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Delineating the boundaries of verifiability

Understand the boundaries of verifiability for DCDSs:

Considering propositional reachability as the bottom line, then moving
towards model checking branching and linear time FO temporal logics.

Striving for robust conditions that lend themselves to be enforced in
practice.

Aiming at reducing the problem to conventional model checking.
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Our goal

DCDS (Un)desired property

Infinite-state
RTS

First-order
temporal formulaΦ|=

Finite-state
TS

faithful abstraction

Propositional
temporal formulaΨ

propositionalization

|=

IFF
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The good

Study propositional reachability:
◦ Undecidable;
◦ Decidable.

X
outcome?

Tune DCDS Study model checking of logic L:
◦ Undecidable;
◦ Decidable:
• Formula-Independent Abstractions;
• Formula-Dependent Abstractions.

Tune DCDS/logic

outcome?

Write abstraction technique

U D

FIA or FDA

U, or D but only with FDA
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The bad

Data LayerProcess Layer
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The bad

A Turing Machine in GSM [Solomakhin et al. 2013]

Halt
curState == qf

Transition done

...

status attributes curState cellscurCell

curCell = curCell.next;

Head moved

if curCell.next == null

newCell = createCell();
newCell.value = "_";
curCell.next = newCell;
newCell.prev = curCell;
newCell.next = null;

Tape extended

if curCell.next != null

curCell = createCell();
curCell.value = "_";
curState = q0;Initialized if curCell == null

MovedR

. . .

curCell.value = vR1';
curState = qR1';

if curState = qR1
&& curCell.value = vR1

R1 state updated

. . .

curCell.value = vRk';
curState = qRk';

if curState = qRk
&& curCell.value = vRk

Rk state updated

curCell = curCell.prev;

Head moved

if curCell.prev == null

newCell = createCell();
newCell.value = "_";
curCell.prev = newCell;
newCell.next = curCell;
newCell.prev = null;

Tape extended

if curCell.prev != null

MovedL

. . .

curCell.value = vL1';
curState = qL1';

if curState = qL1
&& curCell.value = vL1

L1 state updated

. . .

curCell.value = vLn';
curState = qLn';

if curState = qLn
&& curCell.value = vLn

Ln state updated

...

value prev next

Transition stage

State update stages

Init stage

Right shift stage

Left shift stage

Question

Do we need all such complications to encode Turing-powerful computations?
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The ugly

To encode Turing-powerful computations, we just need. . .

unary relations and queries with negation;

a single binary relation and no negation.

Negation and binary relations are essential features!

Theorem

Verification of propositional reachability over DCDSs employing only unary
relations, is undecidable.

Theorem

Verification of propositional reachability over DCDSs employing unary
relations, a single binary relation, and only positive queries, is undecidable.

To prove these theorems, we need to reduce from a simple, yet Turing-powerful,
computation mechanism.
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Counter automaton (CA)

A finite-state automaton, whose transitions:

recognize symbols from a finite alphabet;

manipulate and test counters: registers storing non-negative values.

Three forms of test/manipulation:

increment a counter (inc) - always executable;

decrement a positive counter (dec) - executable only if counter > 0;

test a counter for zero (ifz) - executable only if counter == 0.

Finite-state automaton recognizing finite words over Σ = {a,b,x}

q0

q1

a b

x

Some recognized words:
x
ax
abx
abbx
aaabbbabx
abababaabbx
abababaaaabx
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Counter automaton (CA)

A finite-state automaton, whose transitions:

recognize symbols from a finite alphabet;

manipulate and test counters: registers storing non-negative values.

Three forms of test/manipulation:

increment a counter (inc) - always executable;

decrement a positive counter (dec) - executable only if counter > 0;

test a counter for zero (ifz) - executable only if counter == 0.

CA (with one counter initially 0) recognizing finite words over Σ = {a,b,x}

q0

q1

a,inc, 1 b,dec, 1

x,ifz, 1

Some recognized words:
x
ax
abx
abbx
aaabbbabx
abababaabbx
abababaaaabx
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Counter automaton: formal definition [Demri and Lazic 2009]

A counter automaton (CA) M is a tuple 〈Σ, Q, qI , n, δ, F 〉, where:

Σ is a finite alphabet;

Q is a finite set of locations;

qI ∈ Q is the initial location;

n ∈ N is the number of counters;

δ ⊆ Q× Σ× L×Q is a labeled transition relation capturing the control
configuration updates.
L is the instruction set {inc, dec, ifz} × {1, . . . , n}
F ⊆ Q is the set of accepting locations.

When a CA recognizes a word, we have to remember:
the current state;
the current value of each counter.

A configuration of counter automaton 〈Σ, Q, qI , n, δ, F 〉 is a pair 〈q, v〉, where:

q ∈ Q is a location;

v : {1, . . . , n} → N is a counter valuation.
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Minsky counter automata (MCA)

A counter automaton that correctly manipulates its counters.

A transition of MCA 〈Σ, Q, qI , n, δ, F 〉 is of the form 〈q, v〉 w,l−−→ 〈q′, v′〉, where:

〈q, v〉 and 〈q, v′〉 are configurations of the MCA;

w ∈ Σ is a symbol;

l ∈ L is an instruction;

the transition agrees with the control configuration updates δ, i.e.,
〈q, w, l, q′〉 ∈ δ;

the transition correctly tests and manipulates the counters according to l,
i.e., given c ∈ {1, . . . , n}:

if l = 〈inc, c〉, then v′ is identical to v, except v′(c) = v(c) + 1;
if l = 〈dec, c〉, then v(c) > 0, and v′ is identical to v, except v′(c) = v(c)− 1;
if l = 〈ifz, c〉, then v(c) = 0, and v′ is identical to v.
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Recognizing words using MCA

A run of MCA 〈Σ, Q, qI , n, δ, F 〉

is a sequence of transitions 〈q0, v0〉
w0,l0−−−→ 〈q1, v1〉

w1,l1−−−→ . . ., where

q0 = qI (the run starts from the initial location of the MCA);

v0 is such that for every c ∈ {1, . . . , n}, v0(c) = 0 (counters start from 0).

A run is accepting if

finite run: it ends with an accepting location;

infinite run: it visits an accepting location infinitely often.

The MCA accepts word w0w1 . . . if

there exists a run of the MCA of the form

〈q0, v0〉
w0,l0−−−→ 〈q1, v1〉

w1,l1−−−→ . . .

that is accepting.

(Non)emptiness over finite and infinite words immediately follow.
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Faulty CA with unreliable counters

Lossy CA [Mayr 2003]

CA with unreliable counters that nondeterministically leak down.

A (seemingly) positive counter may return true when tested for zero,
because it could have leaked down to 0.

Incrementing CA (ICA) [Demri and Lazic 2009]

CA with unreliable counters that nondeterministically leak up.

A (seemingly) zero counter may accept a decrement, because it could
have leaked up to whatever positive number.

A transition of ICA 〈Σ, Q, qI , n, δ, F 〉 is of the form
w,l−−→†, where:

〈q, v〉 w,l−−→† 〈q′, v′〉 if and only if

there exists v′′ such that 〈q, v〉 w,l−−→ 〈q′, v′′〉 (Minsky semantics);

v′ is such that for every counter c ∈ {1, . . . , n}, v′(c) ≥ v′′(c).

A transition in an ICA coincides with that of the corresponding MCA, possibly
experiencing an unpredictable incrementation of one or more counters.
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Counter automata are powerful

An i-CA is a CA using i counters.

Theorem ([Minsky 1967])

Emptiness of 2-MCA over finite/infinite words is undecidable.

Theorem ([Demri and Lazic 2009])

Emptiness of 2-ICA over infinite words is undecidable.

In general, many intriguing results on decidability and complexity of various
reasoning tasks over faulty counter machines.

Depending on the property that one wants to check, they may behave like
MCAs, or turn out to be simpler.

Useful tool to prove decidability and undecidability results for systems that
are not able to fully simulate the behaviours exhibited by an MCA.
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Representing MCAs with DCDSs

Crux:

show how to simulate two counters in the DCDS data layer;

show how to simulate increment, decrement, zero testing in the DCDS
process layer.

The control part is straightforward (being propositional).
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Representing MCAs with DCDSs

Crux:

show how to simulate two counters in the DCDS data layer;

show how to simulate increment, decrement, zero testing in the DCDS
process layer.

The control part is straightforward (being propositional).

Unary Relations

Data layer: two unary relations.

a
b
c

C1

d
a

C2

c1 = 3
c2 = 2

Counter: size of a unary relation C in the DB.

Increment: insert a fresh value into C.

Decrement: pick a value from C, and remove it from the extension of C.

Zero testing: check that C does not contain any value.
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Representing MCAs with DCDSs

Crux:

show how to simulate two counters in the DCDS data layer;

show how to simulate increment, decrement, zero testing in the DCDS
process layer.

The control part is straightforward (being propositional).

Binary Relation

Data layer: one binary relation, three unary relations.

Bottom Top1Top2

Next Next Next Next Next

c2 = 2 c1 = 3

Counter: length of the chain from the bottom value to left/right top.

Increment: extend the chain of one step (fresh top).

Decrement: cut the chain of its last step.

Zero testing: check that the bottom and top element coincide.
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Warm-up: fresh inputs

Fact

Service calls may return whatever value, possibly being already used in the
current DB, possibly not.

Recall the cart example: no guarantee that adding a product to the cart will
result in a proper update.

The obtained barcode could be already in use!

Observation

The DCDS may reject certain returned values through constraints!

This is the basis to simulate local and global freshness.

We are going to show this on a simple example where we consider
relation-freshness, i.e., freshness w.r.t. the values stored in a unary relation.

Generalization to relations with multiple arity, or to the entire active
domain of the DB, are straightforward.
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Simulating freshness

DCDS “adding” elements to a unary relation

Data layer: unary relation R, no constraint.
Process layer:

one nondeterministic service call f();

one action α inserting an external value in R:

α·pars = ∅;
α·eff = add{true R(f())}.

a single condition-action rule true 7→ α() (tells that α is always applicable).

Fact: this DCDS models faulty insertions

No guarantee that the value injected using f() is fresh.

If it is not, no addition happens (due to set semantics).

Is it possible to guarantee freshness of f()?

global freshness: fresh by considering the entire history.

local freshness: fresh by considering the current DB.
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Simulating global Freshness

Compile DCDS into new DCDS with additional relations, constraints, effects.

DCDS “adding” elements to a unary relation

Data layer:unary relation R, no constraint.
Process layer:

one nondeterministic service call f();

one action α inserting an external value in R:
α·pars = ∅ α·eff = {true add{R(f())}}

Addition of globally fresh elements

Data layer: two additional unary relations Rnew and Rold .

Subject to a disjointness constraint ∀x.¬(Rnew (x) ∧Rold(x)).

Process layer:

α stores in Rnew the newly inserted values, in Rold the historical values:

α·eff =

 true  add{R(f()), Rnew (f())}
Rnew (x)  del{Rnew (x)} add{Rold(x)}
Rold(x)  del{Rold(x)}


Due to disjointness: if f() is not globally fresh, the update is rejected!

Note: even if R stays bounded in size, Rold may grow unboundedly!
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Simulating local Freshness

Compile DCDS into new DCDS with additional relations, constraints, effects.

DCDS “adding” elements to a unary relation

Data layer:unary relation R, no constraint.
Process layer:

one nondeterministic service call f();

one action α inserting an external value in R:
α·pars = ∅ α·eff = {true add{R(f())}}

Addition of locally fresh elements

Data layer: two additional unary relations Rnew and Rold .

Subject to a disjointness constraint ∀x.¬(Rnew (x) ∧Rold(x)).

Process layer:

α stores in Rnew the newly inserted values, in Rold the previous values:

α·eff =

 true  add{R(f()), Rnew (f())}
Rnew (x)  del{Rnew (x)} add{Rold(x)}
Rold(x)  del{Rold(x)}


Due to disjointness: if f() is not locally fresh, the update is rejected!

Note: If R stays bounded in size, so does Rold !
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Current overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
?
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State boundedness

Main reason for undecidability

The DCDS database may accumulate unbounded information.

Idea: we control the way the process layer can use the data layer.

A DCDS X is state-bounded

if there exists a fixed number b such that the number of values used in each
single state of X , is bounded by b: given ΥX = 〈∆,R, S, s0, db,⇒〉, for each
state s ∈ S, we have |adom(db(s))| ≤ b.

If we know b, we say that the DCDS is b-bounded.
Note:

Even a 1-bounded DCDS may still
induce an infinite RTS.

However, the unboundedly many
encountered values cannot be
accumulated in a single DB.

State-boundedness is a semantic
condition.

• • •
•
•
•

• • •
•
•
•
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State-boundedness to the rescue

Theorem

Reachability over state-bounded DCDS is decidable.

Proof.

State-boundedness combines well with two key formal properties of DCDSs and
the RTSs they induce.
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Two key properties of DCDSs

DCDS are . . .

Markovian

Next state only depends on the current state and the input.

Based on generic queries

FO/SQL (as virtually all query languages) does not distinguish structures that
are identical modulo uniform renaming of data objects.

Consider two isomorphic databases D1 and D2.

Let h be a bijection between the active domains of D1 and D2, witnessing
their isomorphisms (i.e., preserving relations).

For every query Q, by applying h on the answers obtained by issuing Q
over D1, we exactly get the answers obtained by issuing Q over D2.

These two properties, together, lead to a crucial genericity property of the
dynamics induced by DCDSs.
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Genericity, intuitively

Travel payment

register 
credit card

cc number

... pay

bank status

...

...

...

status = "OK"

status = "ERR"

else

+

For analyzing the system (considering all possible executions):

The actual credit card number does not matter.

What matters is the outcome of the payment.

The process behavior:

Distinguishes the bank status.

Does not really “see” the actual cc number
; only how it relates to the other objects!
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Genericity, formally

We want to define a genericity property capturing RTSs that do not
distinguish values as such, but only how they participate to relations.

We consider isomorphisms ∼h between relational states, where h is a bijection
between the domains that preserves relations and constants.

Fix a finite set ∆0 ⊂ ∆ of distinguished constant.

An RTS Υ = 〈∆,R, S, s0, db,⇒〉 is generic

if for all states s1, s2 ∈ S, and every bijection h : ∆ 7→ ∆ that is the identity
over ∆0:

if db(s1) ∼h db(s2) and there exists s′1 such that s1 ⇒ s′1,

then there exists s′2 such that s2 ⇒ s′2 and db(s′1) ∼h db(s′2).
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Genericity, graphically

If. . .

Then

s1 s′1

s2

h
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Genericity, graphically

If. . .Then
s1 s′1

s2 s′2

h h
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Genericity, graphically

Note: s1 and s2 can be the same state, hence the existence of a successor state
induces the existence of all successor states isomorphic to it.

If. . .

Then

s1 = s2 s′1

h1
h2

h3

h4. . .
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Genericity, graphically

Note: s1 and s2 can be the same state, hence the existence of a successor state
induces the existence of all successor states isomorphic to it.

If. . .Then
s1 = s2 s′1

h1
h2

h3

h4. . .
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DCDSs always induce generic RTSs

DCDSs induce generic RTSs since:

The progression mechanism is defined through FO, whose queries are
generic.

The progression mechanism is markovian, i.e., next states only depend on
the current state.

The semantics of service calls induces the existence of a successor state for
each combination of values returned by the service calls, such that
constraints are satisfied.

Successor states generated through the execution of a DCDS action are
“indistinguishable” modulo isomorphisms on the results of service calls.
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DCDSs are Generic

If. . .

Then

s1
s′1

ασ
θ

s2

h
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DCDSs are Generic

If. . .Then
s1

s′1
ασ

θ

s2

h

αh(σ)

h h
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DCDSs are Generic

If. . .Then
s1

s′1
ασ

θ

s2

h

αh(σ)

h h

s′2

h(θ)

h h
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DCDSs are generic

If. . .

Then

s1 s′1

ασ θ

αh1(σ)

h1(θ)

αh
2 (σ)

h
2 (θ)

α
h
3 (σ

)

h
3 (θ)

α
h
4 (σ

)
h
4 (θ)

. . .

. . .
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DCDSs are generic

If. . .Then
s1 s′1

ασ θ
αh1(σ)

h1(θ)

αh
2 (σ)

h
2 (θ)

α
h
3 (σ

)

h
3 (θ)

α
h
4 (σ

)
h
4 (θ)

. . .

. . .
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Proof of decidability

Consider a b-bounded DCDS X .

How many isomorphic DBs exist in a b-bounded system?

Finitely many! Just pick b distinct values and do (wise) combinatorics.

E.g., for a single binary relation R, bound b = 2, ∆0 = ∅

∅

R(�,�) R(�,�) R(�,�) R(�,�)

R(�,�)
R(�,�)

R(�,�)
R(�,�)

R(�,�)
R(�,�)

R(�,�)
R(�,�)

R(�,�)
R(�,�)

R(�,�)
R(�,�)

R(�,�)
R(�,�)
R(�,�)

R(�,�)
R(�,�)
R(�,�)

R(�,�)
R(�,�)
R(�,�)

R(�,�)
R(�,�)
R(�,�)

R(�,�) R(�,�)
R(�,�) R(�,�)

∅∅
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Proof of decidability

Consider a b-bounded DCDS X .

How many isomorphic DBs exist in a b-bounded system?

Finitely many! Just pick b distinct values and do (wise) combinatorics.

E.g., for a single binary relation R, bound b = 2, ∆0 = ∅, ∆ = {a, b}

∅∅

R(a ,a ) R(a ,b ) R(b ,a ) R(b ,b )

R(a ,a )
R(a ,b )

R(a ,a )
R(b ,a )

R(a ,a )
R(b ,b )

R(a ,b )
R(b ,a )

R(a ,b )
R(b ,b )

R(b ,a )
R(b ,b )

R(a ,a )
R(a ,b )
R(b ,a )

R(a ,a )
R(a ,b )
R(b ,b )

R(a ,a )
R(b ,a )
R(b ,b )

R(a ,b )
R(b ,a )
R(b ,b )

R(a ,a ) R(a ,b )
R(b ,a ) R(b ,b )

∅
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Proof of decidability

Consider a b-bounded DCDS X .

How many isomorphic DBs exist in a b-bounded system?

Finitely many! Just pick b distinct values and do (wise) combinatorics.

E.g., for a single binary relation R, bound b = 2, ∆0 = ∅, ∆ = {0, 1}

∅∅∅

R(0 ,0 ) R(0 ,1 ) R(1 ,0 ) R(1 ,1 )

R(0 ,0 )
R(0 ,1 )

R(0 ,0 )
R(1 ,0 )

R(0 ,0 )
R(1 ,1 )

R(0 ,1 )
R(1 ,0 )

R(0 ,1 )
R(1 ,1 )

R(1 ,0 )
R(1 ,1 )

R(0 ,0 )
R(0 ,1 )
R(1 ,0 )

R(0 ,0 )
R(0 ,1 )
R(1 ,1 )

R(0 ,0 )
R(1 ,0 )
R(1 ,1 )

R(0 ,1 )
R(1 ,0 )
R(1 ,1 )

R(0 ,0 ) R(0 ,1 )
R(1 ,0 ) R(1 ,1 )
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Proof of decidability

Consider a b-bounded DCDS X , whose schema contains a proposition Hit .

Procedure

1 Fix b values over ∆ (in addition to ∆0).

2 Construct all DBs of X over the schema of X and values from ∆ ]∆0.
Note: as seen in previous example, not all are needed, since some are
isomorphic to each other.
Note2: we assume adom(I0) ⊆ ∆0, hence one such DBs is exactly I0.

3 For each pair of DBs, check whether the second is a legal successor of the
first (cf. DCDS execution semantics).

4 We get a finite-state RTS ΘX .

5 Thanks to genericity:
Hit reachable in ΥX iff Hit reachable in ΘX .

6 Check whether Hit is reachable ΘX (clearly decidable).

What if I do not know b?

Decidability still holds! See later.
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Current overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA
over state-bounded DCDSs: ?

Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: ?
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Outline

1 The Good, the Bad, and the Ugly

2 Counter Automata

3 From Counter Automata to DCDSs

4 State-Bounded DCDSs

5 Key Properties, and Their Impact on State-Boundedness

6 Negative Results for State-Bounded DCDSs
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A mildly negative result: µLA + state-boundedness

Theorem

There exists a 1-bounded DCDS that does not admit any formula-
independent, finite-state abstraction preserving exactly the same µLA (and,
hence, µLFO) properties.

Proof.

1 We construct a DCDS X working over a single unary relation and that induces a
very simple, 1-bounded RTS.

2 We construct a µLA formula Φ≥i parameterized by number i, asserting that at
least i distinct values are encountered in the initial prefix of a run.

3 We show that X |= Φ≥i for every i ∈ N.

4 We imagine that finite-state, formula-independent abstraction ΘX of ΥX , exists.

5 Since it is finite-state, ΘX contains finitely many values overall, say k.

6 But then, it is impossible for ΘX to encounter k + 1 distinct values, i.e., while
X |= Φ≥k+1, we have that ΘX 6|= Φ≥k+1.

7 Contradiction! Hence, ΘX cannot exist.

Note: this does not imply undecidability of µLA model checking!
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Proof details: DCDS

1-bounded DCDS X
Data layer: unary relation R, no constraint,

initial DB {R(a)}
Process layer:

one nondeterministic service call g();

one action α nondeterministically
replacing the single value in R with
another one (possibly the same):

α·pars = ∅;

α·eff =

{
R(x)  del{R(x)}

add{R(g())}

}
a single condition-action rule

true 7→ α()
(tells that α is always applicable).

RTS ΥX

R(a)

R(b)

R(c)

R(d)

. . .
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Proof details: formula

The µLA formula Φ≥i

∃x1.live(x1)

∧ 〈−〉


∃x2.live(x2) ∧ x2 6=x1

∧ 〈−〉

∃x3.live(x3) ∧ x3 6=x1 ∧ x3 6=x2
∧ 〈−〉

(
. . .
∧ 〈−〉(∃xilive(xi) ∧ xi 6=x1 ∧ · · · ∧ xi−1 6=xi)

)


Note: the formula is fixpoint-free.

For every i ∈ N, we have X |= Φ≥i

Actually, all states of ΥX satisfy Φ≥i.
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A strongly negative result: LTL-FOA + state-boundedness

Here, the situation is even more critical!

Theorem

There exists a 1-bounded DCDS over which verifying LTL-FOA properties is
undecidable.

Proof.

Careful reconstruction of the proof of undecidability of satisfiability of LTL with
freeze-quantifier [Demri and Lazic 2009]: we reduce emptiness of 2-ICAs to
verification of LTL-FOA properties over a 1-bounded DCDS. Idea:

1 We translate the input CA M into a 1-bounded DCDS XM that “simulates” the runs
of M by just focusing the control part of M. Counter values cannot be retained, since
XM is 1-bounded.

2 Since XM does not capture counter values, the simulation of M is faulty: XM captures
all proper runs of M, but also many other spurious runs where transitions are
performed even when the counters would block them.

3 We write an LTL-FOA formula ΦM that: (i) separates the correct runs from the
spurious runs, (ii) encodes the nonacceptance condition of M over infinite words.

4 ΦM is not powerful enough to capture the Minsky semantics of M, but is able to
capture its incrementing semantics: this suffices for undecidability!
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Proof details: DCDS

Given ICA M = 〈Σ, Q, qI , n, δ, F 〉, we construct a DCDS XM = 〈DM,PM, ∅〉,
such that each state of XM holds a control configuration update
〈q, w, op, c, q′〉 of M. This, in turn, may correspond to a potential transition of
M, once the counter valuation is projected away. Runs of XM are (proper or
spurious) sequences of control config updates.

A sequence 〈qc0, w0, op0, c0, qn0〉, 〈qc1, w1, op1, c1, qn1〉, . . . of control config updates is:

Proper, if it corresponds to an actual run of M, i.e.:
1 qc0 = qI (the sequence starts from the initial location of M);
2 for every i > 0 we have qni = qci+1 (the sequence of locations forms a chain);
3 there exists a run of M of the form

〈qc0, v0〉
w0,〈op0,c0〉−−−−−−→† 〈qc1, v1〉

w1,〈op1,c1〉−−−−−−→† . . .
This in particular means that the control config updates correspond to
proper counter tests and operations (depending on the chosen semantics).

Spurious otherwise.
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Proof details: DCDS

Given ICA M = 〈Σ, Q, qI , n, δ, F 〉, we construct a DCDS XM = 〈DM,PM, ∅〉,
such that each state of XM holds a control configuration update
〈q, w, op, c, q′〉 of M. This, in turn, may correspond to a potential transition of
M, once the counter valuation is projected away. Runs of XM are (proper or
spurious) sequences of control config updates.

In addition, XM uses a 1-bounded, unary relation Color , which assigns a value
from ∆ to a state. This is interpreted as a way of coloring each control
configuration, where ∆ provides infinitely many colors.

Operationally, at each step XM guesses a control configuration and a color:

there are finitely many control configurations for M;

but infinitely many ways of coloring them.
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Proof details: DCDS
Note: We model XM by using relations also for control configurations. This is
just syntactic sugar for easing the presentation: XM can be reformulated as a
truly 1-bounded DCDS, at the cost of increasing the number of actions.

Data layer DM
No constraint, schema:

1-bounded unary relations CurLoc and NextLoc (current/next location).

1-bounded unary relation CurSym (current symbol).

1-bounded binary relation Op (counter instruction: operation and counter).

1-bounded unary relation Color (configuration coloring).
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Proof details: DCDS
Note: We model XM by using relations also for control configurations. This is
just syntactic sugar for easing the presentation: XM can be reformulated as a
truly 1-bounded DCDS, at the cost of increasing the number of actions.

Process layer PM
Nullary nondeterministic service call inputcol() for color guessing.

Action setColTCP taking as parameters the components of a transition
control part (setColTCP·pars = 〈qc, w, op, c, qn〉), and setting them
together with a guessed color: setColTCP·eff =

CurLoc(x)  del {CurLoc(x)}
NextLoc(x)  del {NextLoc(x)}
CurSym(x)  del {CurSym(x)}

Op(x, y)  del {Op(x, y)}
Color(x)  del {Color(x)}

true  add{CurLoc(qc),CurSym(w),Op(op, c),NextLoc(qn)}
true  add{Color(inputcol())}


For each transition control part 〈q, w, op, c, q′〉 of M, a condition-action
rule setting that control part:
qc = q ∧ w = w ∧ op = op ∧ c = c ∧ qn = q′ 7→ setColTCP(qc, w, op, c, qn)
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Proof details: DCDS example

Input ICA M = q0 q1 For simplicity, we only use symbol “a”.

a,inc, 1

a,dec, 1

a,ifz, 1

RTS ΥXM =

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(a)

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q1)
Color(a)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(a)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q1)
Color(a)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q0)
Color(a)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(a)

CurLoc(q1)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(a)

CurLoc(q1)
CurSym(a)
Op(inc, 1)
NextLoc(q1)
Color(a)

CurLoc(q1)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(a)

CurLoc(q1)
CurSym(a)
Op(dec, 1)
NextLoc(q1)
Color(a)

CurLoc(q1)
CurSym(a)
Op(ifz, 1)
NextLoc(q0)
Color(a)

CurLoc(q1)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(a)

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(b)

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q1)
Color(b)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(b)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q1)
Color(b)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q0)
Color(b)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(b)

CurLoc(q1)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(b)

CurLoc(q1)
CurSym(a)
Op(inc, 1)
NextLoc(q1)
Color(b)

CurLoc(q1)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(b)

CurLoc(q1)
CurSym(a)
Op(dec, 1)
NextLoc(q1)
Color(b)

CurLoc(q1)
CurSym(a)
Op(ifz, 1)
NextLoc(q0)
Color(b)

CurLoc(q1)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(b)

. . .

Calvanese, Montali (unibz) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (43/53)



The Good, the Bad, and the Ugly Counter Automata CAs→DCDSs State-Bounded DCDSs Key Properties Negative Results References

Proof details: examples of correct and spurious run prefixes

Input ICA M = q0 q1 For simplicity, we only use symbol “a”.

a,inc, 1

a,dec, 1

a,ifz, 1

Spurious runs

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q0)
Color(a)

. . .
M does not have a transition
from q0 to q0 labeled by
instruction 〈ifz, 1〉

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(b)

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(a)

. . .
It is impossible to move to q1
and then do a subsequent
transition that starts from q0

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(c)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(a)

. . .
It is impossible to move by
incrementing counter 1 and
then move testing it for zero
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Proof details: examples of correct and spurious run prefixes

Input ICA M = q0 q1 For simplicity, we only use symbol “a”.

a,inc, 1

a,dec, 1

a,ifz, 1

Proper runs

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(c)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(c)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(b)

. . .

The run moves along proper transitions of M. In particular,
the counter (initially 0) is incremented, decremented, and then correctly tested for 0.

CurLoc(q0)
CurSym(a)
Op(inc, 1)
NextLoc(q0)
Color(c)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(c)

CurLoc(q0)
CurSym(a)
Op(dec, 1)
NextLoc(q0)
Color(d)

CurLoc(q0)
CurSym(a)
Op(ifz, 1)
NextLoc(q1)
Color(d)

. . .

The run moves along proper transitions of M. The counter (initially 0), is
incremented and then decremented twice. This is ok: the counter is an unreliable ICA,
so it may have leaked up before the second decrement!
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Proof details: characterization of proper runs

From now on we focus on infinite runs of XM.

We have already defined the notion of proper run. But. . . how can we check
that a run is proper?

An infinite run τ = s0s1 . . . of XM is proper if

(Location correctness) The initial state s0 has qI as current location, and
every two consequent states si and si+1 agree on their intermediate
location, i.e., the next location contained in si coincides with the current
location contained in si+1, for every i.

(Control correctness) Each state si holds information that reconstructs
one control configuration update of M.

(Counter correctness) Every state si contains a counter operation that is
actually executable in that state. For an ICA, increment and decrement
operations are always possible. The only counter correctness check relates
to test-for-zero: a zero counter can be tested for zero in the future
iff, in between, it is subject to at least as many decrements than
increments. If this is not the case, the counter is for sure positive.
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Proof details: location and control correctness in LTL-FOA

We encode location and control correctness as LTL-FOA formulae over XM.

Location correctness is encoded in LTL-FOA as:

ΦMlocation = CurLoc(qI) ∧G

∧
q∈Q

(
NextLoc(q)→ XCurLoc(q)

)
Control correctness is encoded in LTL-FOA as:

ΦMcontrol = G

 ∨
〈q,w,〈op,i〉,q′〉∈δ

(
CurLoc(q) ∧ CurSym(w) ∧Op(op, i) ∧NextLoc(q′)

)

Actually, ΦMlocation and ΦMcontrol are just propositional LTL formulae.
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Proof details: counter correctness mathematically

Counter correctness can be mathematically captured as follows:
Consider a sequence of operations over the same counter, assuming that
the counter is zero at the beginning of the sequence.
Then, it can be successfully tested for zero at the end of the sequence only
if there exists an injection from the increment to the decrement
operations in the sequence: each increment must have a dedicated
corresponding decrement.

counter 0

inc inc dec inc dec

ifz

?

counter 0

inc inc dec inc dec dec dec

ifz

Note: for a MCA, this should be a bijection, ensuring that there are exactly as
many decrements as increments!
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Proof details: counter correctness via coloring

The injection can be expressed by suitably coloring the operations as follows:

no two increments of the sequence get the same color;

no two decrements of the sequence get the same color;

each increment of the sequence must have a corresponding decrement
within the sequence and with matching color.

counter 0

inc inc dec inc dec

ifz

?

counter 0

inc inc dec inc dec dec dec

ifz

counter 0

inc inc dec inc dec

ifz counter 0

inc inc dec inc dec dec dec

ifz
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Proof details: counter correctness in LTL-FOA

We encode location and control correctness as an LTL-FOA formula over XM.
We use the intuition of coloring given before, but with an additional difficulty:
we have to identify the sequences of operations.

Each is a sequence of operations over the same counter delimited by two
zero tests over that counter, or by the initial state and the first zero test.

Counter correctness is encoded as ΦMifz = ΦMinc ∧ ΦMdec ∧ ΦMmatch ∧ ΦMorder, where:

ΦMinc =

∧
i∈{1,...,n}

G∀x.
(
Op(inc, i) ∧ Color(x)→ ¬XF

(
Op(inc, i) ∧ Color(x)

))
Different increment instructions for the same counter must be associated to
different colors.
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Proof details: counter correctness in LTL-FOA

We encode location and control correctness as an LTL-FOA formula over XM.
We use the intuition of coloring given before, but with an additional difficulty:
we have to identify the sequences of operations.

Each is a sequence of operations over the same counter delimited by two
zero tests over that counter, or by the initial state and the first zero test.

Counter correctness is encoded as ΦMifz = ΦMinc ∧ΦMdec ∧ΦMmatch ∧ΦMorder, where:

ΦMdec =

∧
i∈{1,...,n}

G∀x.
(
Op(dec, i) ∧ Color(x)→ ¬XF

(
Op(dec, i) ∧ Color(x)

))
Different decrement instructions for the same counter must be associated to
different colors.

Calvanese, Montali (unibz) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (49/53)



The Good, the Bad, and the Ugly Counter Automata CAs→DCDSs State-Bounded DCDSs Key Properties Negative Results References

Proof details: counter correctness in LTL-FOA

We encode location and control correctness as an LTL-FOA formula over XM.
We use the intuition of coloring given before, but with an additional difficulty:
we have to identify the sequences of operations.

Each is a sequence of operations over the same counter delimited by two
zero tests over that counter, or by the initial state and the first zero test.

Counter correctness is encoded as ΦMifz = ΦMinc ∧ΦMdec ∧ΦMmatch ∧ΦMorder, where:

ΦMmatch =

∧
i∈{1,...,n}

G
(
∀x.
(
Op(inc, i)∧Color(x)∧XFOp(ifz, i)

)
→XF

(
Op(dec, i)∧Color(x)

))

Whenever there is an x-colored increment instruction for counter i that is
eventually followed by a zero test instruction for i, then it must also be
eventually followed by a corresponding decrement configuration for i with
matching color x.
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Proof details: counter correctness in LTL-FOA

We encode location and control correctness as an LTL-FOA formula over XM.
We use the intuition of coloring given before, but with an additional difficulty:
we have to identify the sequences of operations.

Each is a sequence of operations over the same counter delimited by two
zero tests over that counter, or by the initial state and the first zero test.

Counter correctness is encoded as ΦMifz = ΦMinc ∧ΦMdec ∧ΦMmatch ∧ΦMorder, where:

ΦMorder =

∧
i∈{1,...,n}

¬F

(
Op(inc, i)

∧XF
(
∃x.
(
Op(ifz, i) ∧ Color(x) ∧XF

(
Op(dec, i) ∧ Color(x)

))))

ΦMmatch does not guarantee that the matching decrement occurs within the
same sequence, i.e., before the zero test. So, ΦMorder ensures that an increment
can match a decrement only if there is no zero test in between. This is
expressed in a negative form, by forbidding to match an increment and a
decrement of the same counter, if there is a zero test in between.
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Proof details: putting everything together

We construct the LTL-FOA formula ΦM stating that:

If the run of interest over XM is a proper run, then it does not accept, i.e., it
does not recur infinitely often over an accepting location:

ΦM =
(

ΦMlocation ∧ ΦMcontrol ∧ ΦMifz

)
→¬GF

∨
q∈F

CurLoc(q)


Given an ICA M . . .

Construct 1-bounded, unary DCDS XM, and LTL-FOA formula ΦM.

XM |=ltl ΦM if and only if for every infinite run τ of XM, whenever τ
reconstructs a proper sequence of control configuration updates of M,
then the corresponding run of M is non-accepting.

I.e., XM |=ltl ΦM if and only if M over infinite words is empty.

Hence, LTL-FOA model checking over 1-bounded, unary DCDSs is
undecidable.
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Key observations

The undecidability proof relies on two crucial points:

The only interesting feature of the DCDS XM is that it may encounter
unboundedly many different colors along a run.

The only interesting feature of the LTL-FOA formula ΦM is that it fully
exploits first-order quantification across time.

Two open questions:

1 What happens if we limit the ability of the DCDS to encounter
unboundedly many values along its runs? Which subclass of state-bounded
DCDSs can capture this condition?

2 What happens if we control quantification across in the verification logic?
In particular, what happens with LTL-FOP ?
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Current overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA
over state-bounded DCDSs: no FIA

Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: U

Tune DCDS:
?

Tune logic:
?

Tune DCDS:
?

Tune logic:
?
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