of Ax(O)-models

15If this smallest signature does not exist, the semantics is undefined.
16Interpolants need not always exist, and even if they do, tools might only be able to approximate
them.
17In practice, one looks for a finite subset that still is logically equivalent to this set. Note that
∆• is the set of logical consequences of ∆, i.e. ∆• = Th(∆).
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The semantics of O forget Σ′ keep I is the same as the semantics of
O keep (Sign(O) \ Σ′) keep I.

3.2.9. Extraction

A module extracted from an OMS, written O extract Σ, where Σ is a sub-signature
of Sig(O). The extracted module is a subOMS of O with signature larger than (or
equal to) Σ, such that O is a conservative extension of the extracted module.
Intuitively, a module (in the sense of module extraction) is a small sub-OMS that
says the same about Σ as the OMS O itself. For example, we can extract from
GALEN a module referring to drugs, joints and body parts:

logic OWL

ontology myGalen =

<http://example.org/GALEN/galen.owl>

extract Drugs, Joints, Bodyparts

end

(This example is continued in section 3.3.5).

The semantics of O = O′ extract Σ is
• Inst(O) = Inst(O′)
• Sign(O) = Σ ∪ Σ′
• Ax(O) = ∆′
• Mod(O) is the class of Ax(O)-models

where 〈Σ′,∆′〉 is the smallest depleting Σ-module [22], i.e. the smallest18 sub-
theory 〈Σ′,∆′〉 of (Sign(O′),Ax(O′)) such that the following model-theoretic in-
separability holds

Ax(O′) \∆′ ≡Σ′∪Σ ∅.
This means intuitively that Ax(O′) \ ∆′ cannot be distinguished from ∅ (what
Σ′ ∪ Σ concerns) and formally that

{M |Σ′∪Σ |M ∈Mod(Sign(O′)),M |= Ax(O′) \∆′}
= {M |Σ′∪Σ |M ∈Mod(Sign(O′))}.

Dually, O remove Σ extracts w.r.t. the signature Sig(O) \ Σ,19 i.e. the semantics
is given by that of O extract Sig(O) \ Σ.

18If the smallest such sub-theory does not exist, the semantics is undefined. In [22], it is shown
that it does exist in usual institutions.
19Note that the resulting module can still contain symbols from Σ, because the resulting signature
may be enlarged.

17



3.2.10. Combination

A combination of OMS, written combine N , where N is a network. The simplest
example of a combination is a disjoint union (we here translate OWL OMS into
many-sorted OWL in order to be able to distinguish between different universes of
individuals):
ontology Publications1 =

Class: Publication

Class: Article SubClassOf: Publication

Class: InBook SubClassOf: Publication

Class: Thesis SubClassOf: Publication

...

ontology Publications2 =

Class: Thing

Class: Article SubClassOf: Thing

Class: BookArticle SubClassOf: Thing

Class: Publication SubClassOf: Thing

Class: Thesis SubClassOf: Thing

...

logic MS-OWL

network Publications_Network =

1 : Publications1 with translation OWL2MS-OWL,

2 : Publications2 with translation OWL2MS-OWL

end

ontology Publications_Combined =

combine

Publications_Network

%% implicitly: Article 7→ 1:Article ...

%% Article 7→ 2:Article ...

end

If mappings or alignments are present, the semantics of a combination is a quotient
of a disjoint union (symbols related along the edges are identified). Technically,
this is a colimit, see [48, 7]. An example for this is given along with the examples
for alignments below.
The semantics of O = combine N is
• Inst(O) = I
• Sign(O) = Σ, where (I,Σ, {µi}i∈|G|) is the colimit of the graph G given by
the semantics of N
• Ax(O) = ∪i∈|G|µi(Ax(Oi)), where Oi is the OMS label of the node i in G
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• Mod(O) = {M ∈ Mod(Σ) | M |µi
∈ Mod(Oi), i ∈ |G|}, where Oi is the

OMS label of the node i in G.

3.2.11. Minimisation

Aminimisation of an OMS imposes a closed-world assumption on part of the OMS.
It forces the non-logical symbols declared in O to be interpreted in a minimal way.
This is written minimize { O }. Symbols declared before the minimised part are
considered to be fixed for the minimisation (that is, we minimise among all models
with the same reduct). Symbols declared after the minimisation can be varied. This
is borrowed from circumscription [29, 3]. Alternatively, the non-logical symbols to
be minimised and to be varied can be explicitly declared: O minimize Σ1 vars Σ2.
For example, in the following OWL theory, B2 is a block that is not abnormal,
because it is not specified to be abnormal, and hence it is also on the table.
Class: Block

Individual: B1 Types: Block

Individual: B2 Types: Block DifferentFrom: B1

then minimize {

Class: Abnormal

Individual: B1 Types: Abnormal }

then

Class: OnTable

Class: BlockNotAbnormal EquivalentTo:

Block and not Abnormal SubClassOf: OnTable

then %implied

Individual: B2 Types: OnTable

The semantics of O = minimize O′ is
• Inst(O) = Inst(O′)
• Sign(O) = Sign(O′)
• Mod(O) = {M ∈Mod(O′) |M is minimal in Mod(O′)}
• Ax(O) is undefined.

Note that for minimality we need the inclusions in model categories. Dually to
minimisations, there are also maximisations.

3.2.12. Hide vs. Remove vs. Forget vs. Reject

We have four ways of removing the class VegetarianTopping from the ontology
Pizza using the keywords hide, remove, forget, and reject, respectively. Table 1
illustrates some of the connections between (3.2.6)–(3.2.9).

Using hiding, we keep the model class of Pizza, but just remove the inter-
pretation of VegetarianTopping from each model. Note that the resulting ontology
has
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VegetarianPizza SubClassOf:

Annotations: dol:iri (*)

some hasTopping { TomatoTopping, MozzarellaTopping, ... }

as a logical consequence. This is also a consequence of the corresponding uniform
interpolant

Pizza forget VegetarianTopping

which captures the theory of Pizza hide VegetarianTopping. Note that there is
a subtle difference between (model-theoretic) hiding and (consequence-theoretic)
forgetting: a model satisfying the theory of O hide Σ might itself not be a model of
O hide Σ. In examples involving “keep L”, the uniform interpolant can be weaker
than the hiding, because it is only required to have the same logical consequences
in some language L, and a formula like (*) might not be a formula of L. Also,
an extracted module does not contain (*), because it only selects a subontology,
and Pizza does not contain (*). Finally, Pizza reject VegetarianTopping simply
drops all sentences involving VegetarianTopping, and therefore also consequences
like (*) are lost.

Note that while forget/keep and hide/reveal both work w.r.t. smaller signa-
tures and sublogics, remove/extract and select/reject do not work for sublogics.
This is because remove/extract must always respect the conservative extension
property, which may not be possible when projecting to a sublogic. And if conser-
vativity cannot be guaranteed, then forget/keep can be used in any case. In the
case of select/reject, it is unclear what selecting of a sublogic should bring other
than projecting to the sublogic using hide along.

hide/reveal remove/extract forget/keep select/reject
semantic
background

model reduct conservative
extension

uniform
interpolation

theory
filtering

relation to
original

interpretable subtheory interpretable subtheory

approach model level theory level theory level theory level
type of OMS elusive flattenable flattenable flattenable
signature of
result

= Σ ≥ Σ = Σ ≥ Σ

change of
logic

possible not possible possible not
possible

application specification ontologies ontologies blending
Table 1. Hiding – Extraction – Approximation – Filtering
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Proposition 3.1. The following relations among the constructs in Table 1 hold:
Mod(O hide Σ)

= Mod(O remove Σ)|Sig(O)\Σ
⊆ Mod(O forget Σ)
⊆ Mod(O reject Σ)

3.3. OMS Mappings
OMS mappings are generated by the following grammar:
MappingDefn ::= interpretation NAME : OMS to OMS = σ

| entailment NAME = OMS entails OMS

| equivalence NAME : OMS <-> OMS = 〈Σ,∆〉
| conservative extension NAME = O1 of O2 for Σ
| alignment NAME CARD1 CARD2 : OMS to OMS = Correspondences

| refinement NAME : OMS to OMS = σ

| refinement NAME = NAME then NAME

The semantics of an OMS mapping is given as a graph whose nodes N are labeled
with
• Name(N), the name of the node
• Inst(N), the institution of the node
• Sign(N), the signature of the node
• Mod(N), the class of Sign(N)-models of the node
• Ax(N), the set of Ax(N)-sentences of the node

and whose edges are labeled with signature morphisms between the signatures of
the source and target nodes. The theory of a node corresponding to an elusive OMS
may be undefined. The class of models of a node corresponding to a flattenable
OMS is the class of models of Ax(N). For brevity, we may write the label of a
node as a tuple. We make the simplifying assumption that any OMS is assigned a
unique name. The theory-level semantics of an OMS is needed for alignments.
In the following we discuss the different types of OMS mappings.

3.3.1. Interpretation

Theory interpretations, written interpretation Id : O1 to O2 = σ, expressing that
the σ-reduct of each model of O2 is a model of O1. Instead of σ, an institution
comorphism can be referred to. For example, we can express that the natural
numbers are a total order as follows:
interpretation i : TotalOrder to Nat = Elem 7→ Nat

Here is a more complex example in Common Logic from the COLORE reposi-
tory [9]:
interpretation geometry_of_time %mcons :

%% Interpretation of linearly ordered time intervals...

int:owltime_le
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%% ... that begin and end with an instant as lines

%% that are incident with linearly ...

to { ord:linear_ordering and bi:complete_graphical

%% ... ordered points in a special geometry, ...

and int:mappings/owltime_interval_reduction }

= int:ProperInterval 7→ int:Interval end

The semantics of interpretation N : O1 to O2 = σ is defined iff σ is a sig-
nature morphism from Sign(O1) to Sign(O2) such that for each M2 ∈Mod(O2),
M2|σ ∈Mod(O1). In that case, the graph of N is (O1, Inst(O1),
Sign(O1),Mod(O1),Ax(O1)) σ→ (O2, Inst(O2),Sign(O2),Mod(O2),Ax(O2))

3.3.2. Refinement

Refinements, written refinement Id : O1 to O2 = σ, expressing that O2 is an
acceptable realisation of O1. Semantically, this is equivalent with a theory inter-
pretation from O1 to O2 along σ. Refinements can be combined using the then key-
word, as in the example below, where the requirement of implementing a monoid
is refined to implementing the monoid of natural numbers with addition, using the
representation of numbers as lists of binary digits, for efficiency:
spec Monoid =

sort Elem

ops 0 : Elem;

__+__ : Elem * Elem -> Elem, assoc, unit 0

end

spec NatWithSuc =

free type Nat ::= 0 | suc(Nat)

op __+__ : Nat * Nat -> Nat, unit 0

forall x , y : Nat . x + suc(y) = suc(x + y)

op 1:Nat = suc(0)

end

spec Nat =

NatWithSuc hide suc

end

refinement R1 =

Monoid refined via Elem |-> Nat to Nat

end

spec NatBin =

generated type Bin ::= 0 | 1 | __0(Bin) | __1(Bin)

ops __+__ , __++__ : Bin * Bin -> Bin

forall x, y : Bin
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. 0 0 = 0 . 0 1 = 1

. not (0 = 1) . x 0 = y 0 => x = y

. not (x 0 = y 1) . x 1 = y 1 => x = y

. 0 + 0 = 0 . 0 ++ 0 = 1

. x 0 + y 0 = (x + y) 0 . x 0 ++ y 0 = (x + y) 1

. x 0 + y 1 = (x + y) 1 . x 0 ++ y 1 = (x ++ y) 0

. x 1 + y 0 = (x + y) 1 . x 1 ++ y 0 = (x ++ y) 0

. x 1 + y 1 = (x ++ y) 0 . x 1 ++ y 1 = (x ++ y) 1

end

refinement R2 =

Nat refined via Nat |-> Bin to NatBin

end

refinement R3 = R1 then R2

The semantics of refinement R : O1 to O2 = σ is defined iff σ is a signature
morphism from Sign(O1) to Sign(O2) such that for eachM2 ∈Mod(O2),M2|σ ∈
Mod(O1). In that case, the graph of N is (O1, Inst(O1),Sign(O1),
Mod(O1),Ax(O1)) σ→ (O2, Inst(O2),Sign(O2),Mod(O2),Ax(O2))

The semantics of R1 then R2 is defined if and only if the semantics of R1
is (N1, I1,Σ1,M1,∆1) σ1→ (N2, I2,Σ2,M2,∆2), the semantics of R2 is (N ′1, I ′1,Σ′1,
M′1,∆′1) σ2→ (N ′2, I ′2,Σ′2,M′2,∆′2), such that I2 = I ′1, Σ2 = Σ′1 andM′1 ⊆M2, and
then the graph of the composition is (N ′′1 , I1,Σ1, {M |σ1;σ2 | M ∈ M′2},⊥) σ1;σ2→
(N ′2, I ′2,Σ′2,M′2,∆′2), where N ′′1 is a new name.

3.3.3. Entailment

Entailments, written entailment Id = O1 entails O2, express that O2 is logically
entailed by O1. For example, we can express that in a group, the inverse of an
element still exists after hiding the explicit inverse operation from the specification
as follows:
logic CASL

spec InterpolatedGroup =

sort Elem

ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem

forall x, y, z: Elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0

forget inv

end

entailment ent = InterpolatedGroup
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entails { . forall x:Elem . exists y . Elem . x+y=0 }

end

The semantics of entailment N = O1 entails O2 is defined iff Sign(O1) =
Sign(O2) and Mod(O1) |= Ax(O2). In that case, the graph of N is (O1,

Inst(O1),Sign(O1),Mod(O1),Ax(O1)) id→ (O2, Inst(O2),Sign(O2),
Mod(O2),Ax(O2))

3.3.4. OMS Equivalence

OMS equivalences, written equivalence Id : O1 ↔ O2 = O3, expressing that O1
and O2 have model classes that are in bijective correspondence. This is done by
providing a (fragment) OMS O3 such that Oi then O3 is a definitional extension
[27]. For example, Boolean algebras are equivalent to Boolean rings:
equivalence e : algebra:BooleanAlgebra ↔ algebra:BooleanRing =

forall x, y : Elem

. x ∧ y = x*y

. x ∨ y = x + y + x*y

. ¬x = 1 + x

. x*y = x ∧ y,

. x+y = (x ∨ y) ∧ ¬(x ∧ y).

end

The semantics of equivalence N : O1 ↔ O2 = O3 is defined iff for each model
Mi ∈ Mod(Oi) there exists a unique model M ∈ Mod(Sign(O1)∪Sign(O2),∅)(O3)
such that M |Sign(Oi) = Mi. In that case, the graph of N is (O1, I,Sign(O1),
Mod(O1),Ax(O1)) ι1→ (O3, I,Sign(Sign(O1)∪Sign(O2),∅)(O3),
Mod(Sign(O1)∪Sign(O2),∅)(O3),Ax(Sign(O1)∪Sign(O2),∅)(O3)) ι2← (O2, I,
Sign(O2),Mod(O2),Ax(O2)) where ιi are inclusions.

3.3.5. Conservative Extension

A conservative extension is written conservative extension Id c : O1 of O2 for Σ.
This expresses that O2 contains all knowledge about the signature Σ from the O1
or, more precisely, O1 is a conservative extension of O2 with restriction signature
Σ and conservativity c. If c is %mcons, this means that every Σ-reduct of an O2-
model can be expanded to an O1-model. If c is %ccons, this means that every
Σ-sentence ϕ following from O1 already follows from O2. This relation shall hold
for any module O2 extracted from O1 using the extract construct. For example,
we can specify that we obtained a module of GALEN by extracting the parts
corresponding to drugs, joints and body parts as follows:

module myGalenIsAModule : myGalen of

<http://example.org/GALEN/galen.owl>
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for Drugs, Joints, Bodyparts

end

The semantics of conservative extension N c : O1 of O2 for Σ is defined
iff Σ ⊆ Sign(O2) ⊆ Sign(O1) and if c =%mcons and for each M ∈ Mod(O2)
there is a model M ′ ∈ Mod(O1) such that M ′|Σ = M |Σ, or if c =%ccons
and for each ϕ ∈ Sen(Σ), O1 |= ϕ implies O2 |= ϕ. Then the graph of N is
(O2, Inst(O2),Sign(O2),Mod(O2),Ax(O2)) ι→ (O1, Inst(O1),Sign(O1),
Mod(O1),Ax(O1)), with ι being the inclusion.

3.3.6. Alignment definition

Alignment definitions, written alignment Id card1 card2 : O1 to O2 = c1, . . . , cn,
assuming domain where card1 resp. card2 specify constraints on the alignment
relation concerning the source resp. target. Each cardi is one of 1, ?, +, * (‘1’
for injective and total, ‘+’ for total, ‘?’ for injective and ‘*’ for none). The cj are
correspondences of form sym1 rel conf sym2. Here, symi is a symbol from Oi, rel
is one of the built-in relations >, <, =, %, 3, ∈, 7→, or an identifier of a relation
specified externally, and conf is an (optional) confidence value between 0 and 1.
The user can specify the assumption about the universe where the relations in the
correspondences are interpreted using the assuming clause, with possible values
SingleDomain (all ontologies are interpreted over the same universe, which is also
the default), GlobalDomain (the domains of the ontologies are reconciled w.r.t.
a global domain of interpretation) and ContextualizedDomain (the domains are
connected via relations). This syntax of alignments follows the Alignment API
[10].20 If all correspondences of an alignment have the confidence value 1, the
alignment can be given a formal semantics as a network.

ontology Onto1 =

Class: Person

Class: Woman SubClassOf: Person

Class: Bank

end

ontology Onto2 =

Class: HumanBeing

Class: Woman SubClassOf: HumanBeing

Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =

20Note that BioPortal’s [40] mappings are correspondences in the sense of the Alignment API
and hence of DOL. BioPortal only allows users to collect correspondences, but not to group them
into alignments. In a sense, for each pair of ontologies, all BioPortal users contribute to a big
alignment between these.
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Person = HumanBeing,

Woman = Woman

end

network N =

1 : Onto1,

2 : Onto2,

VAlignment

ontology VAlignedOntology =

combine N

%% 1:Person is identified with 2:HumanBeing

%% 1:Woman is identified with 2:Woman

%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =

VAlignedOntology with 1:Bank 7→ RiverBank, 2:Bank 7→ FinancialBank,

Person_HumanBeing 7→ Person

end

We sketch the semantics of alignments with the case when the domain of
interpretation is assumed to be shared by the ontologies being aligned. In this
case, the semantics is given by a W -shaped graph like in Fig. 2 where O1 and O2
are the nodes of the ontologies being aligned, O′1 and O′2 collect the symbols of O1
and O2, respectively, that appear in the correspondences of the alignment, ι1 and
ι2 are inclusions and the bridge ontology B together with the morphisms σ1 and
σ2 is constructed by turning the correspondences into bridge axioms. Details can
be found in [8].

O1 O2

B

O1' O2'
Bridge

Figure 2. Semantics of alignments

3.4. Networks of OMS
OMS networks are introduced by the following grammar:
NetworkDefn := network NAME = Network

Network ::= NAME* [ excluding NAME* ]
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Here, the NAMEs can name OMS, mappings or other networks. A network is specified
as a list of network elements (OMS, OMS mappings and sub-networks), followed
by an optional list of excluded network elements. For disambiguating the symbols
in the combination of the network, the individual OMS can be prefixed with labels,
like n : O, which are scoped to the current OMS network. An example has already
been presented in the section on alignments. Together with two OMS included in
the network, the graph of the network implicitly includes all paths along impor-
tations between the two nodes. For example, in the example below, NAT_PLUS
imports the specification NAT. Without the implicit inclusion of this import, the
combination would duplicate the theory of NAT.

spec NAT =

free type Nat ::= 0 | suc(Nat)

end

spec NAT_PLUS =

NAT

then

op __+__ : Nat * Nat -> Nat

...

end

...

network N =

NAT, NAT_PLUS,...

end

spec N_COMBINED =

combine N

end

Formally, the graph of a network is constructed by taking the union of all
graphs of its constituents, provided that we regard the semantics of OMS as a
graph with one node and no edges, and removing from it all subparts specified in
the excluding clause.

3.5. Libraries of OMS
Libraries start with the keyword library and the name of the library, followed
by a qualification choosing the OMS language, logic, and/or serialisation. This is
followed by a list of imports of other libraries, definitions of OMS, OMS map-
pings, networks of OMS, or other qualifications which change the current logic.
Optionally, a prefix map placed at the beginning of a library may be used to ab-
breviate IRIs. A library can also be the inclusion of an OMS written in a language
corresponding to some institution.
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%prefix(

bfo: <https://bfo.googlecode.com/svn/releases/1.1.1/>

)%

library Parthood

logic CommonLogic

ontology BFOWithAssociatedAxioms =

bfo:bfo.owl with translation OWL22CommonLogic

then

(forall (x y) (if (snap:properTemporalPartOf x y)

(exists (z) (and (snap:properTemporalPartOf z y)

(not (exists (w)

(and (snap:temporalPartOf w x) (snap:temporalPartOf w z)

)))))))

end

Note that the prefixes declared in an imported library are available in the
imported library, as illustrated in the example above with the prefix snap:.

This completes our overview of DOL. The full syntax and semantics of DOL
will be available at wiki.ontohub.org and has been submitted to OMG for stan-
dardisation. The most recent version of the document is available at ontoiop.org.

4. Tool Support for DOL
Currently, DOL is supported by two tools: Ontohub and the Heterogeneous Tool
Set (HETS). Ontohub (see http://ontohub.org) is a web-based repository engine
for OMS that are written either in DOL or in some specific OMS language.21

Ontohub provides means for organising OMS into repositories. The distribu-
ted nature enables communities to share and exchange their contributions easily.
The heterogeneous nature makes it possible to integrate OMS written in various
OMS languages. Ontohub supports a wide range of DOL-conforming OMS lan-
guages building on DOL and also supports DOL’s interpretations, equivalences
and alignments. Users of Ontohub can upload, browse, search and annotate OMS
and OMS libraries in various languages via a web front end. Figure 3 shows an
excerpt of the 25 logics currently available in Ontohub.

The parsing and inference back end is the Heterogeneous Tool Set (Hets [34,
39], available at hets.eu). Hets supports a large number of basic OMS languages
and logics, as well as the DOL metalanguage as described in this paper.22

21Ontohub’s sources are freely available at https://github.com/ontohub/ontohub.
22Some (but only few) of DOL’s features are still being implemented at the time of the writing
of this paper.
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Figure 3. Overview of logics in Ontohub

Figure 4. Some of the repositories hosted on Ontohub

The structural information extracted from DOL OMS by Hets is stored in
the Ontohub database and exposed to human users via a web interface and to
machine clients as linked data.23

23“Linked data” is a set of best practises for publishing structured data on the Web in a machine-
friendly way [1]. DOL and Ontohub conform with linked data.
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5. Conclusion and Future Work
Interoperability between systems as well as reusability, we argued in the introduc-
tion to this paper, are critical challenges.

We here proposed to address these challenges by introducing two abstrac-
tions: firstly, we introduced the notion of OMS, spanning formalised ontologies,
models, and specifications; secondly, we introduced the DOL language, an abstrac-
tion in the sense that it provides a structuring, module, and mapping language
independently of the particular logical formalism used.

The work presented here brings together previous work pursued in a num-
ber of communities, including in particular logical pluralism, modular ontologies,
algebraic specification, and modelling of systems. It therefore combines many iso-
lated logical modelling and specification solutions into one coherent framework
with formal semantics.

A number of open problems and challenges, however, remain:

• What is a suitable abstract meta framework for non-monotonic logics and rule
languages such as RIF and RuleML? Are institutions suitable here? Are the
modularity questions for these languages different from those for monotonic
logics?

• What is a useful abstract notion of OMS query (language)? How to handle
answer substitutions in a logic-agnostic way?

• Can the notions of class hierarchy and of satisfiability of a class be generalised
from OWL to other languages?

• Can logical frameworks be used for the specification of OMS languages and
translations?

Despite these challenges, we hope that the development of DOL will have
a profound impact on ontology engineering practices as well as on the way the
modelling, ontology, and specification communities interact and how the systems
they develop may interoperate. The impact on communities can already be seen
e.g. by the use of Ontohub/DOL for the FOIS 2014 ontology competition. We
have illustrated the benefits of DOL for a wide range of use cases; including for
a framework of heterogeneous modelling in UML [20, 21], in biomedical ontology
[26], for the specification of blending diagrams in computational creativity [23],
and for the heterogeneous modelling of musical harmonies [6].

We hope that the future will bring many more diverse and interesting use
cases for the DOL language.
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