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Understanding and comparing DCDSs

Before moving into verification, we need to understand how to characterize the
(branching) behavior induced by a DCDS.

How to compare the behaviors induced by two DCDSs?

How does behavioral equivalence relate with satisfaction of verification
formulae?

In the propositional case, the main tool for answering such questions is that of
bisimulation.
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A crash course on bisimulation

Bisimulation between propositional transition systems

Consider two propositional transition systems A = 〈SA, sA0 , propA,⇒A〉 and
B = 〈SB, sB0 , propB,⇒B〉. Two states sA ∈ SA and sB ∈ SB bisimilar if:

1 sA and sB are isomorphic (local condition).

2 If there exists a state sA1 of A such that sA ⇒A sA1 , then there exists a
state sB1 of B such that sB ⇒B sB1 , and sA1 and sB1 are bisimilar (forth c.).

3 The other direction (back condition).

A and B are bisimilar, if their initial states are bisimilar.

A B

sA sB

sA1 sB1

sB2sA2
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Two fundamental theorems

Consider two propositional transition systems A and B.

Theorem

If A and B are bisimilar, then they satisfy exactly the same µL properties.

Intuitively, µL is not able to distinguish bisimilar transition systems.

Theorem

If A and B satisfy exactly the same µL properties, then they are bisimilar.

Intuitively, µL is the maximal logic that captures bisimulation.
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Correspondence Theorems for DCDSs

Can we lift these fundamental correspondence theorems to the case of DCDSs?

In the general case, we are doomed, since relational transition systems are
simply too rich.

We proceed as follows:

1 We single out key properties of the RTSs induced by DCDSs.

2 We introduce suitable notions of bisimulations for the FO temporal logics
introduced before.

3 We reconstruct correspondence theorems.
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Two key properties of DCDSs

We have already seen the two properties of DCDSs to exploit:

Markovian, i.e., the next state only depends on the current state and the
input.

Based on generic queries, which do not distinguish structures that are
identical modulo uniform renaming of (new) data objects.

DCDSs are generic, which implies that, modulo isomorphisms on the results of
service calls, successor states are “indistinguishable” from each other.
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Bisimulation between RTSs

Consider Υ1, Υ2 over disjoint data domains ∆1, ∆2, with states S1, S2.

A bisimulation between Υ1 and Υ2

is a binary relation connecting pairs of states under a global bijection.

In particular, ≈ ⊆ S1 × S2 is a bisimulation between Υ1 and Υ2

if there exists a bijection h : ∆1 7→ ∆2 such that s1 ≈ s2 implies that:
1 h induces an isomorphism between db1(s1) and db2(s2);
2 for each s′1, if s1 ⇒1 s

′
1 then there is an s′2 with s2 ⇒2 s

′
2 s.t. s′1 ≈ s′2;

3 the other direction.

Υ1 ≈ Υ2 if s01 ≈ s02.

The classical result on indistinguishability of bisimilar TSs by µL formulas
extends to µLFO.

Theorem

If Υ1 ≈ Υ2, then for every µLFO closed formula Φ, we have that:

Υ1 |= Φ if and only if Υ2 |= Φ.
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Weakening the bisimulations

The notion of bisimulation as just defined is suitable for µLFO (and LTL-FO),
but is too strong for our purposes.

Note:

µLFO allows for quantifying over the whole domain.
; Captured by the global bijection in the definition of bisimulation.

In µLA, instead we can quantify only over the active domain of the current
state, and the evolution of its elements over time.
; The bijection should consider the history so far plus the new objects.

In µLP , we can quantify only over the objects that persist.
; The bijection should consider elements that persist in the state.

We suitably adjust the definition of bisimulation to reflect these restrictions.
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History-preserving bisimulation

Consider Υ1, Υ2 over disjoint data domains ∆1, ∆2, with states S1, S2.
Let H be the set of all partial bijections between ∆1 and ∆2.

A history-preserving bisimulation between Υ1 and Υ2

is a ternary relation ≈A ⊆ S1 ×H × S2, connecting pairs of states under a
bijection that tracks the history.

In particular, 〈s1, h, s2〉 ∈ ≈Ah , denoted s1 ≈Ah s2, implies that:
1 h ∈ H induces an isomorphism between db1(s1) and db2(s2);
2 for each s′1, if s1 ⇒1 s

′
1 then there is an s′2 with s2 ⇒2 s

′
2 and a bijection

h′ that extends h, such that s′1 ≈A
h′ s

′
2;

3 the other direction.

Υ1 ≈A Υ2 if there exists a partial bijection h0 such that s01 ≈Ah0
s02.

Theorem

If Υ1 ≈A Υ2, then for every µLA closed formula Φ, we have that:

Υ1 |= Φ if and only if Υ2 |= Φ.
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History-preserving bisimulation

a() :

{
P (x) del{R(x)}, add{Q(f(x), g(x))}
Q(a, a) ∧ P (x) del{Q(a, a)}, add{R(x)}

I0 = {P (a), Q(a, a)}

P(a) Q(a,a)

f(a)7→b g(a)7→b

P(a) R(a) Q(b,b)

f(a)7→a g(a) 7→a

P(a) R(a) Q(a,a)

f(a)7→c g(a) 7→c

P(a) R(a) Q(c,c)

f(a)7→b g(a)7→b

P(a) Q(b,b)

f(a)7→c g(a) 7→c

P(a) Q(c,c)

. . .

P(a) Q(a,a)

f(a) 7→b g(a)7→a

P(a) R(a) Q(b,a)

f(a) 7→a g(a)7→b

P(a) R(a) Q(a,b)

f(a) 7→a g(a)7→a

P(a) R(a) Q(a,a)

f(a) 7→b g(a) 7→b

P(a) R(a) Q(b,b)

f(a) 7→b g(a) 7→c

P(a) R(a) Q(b,c)

f(a) 7→a g(a)7→b

P(a) Q(a,b)

f(a)7→b g(a)7→a

P(a) Q(b,a)

f(a)7→b g(a) 7→b

P(a) Q(b,b)

f(a)7→b g(a) 7→c

P(a) Q(b,c)

h(a) = a

h′1(a) = a

h′2(a) = a

h′2(b) = bh′3(a) = a

h′3(c) = b

h′′2 = h′2

h′′3 = h′3

The two transition systems are
history-preserving bisimilar.
Hence, they satisfy the same set
of µLA / LTL-FOA properties.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (11/39)



Bisimulations Weaker Bisimulations Towards Decidability Infinite Branching Infinite Runs Decidability Results

Persistence-preserving bisimulation

Consider Υ1, Υ2 over disjoint data domains ∆1, ∆2, with states S1, S2.
Let H be the set of all partial bijections between ∆1 and ∆2.

A persistence-preserving bisimulation between Υ1 and Υ2

is a ternary relation ≈P ⊆ S1 ×H × S2, connecting pairs of states under a
bijection that tracks the history of persisting objects.

In particular, 〈s1, h, s2〉 ∈ ≈Ph , denoted s1 ≈Ph s2 implies that:
1 h ∈ H induces an isomorphism between db1(s1) and db2(s2);
2 for each s′1, if s1 ⇒1 s

′
1 then there exists an s′2 with s2 ⇒2 s

′
2 and a

bijection h′ that extends h restricted on adom(db1(s1))∪ adom(db1(s′1)),
such that s′1 ≈P

h′ s
′
2;

3 the other direction.

Υ1 ≈P Υ2 if there exists a partial bijection h0 such that s01 ≈Ph0
s02.

Theorem

If Υ1 ≈P Υ2, then for every µLP closed formula Φ, we have that:

Υ1 |= Φ if and only if Υ2 |= Φ.
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Genericity, Bisimulation Collapse

The different bisimulations are tightly related to the logic variants that we have
introduced.

Consider two RTSs Υ1 = 〈∆1,R, S1, q10, db1,⇒1〉 and
Υ2 = 〈∆2,R, S2, q20, db2,⇒2〉

with |∆1| = |∆2| infinite, a state s1 of T1, and a state s2 of T2.

Let s1 ≡µLFO
s2 denote that states s1 and s2 satisfy the same µLFO formulas,

analogously for µLA and µLP .

Finite-active-domain transition system

Is a RTS such that the active domain of every state is finite (though not
necessarily bounded by some given b).

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (13/39)



Bisimulations Weaker Bisimulations Towards Decidability Infinite Branching Infinite Runs Decidability Results

Genericity, Bisimulation Collapse, and µLFO Variants

The following always hold:

s1 ≈ s2 implies s1 ≈A s2 implies s1 ≈P s2
s1 ≈P s2 implies s1 ≡µLP

s2
s1 ≈A s2 implies s1 ≡µLA

s2
s1 ≈ s2 implies s1 ≡µLFO

s2
s1 ≡µLFO

s2 implies s1 ≡µLA
s2 implies s1 ≡µLP

s2

When T1 and T2 are generic:

s1 ≈P s2 equivalent s1 ≈A s2 equivalent s1 ≈ s2

When T1 and T2 are generic and finite-active-domain:

s1 ≡µLP
s2 equivalent s1 ≈P s2

s1 ≡µLA
s2 equivalent s1 ≈A s2

s1 ≡µLFO
s2 equivalent s1 ≈ s2

s1 ≡µLP
s2 equivalent s1 ≡µLA

s2 equivalent s1 ≡µLFO
s2
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Summary of results so far

We have seen the following results:

Without restrictions on the form of the DCDS, even the simplest properties
(reachability) is undecidable.
; Towards decidability, we deal only with state bounded DCDSs and

with logics with active domain quantification (µLA, LTL-FOA).

Even for state bounded DCDS, we have that:

Model checking LTL-FOA (and hence LTL-FO) is undecidable.

Model checking µLA does not admit formula-independent abstractions.

To overcome these problems, we can follow different approaches:

We consider a further restriction on DCDSs: run-boundedness
(is only meaningful under deterministic services semantics).

We consider a further restriction on the logics: µLP and LTL-FOP .

We study formula-dependent abstractions.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (16/39)



Bisimulations Weaker Bisimulations Towards Decidability Infinite Branching Infinite Runs Decidability Results

Current overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA
over state-bounded DCDSs: no FIA

Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: U

Tune DCDS:
run-bounded

Tune logic:
persistence

Tune DCDS:
run-bounded

Tune logic:
persistence
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Towards decidability

We need to tame the two sources of infinity in
the RTS ΥX generated by a DCDS X :

infinite branching, due to external input;

infinite runs, i.e., runs visiting infinitely
many DBs.

P(a) P(a)

P(b)

. . .

. . .

. . .

. . .

To prove decidability of model checking for restricted DCDSs and a specific
verification logic L:

We use as a tool bisimulations for the logic L.

We show that we can construct a finite-state RTS ΘX that provides a
faithful abstraction of ΥX for formulas of L.

In other words, ΘX and ΥX are bisimilar, under the bisimulation for L.
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Dealing with infinite branching

Infinite branching is caused by the infinite number
of possible combinations of values returned by the
service calls.

Notice, however, that for each state along a run:

only a finite number of values have been
encountered so far, and
only a finite number of service calls are issued
when an action is executed.

Hence, due to genericity, we need only to take into
account:

whether a new value is equal to or differs from a
value encountered so far;
whether new values obtained from different
service calls are equal to or differ from each other.

• • •
•
•
•

• • •
•
•
•

• • •
•
•
•

• • •
•
•
•

• • •
•
•
•

· · ·

A-bisimilar

non A-bisimilar

; Note: Instead of actual values, use isomorphic types based on equality
commitments.
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Equality commitments

Consider a set D consisting of:

constants, and

terms obtained by applying functions to constants (i.e., service calls).

Equality commitment (EqC) H on D

is a partition of D such that each element of the partition contains at most one
constant (but arbitrarily many terms).

Note: each equality commitment H induces an equality relation =H on the
elements of D.

Given a state s of ΥX with DB I, we consider now EqCs on

adom(I) ∪ adom(I0) as the set of constants, and

calls(I) as the set of terms.

Note: there are only finitely many such EqCs.
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Equality commitments and pruning

A service call evaluation θ respects an EqC H
if for every two terms t1, t2, we have that t1θ = t2θ if and only if t1 =H t2.

For an action α and parameter evaluation σ, consider now all successors of
state s according to an EqC H:

For each θ that respects H, state s has one successor do(I, α, σ, θ).

All such successors are isomorphic. Hence each EqC H determines an
isomorphism type.

We can now prune all isomorphic successors except one, which is kept as
representative of the isomorphism type.
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Equality commitments – Example

Consider action α with no params and using a nondeterministic service call f :
α·eff =

{
R(x, y)  add{S(f(x), f(y))}

}
R(a,b)

R(a,b)
S(f(a),f(b))

α

θ1
a X X
b
f(a)f(b)

θ2
a X
b X
f(a)f(b)

θ3
a X
b X
f(a)f(b)

θ4
a
b X X
f(a)f(b)

θ5
a X
b
c X
f(a)f(b)

θ6
a
b X
c X
f(a)f(b)

θ7
a X
b
c X
f(a)f(b)

θ8
a
b X
c X
f(a)f(b)

θ9
a
b
c X X
f(a)f(b)

θ10
a
b
c X
d X
f(a)f(b)

R(a,b)
S(a,a)

R(a,b)
S(a,b)

R(a,b)
S(b,b)

R(a,b)
S(b,a)

R(a,b)
S(a,c)

R(a,b)
S(b,c)

R(a,b)
S(c,a)

R(a,b)
S(c,b)

R(a,b)
S(c,c)

R(a,b)
S(c,d)
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Constructing a finite branching abstraction

Theorem

Let ΘX be the RTS obtained from ΥX by pruning successor nodes according to
equality commitments. Then:

ΘX is finite branching.

ΘX and ΥX are persistence-preserving bisimilar.

Note:

In the construction of ΘX , we have computed EqCs by considering as
constants only the elements of the active domains of the current state and
of the initial state s0.

Instead, if we determine EqCs by considering as constants all values along
the history, then:

ΘX is still finite branching.
ΘX and ΥX are history-preserving bisimilar.
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Dealing with infinite runs

We still need to address infiniteness of the RTS coming from possibly infinite
runs, which may accumulate infinitely many new values along the run.

Two approaches to deal with this:

1 Restrict the DCDS, by ruling out a priori the accumulation of infinitely
many values along a run.
; run-bounded DCDSs

2 Restrict the logics, making them “insensitive” to the infinitely many values.
; persistence-preserving variants of µLFO and LTL-FO

Recall: the DCDSs we consider are state-bounded!

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (26/39)



Bisimulations Weaker Bisimulations Towards Decidability Infinite Branching Infinite Runs Decidability Results

Run-boundedness

A DCDS X is run-bounded

if there exists a fixed number b such that the number of values used in each
(infinite) run of X , is bounded by b: given ΥX = 〈∆,R, S, s0, db,⇒〉, for
each sequence s0, s1, s2, . . . such that si ⇒ si+1 for all i ≥ 0, we have that

|
⋃
i≥0 adom(db(si))| ≤ b.

Note:

In general, even when X is run-bounded, ΥX is still infinite-state due to
infinite branching (but we have seen how to cope with this).

Run-boundedness is a semantic condition.

Theorem

Verification of µLA over run-bounded DCDSs is decidable and can be
reduced to model checking of propositional µ-calculus over a finite TS.

Verification of LTL-FOA over run-bounded DCDSs is decidable and can be
reduced to model checking of propositional LTL over a finite TS.
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Current overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA
over state-bounded DCDSs: no FIA

Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: U

Tune DCDS:
run-bounded

Tune logic:
persistence

Tune DCDS:
run-bounded

Tune logic:
persistence

Model checking µLFO/LTL-FO
over run-bounded DCDSs: D (FIA)
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Avoiding run-boundedness

Run-boundedness is a rather restrictive condition for DCDSs

With non-deterministic services: only a finite number of service calls . . .

With deterministic services: only a finite number of distinct service calls . . .

. . . may be issued along a run.

Instead of requiring run-boundedness, we:

restrict the form of quantification, and

show how to construct a finite faithful abstraction in which we reuse values
along runs.
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Eventually recycling pruning

Intuition:

We consider logics with persistence-preserving quantification, which cannot
quantify over values, once they have left the active domain.

When we need to return new values from service calls, we “recycle” those
values that previously disappeared.

We incorporate the recycling into the construction of the RTS for the
DCDS, effectively pruning the set of generated states.

If the DCDS is b-bounded, the recycling algorithm will introduce at most
2 · b new values overall. Namely, for each state s:

at most b values that constitute adom(db(s));
at most b new values that are introduced by the service calls, and that
possibly replace some of the values in adom(db(s)).
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Recycling algorithm

Algorithm Recycle
Input: DCDS X = 〈D,P, I0〉, with D = 〈R, C〉 and P = 〈F ,A, %〉.
S := {I0}; ⇒ := ∅; UsedValues := adom(I0);
repeat

pick non visited triple of state I ∈ S, action α, and legal parameters σ;
RecyclableValues := UsedValues − (adom(I0) ∪ adom(I));
pick set V of n service call results such that:

1 |V| = n = |calls(add(I, α, σ) ∪ del(I, α, σ))|, and

2

{
V ⊆ RecyclableValues, if |RecyclableValues| ≥ n, % recycled values
V ⊂ ∆−UsedValues, otherwise; % fresh values

F := adom(I0) ∪ adom(I) ∪ V;
for each θ ∈ evalsF (I, α, σ) such that Inext |= C,

where Inext := do(I, α, σ, θ) do
S := S ∪ {Inext};
⇒ := ⇒∪ {〈I, Inext〉};

UsedValues := UsedValues ∪ adom(Inext);
enddo

until S and ⇒ no longer change;
return 〈∆,R, S, I0, dbid ,⇒〉, where dbid is the identity function.
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Decidability for persistence-preserving logics

Given as input a state-bounded DCDS X , algorithm Recycle constructs
a finite RTS ΘX .

Moreover, ΘX and ΥX are persistence-preserving bisimilar.

Note: the algorithm does not require to know the bound b for the state.

From this, and the fact that µLP / LTL-FOA are invariant under
persistence-reserving bisimulations, we obtain decidability of verification.

Theorem

Verification of µLP over state-bounded DCDSs is decidable and can be
reduced to model checking of propositional µ-calculus over a finite TS.

Verification of LTL-FOP over state-bounded DCDSs is decidable and can
be reduced to model checking of propositional LTL over a finite TS.
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Current overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA
over state-bounded DCDSs: no FIA

Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: U

Tune DCDS:
run-bounded

Tune logic:
persistence

Tune DCDS:
run-bounded

Tune logic:
persistence

Model checking µLFO/LTL-FO
over run-bounded DCDSs: D (FIA)

Model checking µLP /LTL-FOP

over state-bounded DCDSs: D (FIA)
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µLA and µLFO over state-bounded DCDSs

We have seen that µLA (and hence µLFO) over state-bounded DCDSs does not
admit formula-independent abstractions.

But is verification decidable?

µLFO is not able to single out properties about a run.

Combined with genericity of the RTS generated by a DCDS X , this limits
the ability to express first-order temporal properties over ΥX .

Hence, given a µLFO formula Φ with n variables, we can introduce n data
slots that keep track of their assignments.

Theorem

Given a state-bounded DCDS X and an integer n, we can construct a finite
state abstraction ΘX of ΥX (that depends on n) such that, for every µLFO

formula Φ with n variables,
ΘX |= Φ if and only if ΥX |= Φ.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (36/39)



Bisimulations Weaker Bisimulations Towards Decidability Infinite Branching Infinite Runs Decidability Results

Final overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA
over state-bounded DCDSs: D (FDA)

Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: U

Tune DCDS:
run-bounded

Tune logic:
persistence

Tune DCDS:
run-bounded

Tune logic:
persistence

Model checking µLFO/LTL-FO
over run-bounded DCDSs: D (FIA)

Model checking µLP /LTL-FOP

over state-bounded DCDSs: D (FIA)
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Deciding state and run-boundedness

State-boundedness and run-boundedness are semantic properties.

Theorem

Checking whether a DCDS is state-/run-bounded is:

Undecidable for an unknown bound.

Decidable for a given bound.

Proof of undecidability of checking boundedness

By encoding the halting problem of TMs. Given a TM M :

We construct a DCDS XM that encodes the computation of M .

XM also maintains an additional unary relation R, in which it inserts a
fresh value for each transition that M performs.

We have that:

The TM M halts iff XM is state-bounded iff XM is run-bounded.
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Deciding state and run-boundedness

State-boundedness and run-boundedness are semantic properties.

Theorem

Checking whether a DCDS is state-/run-bounded is:

Undecidable for an unknown bound.

Decidable for a given bound.

Proof of decidability of checking b-boundedness of a DCDS X
We construct a new DCDS X ′ as follows:

Define a Boolean query Q>b testing that the active domain contains more
than b distinct values.

Conjoin each condition in the condition-action rules with ¬Q>b, thus
blocking all actions when the size of the active domain exceeds b.

Add a new condition-action rule that raises a flag when Q>b becomes true.
Hence, the flag is raised in X ′ if and only if X is not b-bounded.

X ′ is state-bounded, hence reachability of raising the flag is decidable.
(For decidability of checking b-run-boundedness, we can proceed analogously.)
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Results on (un)decidability of verification for DCDSs
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GR+-acyclic DCDSs

GR-acyclic DCDSs

Weakly-acyclic DCDSs
for det. services

Finite-range DCDSs

Unrestricted State-bounded Run-bounded Finite-state

LTL-FO / µLFO U U / FDA D / FDA D

LTL-FOA / µLA U U / FDA D D

LTL-FOP / µLP U D D D

LTL / µL U D D D

D: decidable with formula independent abstraction U: undecidable
FDA: decidable, but formula dependent abstraction
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