
 1 

X-Diff: An Effective Change Detection Algorithm for XML Documents 
 

Yuan Wang          David J. DeWitt          Jin-Yi Cai 
University of Wisconsin – Madison, WI, U.S.A. 

{yuanwang, dewitt, cjy}@cs.wisc.edu 
 
 

Abstract 
 

XML has become the de facto standard format for web 
publishing and data transportation. Since online 
information changes frequently, being able to quickly 
detect changes in XML documents is important to Internet 
query systems, search engines, and continuous query 
systems. Previous work in change detection on XML, or 
other hierarchically structured documents, used an 
ordered tree model, in which left-to-right order among 
siblings is important and it can affect the change result. 
This paper argues that an unordered model (only 
ancestor relationships are significant) is more suitable for 
most database applications. Using an unordered model, 
change detection is substantially harder than using the 
ordered model, but the change result that it generates is 
more accurate. This paper proposes X-Diff, an effective 
algorithm that integrates key XML structure 
characteristics with standard tree-to-tree correction 
techniques. The algorithm is analyzed and compared with 
XyDiff [CAM02], a published XML diff algorithm. An 
experimental evaluation on both algorithms is provided. 
 

1. Introduction 
 

The eXtensible Markup Language (XML) [W3C] has 
been recognized as the de facto standard format for 
publishing and transporting documents on the web. Since 
online information changes frequently a tool is needed to 
detect such changes. In order to handle large volumes of 
changing documents this tool needs to work very 
efficiently. The following example illustrates the problem. 
Suppose a parent is interested in buying books for her 
children at an online auction site through a search engine 
that is equipped with such a tool. On the first visit she 
obtains a list of currently offered books and related 
information. Two hours later, the search engine retrieves 
updated data and uses the tool to figure out what has been 
changed during the past two hours.  Part of the 
information received on the two visits is shown in Figures 
1.1 and 1.2. 

As a first step, the change-detection tool will determine 
whether or not the two versions are identical. If not, it 
next tries to match each book segment in the old version 
with every one in the new version to determine which 
books are still available, which have been sold, and which 

ones are new.  In the example below, although the order 
of the two books has changed, both of them are still 
available.  Next, for each book that is still available, the 
change-detection tool will determine what information has 
been modified. Based on the data in Figure 1.1 and 1.2, it 
should notify the consumer that there are two fewer hours 
to submit a bid for both books. The current bid price of 
the Harry Porter book is $10 by Mark whose rating is 125, 
and the current bid price of the Tom Sawyer book is $4.50 
and the bidder has not changed. 

Such a change-detection tool can also be very useful to 
a query system in at least two ways, 
• Incremental Query Evaluation. When a user has a 

standing query against a time-varying data source, a 
change-detection tool can provide the query engine the 
delta data on which the query will be re-evaluated. 
Thus, the user doesn’t receive old results and the query 
engine avoids repeated work. Since the delta data is 
usually much smaller than the original data, query 
evaluation will also be much faster. 

• Trigger Condition Evaluation. In a continuous query 
or trigger system [CDTW00], the condition of firing a 
trigger is often defined on a specific change to one or 
more data sources. The change detection tool can 
quickly report such changes, filtering out other 
changes. 

This paper describes X-Diff, an algorithm for 
computing the differences between two versions of an 
XML document. The key features of this algorithm 
include: 
• XML Structure Information. An XML document is 

generally a hierarchically structured document, and 
can be represented in a tree structure. However, an 
XML document has other features that distinguish it 
from a general labeled tree. X-Diff introduces the 
notion of node signature and a new matching between 
the trees corresponding to the two versions of a 
document. Together, these two features are used to 
find the minimum-cost matching and generate a 
minimum-cost edit script that is capable of 
transforming the original version of the document to 
the new version. 

• Unordered Trees. Since XML documents can be 
represented as trees, the change detection problem is 
related to the problem of change detection on trees. 
Algorithms to compute the difference between trees 
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can be divided into two categories depending on 
whether they deal with ordered or unordered trees. An 
ordered tree is one in which both the ancestor (parent-
child) relationship and the left-to-right ordering among 
siblings are significant. An unordered tree is one in 
which only ancestor relationships are significant, while 
the left-to-right order among siblings is not significant. 
For database applications of XML the authors believe 
that the unordered tree model is more important. Thus, 
X-Diff is designed to handle unordered tree 
representations of XML documents. This is one major 
difference between our work and some earlier efforts 
in this area [CRGMW96, CE99, CAM02]. 

• High Performance. Change detection on unordered 
trees is substantially harder than that on ordered trees; 
Zhang et al. have shown it to be NP-Complete in 
general case [ZSS92]. By exploiting certain features of 
XML documents, a polynomial algorithm is presented 
to compute the “optimal” difference between two 
XML documents. An improvement is also proposed on 
the algorithm that achieves high efficiency while 
generating near-optimal result. 

The remainder of the paper is organized as follows. 
Related work is contained in Section 2. Section 3 

formulates the problem and gives an overview of our 
approach. It defines the basic operations, edit scripts, cost 
model, node signature and matching. Section 4 presents 
the details of the X-Diff algorithm with complexity 
analysis. Section 5 gives some preliminary performance 
results. Section 6 summarizes our conclusions. 
 

2. Related Work 
 

Most previous work in change detection has focused on 
computing differences between flat files.  The GNU diff 
utility is probably the most famous one. This algorithm 
uses the LCS (Longest Common Subsequence) algorithm 
[Myers86] to compare two plain text files. CVS, another 
GNU utility, uses diff to detect differences between two 
versions of programs [CVS]. Chawathe et al. 
[CRGMW96] pointed out that the techniques employed 
by these two programs cannot be generalized to handle 
structured data because they do not understand the 
hierarchical structure information contained in such data 
sets. Typical hierarchically structured data, e.g. SGML 
and XML, place tags on each data segment to indicate 
context. Standard plain-text change-detection tools have 
problems matching data segments between two versions of 
data. 

<Books> 
   <Book> 
      <Title>Harry Potter and the Sorcerer's Stone</Title> 
      <Author>J.K. Rowling</Author> 
      <Seller> 
         <ID>Mike</ID> 
         <Rating>30</Rating> 
      </Seller> 
      <First_Bid>$5.00</First_Bid> 
      <Current_Bid Time_Left = “36 hrs.”>$8.50</Current_Bid> 
      <Bidder> 
         <ID>Steve</ID> 
         <Rating>25</Rating> 
      </Bidder> 
   </Book> 
   <Book> 
      <Title>The Adventures of Tom Sawyer</Title> 
      <Author>Mark Twain</Author> 
      <Seller> 
         <ID>Sean</ID> 
         <Rating>100</Rating> 
      </Seller> 
      <First_Bid>$2.00</First_Bid> 
      <Current_Bid Time_Left = “4 hrs.”>$3.50</Current_Bid> 
      <Bidder> 
         <ID>Tim</ID> 
         <Rating>5</Rating> 
      </Bidder> 
   </Book> 
</Books> 

<Books> 
   <Book> 
      <Title>The Adventures of Tom Sawyer</Title> 
      <Author>Mark Twain</Author> 
      <Seller> 
         <ID>Sean</ID> 
         <Rating>100</Rating> 
      </Seller> 
      <First_Bid>$2.00</First_Bid> 
      <Current_Bid Time_Left = “2 hrs.”>$4.50</Current_Bid> 
      <Bidder> 
         <ID>Tim</ID> 
         <Rating>5</Rating> 
      </Bidder> 
   </Book> 
   <Book> 
      <Title>Harry Potter and the Sorcerer's Stone</Title> 
      <Author>J.K. Rowling</Author> 
      <Seller> 
         <ID>Mike</ID> 
         <Rating>30</Rating> 
      </Seller> 
      <First_Bid>$5.00</First_Bid> 
      <Current_Bid Time_Left = “34 hrs.”>$10.00</Current_Bid> 
      <Bidder> 
         <ID>Mark</ID> 
         <Rating>125</Rating> 
      </Bidder> 
   </Book> 
</Books> 

Figure 1.1 A piece of auction data of old version  Figure 1.2 A piece of auction data of new version  
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The AT&T Internet Difference Engine [DB96, 
DBCK98] uses HtmlDiff [Berk] to determine the 
differences between two HTML pages. HtmlDiff treats 
two HTML pages as two sequences of tokens (a token is 
either a sentence-breaking markup or a sentence) and uses 
a weighted LCS algorithm [Hirs77] to find the best 
matching between the two sequences. This method cannot 
be applied to XML documents because markups in XML 
data provide context, and contents within different 
markups cannot be matched. 

Since XML documents can be represented as trees, it is 
a natural idea to utilize tree-to-tree correction techniques 
[Selk77, Tai79, HD82], to detect changes in XML 
documents. Zhang and Shasha proposed a fast algorithm 
to find the minimum cost editing distance between two 
ordered labeled trees [ZS89]. Given two ordered trees T1 
and T2, in which each node has an associated label, their 
algorithm finds an optimal edit script in time O(|T1| × |T2| 
× min{depth(T1), leaves(T1)} × min{depth(T2), 
leaves(T2)}), which is the best known result for the 
general tree-to-tree correction problem. 

Chawathe et. al. [CRGMW96] formulated the change 
detection problem on hierarchically structured documents, 
and proposed an efficient algorithm based on the 
following key assumption: 

Given two labeled trees, T1 and T2, there is a “good” 
matching function compare, so that given any leaf s in 
T1, there is at most one leaf in T2 that is “close” 
enough to match s. 

This algorithm runs in time O(ne + e2), where n is the 
number of tree leaves and e is “weighted edit distance” 
(typically, e << n). This assumption holds well for many 
SGML documents that do not contain duplicate or similar 
objects, but it does not hold for many XML documents. 
For example, in the documents contained in Figure 1.1 
and 1.2, there may be many users with the same rating, 
and many books that have the same bid price. In those 
cases, the algorithm is not guaranteed to generate the 
optimal result. 

Chawathe et. al. [CGM97] also presented a heuristic 
algorithm, MH-Diff, to detect change in unordered 
structured documents. MH-Diff is based on representing 
an edit script between two trees as an edge cover of a 
bipartite graph. They introduced new edit operators such 
as “subtree” copy and “subtree glue” in the algorithm. 
However, the worst case of algorithm is in O(n3), and the 
performance evaluation in the paper only tested very small 
documents (less than 250 nodes in a tree). 

XMLTreeDiff1 [CE99] computes the difference 
between two XML documents. First, it computes hash 
values for the nodes of both documents using DOMHash 

                                                 
1 Available at http://www.alphaworks.ibm.com. 

[MTU98] and reduces the size of the two trees by 
removing identical subtrees (i.e., ones with identical hash 
values). Second, it uses Zhang and Shasha's algorithm 
[ZS89] to generate the difference between the two 
simplified trees. While using DOMHash to filter out 
identical subtrees can reduce the size of the two trees, its 
use conflicts with the cost model employed by Zhang and 
Shasha’s algorithm. Thus, XMLTreeDiff may not generate 
an optimal result. 

Recently, Cobéna et al. [CAM02] proposed XyDiff, an 
algorithm for detecting changes in XML documents. The 
algorithm first computes a signature (i.e., hash value) and 
a weight (i.e., subtree size) for every node in both 
documents in a bottom-up fashion (the root nodes of the 
two documents end up with the largest weights). Next, 
starting with the root nodes of the two documents XyDiff 
compares the signatures of the two nodes. If they are 
equal, the two nodes are matched; otherwise, their child 
nodes will be inserted into a priority queue in which the 
subtrees with the largest weights are always compared 
first. Whenever XyDiff finds an exact match between two 
subtrees, it attempts to propagate the match to the 
respective parents of the two nodes with the weight of 
each subtree determining how many levels the matching is 
propagated. Whenever there is more than one potential 
candidate for matching, XyDiff uses a few simple 
heuristic rules to pick one in order to avoid having to 
perform a full evaluation of the alternatives. This 
algorithm achieves O(nlogn) complexity in execution time 
and generates fairly good results in many cases. However, 
XyDiff cannot guarantee any form of optimal or near-
optimal result because of the greedy rules used in the 
algorithm. In fact, Section 5 demonstrates that in many 
cases it will mismatch subtrees resulting in the generation 
of incorrect results. 

Both XMLTreeDiff and XyDiff focus on change 
detection for ordered trees. On the other hand, there are 
very few algorithms besides [CGM97] capable of 
handling unordered trees. Zhang et al. [ZSS92] proved 
that general unordered tree-to-tree correction problem is 
NP-complete. Zhang also proposed a polynomial-time 
algorithm based on a restriction that matching is only 
performed between nodes at the same level [Zha93]. As 
mentioned in the previous section, XML documents have 
more features than general labeled trees that can be 
exploited to pursue an efficient algorithm. Our X-Diff 
algorithm uses the notions of matching and editing 
distance, which are introduced in [ZS89]2, adding special 
criteria that apply to XML documents. 

Tararinov et. al. [TIHW01] proposed a set of primitive 
operations for modifying the structure and content of an 
XML document. The output of our algorithm can be easily 
adapted into such format. 
                                                 
2 The counterpart of “matching” in [ZS89, Zha93] is “mapping”. 
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3. Problem Overview and Preliminaries 
 

The change detection problem is formulated in this 
section. Section 3.1 describes the tree-structure 
representation of XML documents. It also explains why 
X-Diff focuses on change detection on unordered trees. 
The basic edit operations are defined in Section 3.2, and 
edit scripts are described in Section 3.3.  These scripts 
consist of a list of basic editing operations, transforming 
one tree to another. Section 3.4 defines a cost model for 
edit scripts and the minimum-cost edit script. Section 3.5 
introduces the notion of node signature that distinguishes 
nodes in an XML context. Node signature is used to 
define a new tree-to-tree matching. 

 
3.1. Tree Representation of XML Documents 
 

In order to design an efficient algorithm to detect 
changes to XML documents, it is necessary to understand 
the hierarchical structure in XML. Based on the 
Document Object Model (DOM) specification [W+00], an 
XML document can be represented as a tree. 

This paper discusses three kinds of nodes in DOM 
tree3. 
• Element nodes – non-leaf nodes with one label, name. 
• Text nodes – leaf nodes with one label, value. 
• Attribute nodes – leaf nodes with two labels, name 

and value. 
According to the DOM specification, element nodes 

and text nodes are ordered, while attribute nodes are 
unordered. In many applications XML documents can be 
treated as unordered trees – only ancestor relationships 
are significant, while the left-to-right order among siblings 
is not significant. In the document showed by Figure 1.1 
and 1.2, the order of two books is reversed, but this is not 
significant. 

In X-Diff, change detection is focused on unordered 
trees. Most ordered tree-to-tree correction approaches 
cannot be applied to unordered trees because their 
correctness generally depends on preserving the left-to-
right order when matching nodes. 

Two trees are termed isomorphic if they are identical 
except for the ordering of siblings. X-Diff considers two 
trees are equivalent if they are isomorphic. 
 
3.2. Edit Operations 
 

This section defines three basic edit operations on 
DOM Trees. 

Definition 3.1 
• Insert(x(name, value), y) – insert a node x, with node 

name “name” and node value “value”, as a leaf child 

                                                 
3 We ignore other types of nodes for simplicity purpose. 

node of node y. 
• Delete(x) – delete a leaf node x. 
• Update(x, new_value) – change the value of a leaf 

node x to new_value. Note, x has to be either a text 
node or an attribute node. Update can only modify a 
node’s value, but not its name. 
Notice that all basic operations are defined on leaf 

nodes. For convenience, there are also two composite 
operations: 
• Insert(Tx, y) – insert a subtree Tx, which is rooted at 

node x, to node y. 
• Delete(Tx) – delete a subtree Tx, which is rooted at 

node x. Delete(x) can be used if there is no confusion. 
Both operations represent a list of basic operations 

respectively. 
The definition of these three operations is similar to 

that in [CRGMG96, CAM02] except: 
• For insertion, there is no need to specify which 

position among y’s child nodes to insert node x 
because X-Diff is dealing with unordered trees. 

• There are no “move” operations, which transfer a node 
or a subtree from one position to another. Many 
“move” operations are not necessary in the unordered 
tree model because the order among siblings is not 
important. Other “move” operations can be replaced 
by a combination of “delete” and “insert” operations. 

 
3.3. Edit Scripts 
 

An edit script is a sequence of basic edit operations 
that convert one tree into another [CRGMG96]. 

Example 3.1 Consider the following trees T1 and T2 
in Figure 3.1 (capital letters denote node name; Greek 
letters denote node value), the following edit script 
transforms T1 into T2: 

E(T1→T2) = Delete(5), Insert(5(B,λ), 3), Update(6,ω). 
 
3.4. A General Cost Model for Edit Scripts 
 

Intuitively, given two trees, there can be many valid 
edit scripts capable of transforming one tree to the other. 
For instance, consider the following edit script E′ for the 
example in Figure 3.1: 

E′(T1→T2) = Update(5,λ), Delete(5), Insert(5(B,λ), 3), 
Update(6, ω). 

Apparently, E′ is not as good as E, so a standard cost 
model should be defined to evaluate alternative edit 
scripts to determine which one(s) is(are) best. The cost 
model will also affect the algorithm design. X-Diff uses a 
simple cost model. 
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Definition 3.2 Given an edit script E, Cost(E) = n, 
where E = O1 O2 … On and Oi is a basic edit operation 
defined in Definition 3.1. 

This definition can be easily extended by assigning 
different costs to different operations, which can also be 
applied to X-Diff. The authors believe the cost model 
above always accurately reflects real situations. 

Based on the definition of the cost of edit scripts, the 
minimum-cost edit script, or optimal edit script can be 
defined. 

Definition 3.3 E is an edit script that transforms tree T1 
to T2. E is called a minimum-cost edit script, or an optimal 
edit script for (T1→T2) iff ∀ edit script E′ of (T1→T2), 
Cost(E′) ≥ Cost(E). 

Then the editing distance can also be defined. Let 
Dist(T1, T2) denote the editing distance from T1 to T2. 

Definition 3.4 Dist(T1, T2) = Cost(E), where E is a 
minimum-cost edit script for (T1→T2). 

Both minimum-cost edit script and editing distance can 
be defined on subtree pairs. 

Definition 3.5 E is an edit script that transforms 
subtree Tx to Ty. E is called a minimum-cost edit script for 
(Tx→Ty) iff ∀ edit script E′ for (Tx→Ty), Cost(E′) ≥ 
Cost(E); Dist(Tx, Ty) = Cost(E). 
 
3.5.Node Signature and Minimum-Cost Matching 
 

In order to find the difference (generating an edit 
script) between two trees, a matching of corresponding 
nodes in the two trees should be found. Intuitively, it is 
not a good idea to try to match every node in the first tree 
to every node in the second tree because each node in 
XML has its own context. “Bad” matching will violate the 
context and cause unnecessary computation. 

For example, a “Title” node won’t match an “Author” 
node. Similarly, nodes with different node types are not 
matched – Text nodes should not be matched with 
Element nodes, or Attribute nodes. Notice it is not enough 
to compare node type and node name of two nodes to 
decide if they can be matched. For instance, the “Name” 

node within a “Seller” node should not be matched to the 
“Name” node of a “Bidder” node. 

Here the node signature is defined as the first criterion 
for matching two nodes. Given a DOM tree T, let Root(T) 
denote the root of T. Given a node x in T, let Type(x) 
denote the node type of x, Name(x) denote the node name 
of x, and Value(x) denote the node value of x4. 

Definition 3.6 Suppose x is a node in a DOM tree T, 
Signature(x) = /Name(x1)/…/Name(xn)/Name(x)/Type(x), 
where x1 is the root of T, (x1, …, xn, x) is the path from 
root to x. If x is a text node, Signature(x) = /Name(x1)/… 
/Name(xn)/Type(x). 

The signature of a node is obtained by concatenating 
the names of all its ancestors with its own name and type5. 
X-Diff only matches nodes that have the same signature. 
Since all ancestor nodes are non-leaf nodes and non-leaf 
nodes must be element nodes, the types of ancestor nodes 
in the signature are not included. 

Next the notion of a matching is ready to be defined. 
Definition 3.7 A set of node pairs (x, y), M, is called a 

matching from T1 to T2, iff 
1) (x, y) ∈ M, x ∈ T1, y ∈ T2, Signature(x) = Signature(y). 
2) ∀ (x1, y1) ∈ M, and (x2, y2) ∈ M, x1 = x2 iff y1 = y2; 

(one-to-one) 
3) M is prefix closed, i.e., given (x, y) ∈ M, suppose x’ is 

the parent of x, y’ is the parent of y, then (x’, y’) ∈ M. 
Clearly, M preserves ancestor relationships. 

Lemma 3.1 Suppose (x1, y1) ∈ M, (x2, y2) ∈ M, x1 is 
an ancestor of x2 iff y1 is an ancestor of y2. 

Criterion 3 prevents children being matched if their 
ancestors are not matched. This criterion reflects the 
integrity of XML segments. 

Lemma 3.2 M is a matching from T1 to T2, M = {} 
iff (Root(T1), Root(T2)) ∉ M. 

Criteria 1 and 3 represent the major differences between 
our definition of matching and that in [Zha93]. They 

                                                 
4 A text node does not have a name. An element node does not 
have a value. 
5 We use “/” as delimiter in the string of signature, similar as in 
Xpath [CD+99]. 
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Figure 3.1 An example for edit scripts 
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reduce the matching space dramatically and make the 
algorithm efficient. 

Based on a matching M from T1 to T2, an edit script for 
(T1→T2) can be generated. Basically, X-Diff delete nodes 
in T1 that do not exist in M, insert nodes in T2 that do not 
exist in M, and update nodes that are in M but have 
different values. The complete algorithm is described in 
Section 4.5. 

The following theorem shows that a minimum-cost edit 
script can be generated from the best matching. 

Theorem 3.1 There is a matching M from T1 to T2, 
which generates a minimum-cost edit script for (T1→T2). 
M is called a minimum-cost matching from T1 to T2, 
denoted by Mmin(T1, T2). 

Before proving Theorem 3.1, two lemmas about editing 
distance should be given. 

Lemma 3.3 Suppose both x and y are leaf nodes, x ∈ 
T1, y ∈ T2; φ denotes null. 
1) Dist(x, y) = 0 iff Signature(x) = Signature(y), Value(x) 

= Value(y) (identical); 
2) Dist(x, y) = 1 iff Signature(x) = Signature(y), Value(x) 

≠ Value(y) (update); 
3) Dist(x, φ) = Dist(φ, y) = 1 (delete & insert). 

Lemma 3.4 Dist(Tx, φ) = Cost(Delete(Tx)); Dist(φ, 
Ty) = Cost(Insert(Ty)); Dist(Tx, Ty) = Dist(Tx, φ) + Dist(φ, 
Ty) iff Signature(x) ≠ Signature(y). 

A brief proof of Theorem 3.1 is given here. 
Proof: Mathematical induction is performed on the 

height of both trees. 
1) height(T1) = height(T2) = 1, i.e., both T1 and T2 are a 

single node. Suppose T1 is node x, T2 is node y. 
According to Lemma 3.2, the minimum-cost matching 
is, Mmin(T1, T2) = {(x, y)} iff Signature(x) = 
Signature(y); otherwise Mmin(T1, T2) = {}. 

2) Suppose the theorem is true when height(T1) = h1, 
height(T2) = h2, h1 ≥ 1, h2 ≥ 1. Consider height(T1) = 
h1+1, height(T2) = h2+1. 

a) Signature(Root(T1)) ≠ Signature(Root(T2)). 
According to Lemma 3.2, obviously Mmin(T1, T2) = 
{}; Dist(T1, T2) = Cost(Delete(T1), Insert(T2)). 

b) Signature(Root(T1)) = Signature(Root(T2)). Suppose 
x1, x2, …, xm are second-level nodes in T1, y1, y2, …, 
yn are second-level nodes in T2. ∀ xi and yj, there is a 
minimum-cost matching Mmin(Txi, Tyj) between Txi 
and Tyj, which editing distance is Dist(Txi, Tyj). 
Suppose W is a 1-1 (partial) bipartite mapping 
between (x1, x2, …, xm) and (y1, y2, …, yn), then 

      

1 2
( , )

( , ) min{ ( , )

( , ) ( , )}

i j

i j

i j

i j

x y
W

x y W

x y
x isunmapped y isunmapped

Dist T T Dist T T

Dist T Dist Tφ φ
∈

=

+ +

∑
∑ ∑  

 i.e., if Wmin is a minimum-cost bipartite mapping 
between (x1, x2, …, xm) and (y1, y2, …, yn), 

       

min

min 1 2 min

( , )

1 2

( , ) ( , )

{( ( ), ( ))}

i j

i j

x y

x y W

M T T M T T

Root T Root T

∈

=

U

U

 □ 

The Matching algorithm is described in Section 4.4. 
 
4. Change Detection with X-Diff 
 

The X-Diff algorithm is introduced in this section. 
Section 4.1 describes the overall algorithm which consists 
of several phases, which are discussed in detail in the 
Sections 4.2 through 4.4. Section 4.5 analyzes the 
algorithm and estimates its time complexity. Section 4.6 
presents a variant of the algorithm with improved 
performance but which does not guarantee an optimal 
result. 
 
4.1. Outline of the X-Diff Algorithm 
 

Given two XML documents, DOC1 and DOC2, T1 and 
T2 are their Tree representations. X-Diff determines if 
DOC2 is different from DOC1 based on the unordered 
model. If so, X-Diff finds a minimum-cost matching from 
T1 to T2, and generates a minimum-cost edit script for 
(T1→T2). 

There are several steps in X-Diff as shown in Figure 
4.1: 
1. Parsing and Hashing X-Diff parses DOC1 and DOC2 

into XTrees T1 and T2. During the parsing process, X-
Diff will compute an XHash value for every node, 
which is used to represent the entire subtree rooted at 
the node. 

2. Matching First, X-Diff compares XHash values of 
Root(T1) and Root(T2). T1 and T2 are considered 
equivalent if two XHash values are equal; otherwise, 
X-Diff finds Mmin(T1,T2), a minimum-cost matching 
between two trees. 

3. Generating Minimum-Cost Edit Script X-Diff 
generates a minimum-cost edit script E for (T1→T2), 
based on the Mmin(T1, T2) found in Step 2. 

Input: (DOC1, DOC2) 
/* Parsing and Hashing. */ 
Parse DOC1 to T1 and hash T1; 
Parse DOC2 to T2 and hash T2; 
/* Checking and Filtering. */ 
If ( XHash (Root(T1)) = XHash (Root(T2)) ) 
 DOC1 and DOC2 are equivalent, stop. 
else 
 Do Matchng – Find a minimum-cost matching Mmin(T1, T2) 

from T1 to T2. 
/* Generating minimum-cost edit script */ 
Do EditScript – Generate the minimum-cost edit script E from 
Mmin(T1, T2). 

Figure 4.1 Outline of X-Diff Algorithm 
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4.2. Parsing and Hashing 
 

This step is the preprocessing step in X-Diff. Two 
input XML documents, DOC1 and DOC2, are parsed into 
two Xtrees first. An Xtree provides a subset of the 
interface provided by a DOM tree, and they are more 
efficient than a DOM tree. 

During the parsing process, X-Diff uses a special hash 
function, XHash, to compute a hash value for every node 
on both trees. Similar to DOMHash [MTU98], the XHash 
value of a node represents the entire subtree rooted at this 
node. The difference is that DOMHash is used fro the 
ordered tree model, while XHash is for the unordered tree 
model so that two isomorphic trees should have the same 
XHash value. 
 
4.3. Matching 
 

The algorithm Matching is used in this step, shown in 
Figure 4.2, to find a minimum-cost matching between T1 
and T2. Section 3.5 has proved that the minimum-cost 
matching can be found by computing the editing distance 
between T1 and T2, which is the core of Matching. 

To find a minimum-cost matching between T1 and T2, 
first the algorithm filters out equivalent subtrees between 
two root nodes by comparing the XHash values of second-
level child nodes. Subtrees with identical XHash values 
can be considered to be equivalent because this is true 

with extremely high probability6. Since many XML 
documents are only slightly modified between versions, 
this step will reduce the tree size effectively, avoiding 
unnecessary computations in subsequent phases of the 
algorithm. 

Second, the algorithm computes the editing distance 
for each of the remaining subtree pairs and obtains 
minimum-cost matchings between subtrees. Finally, it 
computes the editing distance between T1 and T2, and 
obtains the minimum-cost matching Mmin(T1, T2). On each 
level the XHash values of the child nodes are used to filter 
out equivalent subtrees in order to reduce the matching 
space. 

In the Matching algorithm, dynamic programming is 
used to compute Dist(T1, T2). It starts computing the 
editing distance from leaf node pairs and move upward. 
The editing distance between two leaf nodes or two 
subtrees, associated with their minimum-cost matching, is 
stored in a Distance Table, which is available after 
computing the editing distance between subtrees that are 
rooted at their parent nodes. When computing the editing 
distance between subtrees, the Matching algorithm uses 
the minimum-cost maximum flow algorithm [Tar83, 
Zha93] to find the minimum-cost bipartite mapping (recall 
the proof for Theorem 3.1). 

Notice that Theorem 3.1 shows that X-Diff only needs 
to compute the editing distance between nodes that have 
the same signature. This is critical to this algorithm 
because it reduces the mapping space significantly and 
helps our algorithm achieve polynomial time in 
complexity. Otherwise, X-Diff would have to compute 
editing distance between all possible node pairs, which 
has been proven to be NP-Complete [ZSS92]. 
 
4.4. Generating Minimum Cost Edit Script 
 

In this phase, X-Diff generates a minimum-cost edit 
script based on the minimum-cost matching found in the 
previous phase. This generation procedure is performed 
recursively from roots to leaves, shown in Figure 4.3. 
4.5. Algorithm Analysis 
 

This section briefly analyzes the complexity of our 
algorithm. First the complexity of each step in the 
algorithm is estimated. |T1| and |T2| denote the number of 
nodes in T1 and T2. 
1. Parsing and Hashing The time to parse two 
documents and construct trees is 1 2(| | | |)O T T+ . Hashing 

is performed during parsing. Since the child node XHash 
values must be sorted before computing parent node 

                                                 
6 A full tree-to-tree comparison may be performed here to 
double-check the equivalence between two subtrees. The cost of 
this test is linear to the number of nodes in the subtrees. 

Input: Tree T1 and T2. 
Output: a minimum-cost matching Mmin(T1, T2). 
Initialize: set initial working sets 
  N1 = {all leaf nodes in T1}, N2 = {all leaf nodes in T2}. 
  Set the Distance Table DT = {}. 
/* Step 1: Reduce matching space */ 
Filter out next-level subtrees that have equal XHash values. 
/* Step 2: compute editing distance for (T1 → T2) */ 
DO { 
    For every node x in N1 
        For every node y in N2 
 If Signature(x) = Signature(y) 
   Compute Dist(x, y); 
   Save matching (x, y) with Dist(x, y) in DT. 
    Set N1 = {parent nodes of previous nodes in N1}; 
          N2 = {parent nodes of previous nodes in N2}. 
} While (both N1 and N2 are not empty). 
/* Step 3: mark matchings on T1 and T2. */ 
Set Mmin(T1, T2) = {} 
If Signature(Root(T1)) ≠ Signature(Root(T2)) 
    Return; /* Mmin(T1, T2) = {}*/ 
Else 
    Add (Root(T1), Root(T2)) to Mmin(T1, T2). 
    For every non-leaf node mapping (x, y) ∈ Mmin(T1, T2) 
          Retrieve matchings between their child nodes that 
are stored in DT. 
          Add child node matchings into Mmin(T1, T2). 

Figure 4.2    Matching Algorithm 
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XHash values, the upper bound for the complexity of this 
step is 1 1 2 2(| | log(| |) | | log(| |))O T T T T× + × . 

2. Mapping As described in Section 4.3, in this step, 
the editing distance between every node pair (x, y) (where 
x ∈ T1, y ∈ T2, Signature(x) = Signature(y)) is computed, 
from leaf nodes to roots. Here the complexity of this step 
in the worst case is analyzed, in which X-Diff cannot filter 
out any equivalent subtrees by comparing their XHash 
values although this is very unlikely to happen. The 
minimum-cost matching from T1 to T2 is obtained when 
the editing distance between the two root nodes is found. 
The complexity of this step can be estimated by dividing it 
into two parts, leaf nodes matching and non-leaf nodes 
matching. 

First consider leaf nodes matching.  According to 
Lemma 4.3, the cost of computing the editing distance 
between two leaf nodes is O(1). So the cost of computing 
the editing distance for all leaf node pairs is bounded by 

1 2(| | | |)O T T×      (1) 

Second, consider non-leaf nodes matching. According 
to Lemma 4.2, the editing distance of each non-leaf node 
pair (x, y) (where x ∈ T1, y ∈ T2, Signature(x) = 
Signature(y)) is obtained by finding a minimum-cost 
matching between their child nodes. Let deg(x) denote the 
out-degree of node x, i.e., the number of its child nodes. 
The cost of computing editing distance between x and y is 
bounded by 

2

deg( ) deg( ) max{deg( ),deg( )}

log (max{deg( ),deg( )}))

x y x y

x y

Ο( × ×
×    [Zha93] (2) 

Suppose there are M common non-leaf signatures 
between T1 and T2, denoted by S1 to SM. N1k and N2k are 
the number of nodes in T1 and T2 whose signature is Sk. xki 
and ykj denote nodes whose signature is Sk. The cost of 
computing the editing distance for all non-leaf node pairs 
is bounded by 

1 2

1 1 1

2

{ (deg( ) deg( ) max{deg( ),deg( )}

log (max{deg( ),deg( )}))} (3)

k kN NM

ki kj ki kj
k i j

ki kj

O x y x y

x y
= = =

× ×

×

∑∑∑  

Let deg(T1) and deg(T2) denote the maximum out-
degree in T1 and T2, then 

1 2

1 2

1 1 1

2 1 2

(3) { (deg( ) deg( ) max{deg( ), deg( )}

log (max{deg( ), deg( )})) (4)

k kN NM

ki kj

k i j

O x y T T

T T
= = =

≤ × ×

×

∑∑∑  

Since
1

1

1 1

deg( ) | |
kNM

ki

k i

x T
= =

<∑∑ and
2

2

1 1

deg( ) | |
kNM

kj

k j

y T
= =

<∑∑ , 

1 2 1 2

2 1 2

(4) (| | | | max{deg( ),deg( )}

log (max{deg( ),deg( )})) (5)

O T T T T

T T

≤ × × ×

Combining (1) and (5), the complexity of this step is 
bounded by: 

1 2 1 2

2 1 2

(| | | | max{deg( ),deg( )}

log (max{deg( ),deg( )})) (6)

O T T T T

T T

× × ×
 

3. Generating Minimum-Cost Edit Scrip The minimum-
cost edit script is generated recursively by traversing all 
nodes once in T1 and T2. The time complexity 
is |)||(| 21 TTO + . 

The running time in step 3 is the most significant of all 
steps, so the complexity of our algorithm is the complexity 
of step3, shown by (6). 
 
4.6. Performance Improvement 
 

The primary focus of the X-Diff algorithm is to 
compute and generate the best possible difference 
between two XML documents. The previous section has 
demonstrated that X-Diff has a polynomial running time. 
In some cases, however, this may not satisfy users’ needs. 
Assume, for example, that the document shown in Figure 
1.1 contains 10,000 books and that each hour 1,000 
<Book> elements are changed.  In order to compute the 
optimal difference between the two versions of the 
document, X-Diff must compute the minimum editing 
distance between every updated <Book> element in the 
old and new versions, which means that it needs to 
compute the editing distance for 1 million pairs of nodes. 
While X-Diff guarantees to generate the best difference 
result, some users may be willing to sacrifice some degree 
of accuracy in exchange for improved response time. This 
section discusses an approach for improving X-Diff’s 
response time. 

Input: Tree T1 and T2, a minimum-cost matching Mmin(T1, 
T2), the distance table DT. 
Output: an edit script E. 
Initialize: set E = Null; 
x = Root(T1), y = Root(T2). 
If (x, y) ∉ Mmin(T1, T2)  /* Subtree deletion and insertion */ 
    Return “Delete(T1), Insert(T2)”. 
Else if Dist(T1, T2) = 0 
    Return “”; 
Else { 
    For every node pair (xi , yj) ∈ Mmin(T1, T2), xi is a child 

node of x, yj is a child node of y. 
        If xi and yj are leaf nodes 
              If Dist(xi, yj) = 0 
        Return “”; 
              Else   /* Update leaf node */ 

    Add Update(xi , Value(yj)) to E; 
        Else   /* Call subtree matching */ 
 Add EditScript(Txi, Tyj) to E; 
 Return E; 
    For every node xi  not in Mmin(T1, T2) 
          Add “Delete(Txi)” to E; 
    For every node yj not in Mmin(T1, T2) 
          Add “Insert(Tyj )” to E; 
     Return E. } 

Figure 4.3   EditScript Algorithm 
 



 9 

The motivation is to speed up X-Diff without reducing 
the result quality significantly.  The authors believe that 
generally when people attempt to compute the difference 
between two versions of a document, the two documents 
will not be significantly different. In the example above, 
except for recently inserted or deleted books, most 
<Book> elements are likely to have been only slightly 
changed, such as the bidder’s name, or the bidding price. 
That suggests that for every updated <Book> element in 
one document, it is very likely to find one and only one 
“good” match for the element in the other document. 
Thus, the editing distance between this element (subtree) 
and its “good” match is very likely to be significantly less 
than the editing distance between it and all the other 
elements. As a result, when computing the editing distance 
for an element, as soon as one such match is found, both 
nodes can be immediately matched and there is no need to 
consider any other matchings for these two nodes. 

A natural idea is to use a threshold value to decide 
whether or not two nodes are a “good” match. Obviously, 
a good threshold should not be a static value across 
documents or even different levels within a document. If 
the threshold is too high, it tends to mismatch elements. 
On the other hand, if the threshold is too low, it cannot 
locate good matches and avoid a full evaluation. Our 
solution is to use sampling to calculate this threshold 
whenever there are more than a couple of updated nodes 
in the two documents. At each level when computing the 
editing distance for node pairs, first a small number7 of 
nodes are randomly selected from the first document. 
Second, for each node in this sample the algorithm 
computes the editing distance between this node and every 
candidate in the other document and finds the smallest 
value, which represents the best match for this node. Then 
the threshold value is calculated as the average of the 
editing distances obtained by sampling. 

Section 5 demonstrates that the improved X-Diff 
algorithm runs much faster than the optimal X-Diff 
algorithm while still generating the optimal results in most 
cases. 
 
5. Performance Evaluation 
 

This section examines the performance of both the 
optimal X-Diff algorithm and the improved X-Diff 
algorithm. Both algorithms are compared to XyDiff by 
showing some preliminary results on their running time 
and result quality. 
 
5.1. Experimental Settings and Testing Dataset 
 

                                                 
7 According to the large number / central limit theory, n is a 
“safe” number if there are n nodes [Fel71]. 

X-Diff is implemented in C++8, using Xerces C++ 
XML parser v1.4.0, the same parser used by the XyDiff9 
algorithms.  Both programs read in two versions of an 
XML document and generate the difference. All following 
experiments were performed on a Pentium® III 550 MHz 
PC with 256 MB memory. The operating System is 
RedHat® Linux 6.2. 

The Actors data set10 is used, whose DTD is shown in 
Figure 5.1. The size of the documents used in our 
experiments ranges from 10 KB to 1MB. A program 
generates all three types of changes, “insert”, “delete”, 
and “update”, randomly at each level. The program takes 
a parameter, the percentage of nodes being changed. All 
changes are equally distributed in half of the <Actor> 
elements. 

Notice that XyDiff uses the ordered tree model. In 
order to provide a fair comparison, our change generator 
does not permute the order of any nodes; otherwise, it 
would bias the results in favor of the X-Diff algorithm. 
 
5.2. Execution Time 
 

First, we evaluate the execution time of the three 
algorithms, X-Diff, the improved X-Diff (represented by 
X-Diff+) and XyDiff on documents of different sizes. In 
Figure 5.1, 1% of the nodes are modified.  In Figure 5.2, 
5% of then nodes are changed. 

Both figures show that X-Diff performs well on small- 
and medium-size documents. However, due to the 
complexity of the algorithm, its execution time is fairly 
long when the two input files are large. On the other hand, 
XyDiff is very efficient in that its running time is almost 
linear in the size of the document. Notice, however, while 
the improved X-Diff algorithm is still slower than XyDiff, 
it is much faster than the original X-Diff algorithm as 
using a threshold value obtained by sampling avoids 
unnecessary comparisons.  Notice also that the absolute 
execution time of the two X-Diff algorithms does not 
increase significantly when the percentage of changed 

                                                 
8 Both C++ and Java version of X-Diff are available at 
http://www.cs.wisc.edu/~yuanwang/xdiff.html. 
9 http://www-rocq.inria.fr/~cobena/XyDiffWeb/. 
10 http://www.cs.wisc.edu/niagara/data.html. 

<!ELEMENT Actors (Actor)* > 
<!ELEMENT Actor (Name, Filmography) > 
<!ELEMENT Name (FirstName, LastName) > 
<!ELEMENT FirstName (#PCDATA)> 
<!ELEMENT LastName (#PCDATA)> 
<!ELEMENT Filmography (Movie)*> 
<!ELEMENT Movie (Title,Year) > 
<!ELEMENT Title (#PCDATA)> 
<!ELEMENT Year (#PCDATA)> 

Figure 5.1 DTD of Actors data set 
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nodes increases from 1% to 5% (Figure 5.3 vs. Figure 
5.2). 

This is consistent with our complexity analysis which 
demonstrated that the execution time of the algorithm 
depends primarily on the total number of nodes and not 
the number of changed nodes. 
 

5.2. Result Quality 
 

In the next set of tests the result quality of each 
algorithm is compared. Since the original X-Diff 
algorithm was shown to always find the optimal difference 
in Section 3 (and it does!), Only the improved X-Diff 
algorithm and XyDiff algorithm are compared. 

Figure 5.2 Execution time on 1% change 
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Figure 5.3 Execution time on 5% change 

0.0

0.1

1.0

10.0

100.0

1,000.0

10 100 1,000

Size of input documents (KB)

E
xe

cu
tio

n 
T

im
e 

(s
)

X-Diff
X-Diff+
XyDiff

Figure 5.4 Quality of diff result (1) 
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Figure 5.5 Quality of diff result (2) 
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<Actors> 
<Actor> 

<Name> 
<FirstName>Mike</FirstName> 
<LastName>Johnson</LastName> 

</Name> 
<Movies> 

<Title>movie1</Title> 
<Title>movie2</Title> 
<Title>movie3</Title> 

</Movie> 
</Actor> 
<Actor> 

<Name> 
<FirstName>Mike</FirstName> 
<LastName>Goodman</LastName> 

</Name> 
<Movies> 

<Title>movie1</Title> 
<Title>movie2</Title> 
<Title>movie3</Title> 

</Movie> 
</Actor> 

</Actors>  Document #1 

<Actors> 
<Actor> 

<Name> 
<FirstName>Mike</FirstName> 
<LastName>Johnson</LastName> 

</Name> 
<Movies> 

<Title>movie4</Title> 
<Title>movie2</Title> 
<Title>movie3</Title> 

</Movie> 
</Actor> 
<Actor> 

<Name> 
<FirstName>Bill</FirstName> 
<LastName>Goodman</LastName> 

</Name> 
<Movies> 

<Title>movie1</Title> 
<Title>movie2</Title> 
<Title>movie3</Title> 

</Movie> 
</Actor> 

</Actors>  Document #2 

Figure 5.6 Two sample documents 
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First one hundred 50KB documents are constructed in 
which elements are randomly selected from the base data 
set used in the previous experiments. Then a series of new 
versions for each document was generated by varying the 
change ratio. X-Diff+ and XyDiff were run to compare the 
original version of the document with each of the new 
versions to obtain a series of differences for each 
algorithm. The results of each diff operation were then 
compared to the results obtained using the original X-Diff 
algorithm and the ratio plotted in Figure 5.4. The 
improved X-Diff algorithm almost always finds out the 
optimal difference until the change ratio reaches 18% 
where its result is very close to the optimal difference. On 
the other hand, the result generated by XyDiff is generally 
about 50% worse than the optimal result. 

One of the reasons that XyDiff generates non-optimal 
results is that it has a tendency to mismatch nodes when 
guided by its greedy matching rules. For example, two 
simple documents are illustrated in Figure 5.6, and the 
tree representation of both documents is shown in Figure 
5.7. The difference between the two documents is 
displayed in bold font. The editing list computed by both 
X-Diff and X-Diff+ is, 

E(T1→T2) = Update(10, movie4), Update(18, Bill). 
However, the diff result generated by XyDiff is, 

E′(T1→T2) = Move(16, 2, 1)11, Move(3, 15, 1), 
Update(18, Bill), Update(10, movie4), Move(2, 1, 2). 

This is because XyDiff matches the <Movies> element 
of Mike Johnson to the Bill Goodman’s when it finds both 
subtrees are identical, although it is not a good match 
from the higher-level’s point of view. In this type of 
situation, no matter if the match is propagated to the upper 
level or not, it will generate a much longer difference than 
the optimal result. 

In fact, the above example illustrates that when there 
are many small identical elements in both documents, 
XyDiff is likely to generate a significantly larger diff 
result than the optimal result. On the other hand, although 
X-Diff+ also uses a heuristic matching method, threshold 
matching, its top-down fashion avoids aggressive 
matching on small elements. Notice that the example is 
not that unusual. Considering the motivating example 
shown in Figures 1.1 and 1.2, different books may have 
the same author, or the same publisher, or even the same 
price, etc. 

The next experiment is to demonstrate this difference 
between X-Diff/X-Diff+ and XyDiff. Similar to the 

                                                 
11 This operation means “move the subtree rooted at node 16 to 
be a child of node 2 at position 1”. 

Figure 5.7   Tree representation for both documents in Figure5.6 
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previous test, one hundred 50KB documents are randomly 
constructed, but this time there are at average of five 
duplicate elements for every different <Movie> element 
across each document. A series of new versions for each 
document are also randomly generated and fed to both X-
Diff+ and XyDiff. Figure 5.5 shows the ratios of the diff 
results of both algorithms compared to the optimal result.  
X-Diff+ generates significantly shorter diff results than 
XyDiff. 
 
6. Conclusions 
 

X-Diff is motivated by the problem of efficiently 
detecting changes to XML documents on the web. 
Previous work in change detection on XML or other 
hierarchically structured data [CRGMW96, CE99] used 
the ordered-tree model. In this paper, we argue that using 
the unordered-tree model is more suitable for most 
database and web applications, although it is substantially 
harder than using the ordered-tree model. The paper 
studies the XML domain characteristics and introduces 
several key notions, such as node signature, and XHash. 
Using these techniques in combination with standard tree-
to-tree correction techniques [Zha93], this paper proposes 
X-Diff, an efficient algorithm for computing the optimal 
difference between two versions of an XML document. 
We present and analyze the algorithm, and also propose 
an improved X-Diff algorithm that runs much faster than 
the original algorithm while still generating at least near-
optimal results. A preliminary performance evaluation of 
our algorithms is presented, compared with XyDiff 
[CAM02]. The experiments show that the improved X-
Diff algorithm generally generates more accurate results 
than XyDiff does, although it runs slower than XyDiff.  It 
is suitable for the situations that users want to get more 
accurate results. 
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