Verification of Data-Aware Processes
Verification Logics
Diego Calvanese, Marco Montali

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

unib_z N

29th European Summer School in Logic, Language, and Information
(ESSLLI 2017)
Toulouse, France — 17-28 July 2017

_ legs Feeswedls ReEdEedpewd (s bl
Outline

@ Verification Logics

~ Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (1/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

Verification logics

Temporal/dynamic logics expressing (un)desired properties about the dynamic
system of interest.
@ Branching-time logics are directly interpreted over the transition system.
Notable examples: CTL, p-calculus
@ Linear-time logics are interpreted over the runs represented by the
transition system. A property holds over the transition system if it is true
in every run.
Notable example: LTL

We consider in particular LTL and p-calculus (uL) as two representative
verification logics.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (2/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

The verification logic puL

Remember that pL:

@ Is equipped with two local temporal operators to move over one ({—)) or
all ([—]) successors of the current state.

@ Employs fixpoint constructs to express sophisticated properties defined via
induction or co-induction.

@ Subsumes virtually all propositional temporal/dynamic logics, such as PDL,
LTL, CTL, CTL*.

Note: The encoding into uL of linear-time properties incurs in an
exponential blow-up.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (3/18)

Cteges Fistorderp-Galewlus Restricted pocaleuli FirstorderLTL
Verification logics for DCDSs

Propositional temporal logics do not suffice!

We need first-order temporal logics:
@ To inspect data: FO queries

@ To capture system dynamics: temporal modalities

@ To track the evolution of objects: FO quantification across states

Example:
It is always the case that every order is eventually either cancelled or paid.

G(Vz.Order(z) — F(State(x, cancelled) V State(r,paid)))

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (4/18)

_ leges FEeeyedws ReEEEspesd (sl
Outline

© First-order p-Calculus

~ Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (5/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

First-order p-calculi for DCDSs

We employ variants of first-order ji-calculus (uLro):

O =Q | | APy | Fz® | ()P | Z | pZD

. : L
@ Extends the propositional p-calculus pL with fikFo
first-order quantification. T
@ The first-order quantifiers range over all objects in pL
the transition system (and not only over those in / T \
the current state or in the current run). LTL PDL CTL

We also adopt the standard abbreviations, including:
o [—]|D for —(—)—P
o vZ.® for —‘,LLZ.@[Z/ﬁZ]

Example

Va.Student(x) — puZ.((3y.Graduate(z,y)) V (—)2)

For each student z (in the current state), there exists an evolution that
eventually leads to the graduation of = (with some final mark y).

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017

(6/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

Semantics of uLro

pLro formulae: interpreted over RTS T = (A, R, S, sg, db, =), using
valuations:
@ v: mapping each individual variable = to a
value in A.
o V: predicate variable valuation, parameterized by v, and mapping each
predicate variable Z to a subset V' (v, Z) of S.
Evaluation of a uLro formula ® over Y: given by an extension function
(@)a vy mapping @ to the set of states in S where @ holds.

(v)(1) v) ={s|s €S and (db(s),v) = ¢} stands fo:' (W', V),
(= <I>) wvy =S\ (2 VE Ry where v’ is as v
() n 0T V; @)1, ‘(/) ﬁ)(%)a . except that v/(z) = d

Gr.®)5)y ={s€S5|FdeAse (@) v p/al
((— ><I>)UV)—{SES\HS €Ss=sand s E(@)av)}
Ig
).

(D) wvy =V(v,2) stands for (v, V'),
where V' is as V
(WZ.2) (0, v) = ﬂ{g < SI()(v,v)[Z/s] <&l except that V'(v,Z) = &

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (7/18)

Model checking uLro

When the uLro formula @ is closed, ((I))Erv,V) does not depend on the
valuations v and V, and we simply denote it as (®)¥.
Model checking an RTS
Input:
@ an RTS T = (A, R, S, so, db, =)
@ a closed uLro formula @
Output: yes, iff s € (@)
In this case, we write T = ©.

Model checking a DCDS
Input:

e a DCDS X

@ a closed uLro formula ¢
Output: yes, iff Ty E @
In this case, we write X' |= ®.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (8/18)

_ leges FEsesreddas ReEsEedpelwd o (sl
QOutline

© History and Persistence-Preserving p-Calculus

~ Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (9/18)

Logics First-order p-Calculus Restricted p-calculi

History-preserving pi-calculus (L 4)

Active-domain quantification: restricted to those
individuals present in the current database.

Jx.® ~ Jz.LIVE(z) A
V. P ~ Vz.LIVE(z) — ®

where LIVE(z) states that z is present in the current active

domain (easily expressible in FO).
Note: uL 4 is a syntactic restriction of uLro.

Example

vW.(Vz.LIVE(z) A Student(z) —

First-order LTL

pLFo

LA

ul
TN

LTL PDL CTL

wZ.(Jy.LIVE(y) A Graduate(z,y) V (—)Z) A [—]W)

Along every path, it is always true, for each student z, that there exists an

evolution eventually leading to a graduation of the student (with some final

mark y).

Note: No guarantee that all such students graduate within the same run.

Calvanese, Montali (FUB) Verification of Data-Aware Processes

ESSLLI 2017 — 24-28/07/2017

v

(10/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

Persistence-preserving pi-calculus (uLp)

In some cases, objects maintain their identity only if they persist in the active
domain (cf. business artifacts and their IDs).

dismiss(123)

wlro
Studld : 123 T
uLlp restricts uL 4 to quantification over persisting pLa
objects only, i.e., objects that continue to be LIVE.
pwlp

Jr.® ~ dr.LIVE(x) A D
Ve.d ~ V. LIVE(T) — o

uL

= LIVE(Z) A (=)®(2) (strong persistence)
—D(F) ~
(-)2(@) LIVE(Z) — <)P (7) (weak persistence) /\T\

LTL PDL CTL
-10() LIVE(Z) A [—]®(2) (strong persistence)
- x ~>
LIVE(Z) — [~]®(Z) (weak persistence)

Note: puLp is a syntactic restriction of uL4.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (11/18)

Cteges Fistorderp-CGalewlus | Restricted prcaleuli FirstorderLTL
Strong vs. weak persistence

Strong persistence: property falsified by an object that disappears

vW.(Vz.LIVE(x) A Student(x) —
uZ.(Jy.LIVE(y) A Graduate(z,y) V (LIVE(z) A (=) Z)) A [=]W)

Along every path, it is always true, for each student z, that there exists an
evolution in which x persists in the database until she eventually graduates.

Weak persistence: property verified by an object that disappears
vW.(Va.LIVE(x) A Student(z) —
uZ.(Jy.LIVE(y) A Graduate(z,y) V (LIVE(z) — (=) Z)) A [—-]W)

Along every path, it is always true, for each student z, that there exists an
evolution in which either = does not persist, or she eventually graduates.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (12/18)

_ leges FEsesr s ReEdEepewd (e il
Outline

@ First-order Linear Temporal Logics

~ Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (13/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

First-order linear temporal logics for DCDSs

LTL-FO extends propositional LTL with the possibility of querying the system
states using first-order formulas with quantification across:

(I)ZI:gO | - ‘ (I)l/\q)g | dz.® | X P | (I)lU(I)Q

We also adopt the standard abbreviations, including:
o F& for trueU® (@ holds in the future)
e GO for = F - (P holds globally)

Example
Vx.Student(x) — F Jy.Graduate(x, y)

For each student « (in the current state), = will graduate sometimes in the
future (with some final mark y).

Note: all encountered students graduate within the same run.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (14/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

Semantics of LTL-FO

Formulae of LTL-FO 4 are interpreted over the infinite runs of a given serial
RTS T = (R, S, sg, db, =).
@ Serial RTS: every state has at least one successor state.

An (infinite) run 7 over T

is an infinite sequence spsy - - - of states in S, where the first state of the
sequence corresponds to the initial state of T, and for every i € N, it is true
that s; = s;41. Given j € N, by 7(j) we denote the j-th state s; of 7.

We inductively define when 7 satisfies an LTL-FO 4 formula ® at position
under v, written (7,4, v) | @

<T>i,7)>):LTL 2 if <db(7_<i)>7v>): 2

(1,4,v) FEum, P if it is not the case that (7,7, v) =, ©
(1,4,0) Fum, @1 A Dy if (1,4,0) Eun, @1 and (7,4, v) = o
(1,i,v) Eir, J2.® if there exists d € A

such that (7,4, v[z/d]) i, @
(1,4,v) Fum, X @ if (1,84 1,0) g, @

(1,4,v) i, @1 U Oy if there exists k > i such that (7, k,v) Fyp, $o
and for every j, if i < j <k then (7,4,v) i $1

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (15/18)

Logics First-order p-Calculus Restricted p-calculi First-order LTL

Model checking LTL-FO

When the LTL-FO formula ® is closed, the satisfaction relation does not

depend on the valuation v, and we simply denote satisfaction as (7,4) =i, P.

LTL model checking an RTS
Input:
@ an RTS T = (A, R, S, so, db, =)
@ a closed LTL-FO formula ®
Output: yes, iff for every run 7 over T, (1,0) =y, ®.

In this case, we write T =1 ©.

LTL Model checking a DCDS
Input:

e a DCDS X

@ a closed LTL-FO formula ®
Output: yes, iff Ty Fip, .

In this case, we write X' =, O.

v

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017

(16/18)

First-order LTL with restricted quantification

History-preserving quantification: LTL-FO 4

FO quantification ranges over current active domain only:
dr.® ~ Jr.LIVE(z) A D
Ve.® ~ Va.LIVE(x) — @

LTL-FO
Example: Vz.L1VE(z) A Customer(z) — F Gold(x) T
Persistence-preserving quantification: LTL-FOp LTL-FO4
FO quantification ranges over persisting individuals only. T
Jr.® ~ Fr.LIvE(z) A D LTL-FOp
Vr.® ~ Vrz.LIVE(z) — © T
X &(7) ~ LIVE(Z) A X(I)(;zrl (strong per-5|stence) LTL
LIVE(Z) — X ®(&) (weak persistence)
T Uo .p-
By Udy(d) 0 4 IVEE) A 2) U B(@ e
(LIVE(Z) A @1) U(LIVE(Z) — $o(F)) (w.p.)

Example: Vz.(LIVE(z) A Gold(x)) — —(LIVE(2z) U =Gold(z))

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (17/18)

o toges FistoderpCalawvs Restrictedpecalewli FirstorderLTL
LTL with persistence-preserving quantification — Example

Consider:

Vx.Gold(z) — G Gold(x)
Vx.Gold(z) — = F =Gold(z)
Vx.Gold(z) — —(true U ~Gold(x))

With strong persistence:
Va.LIVE(x) — (Gold(x) — —(L1VE(2z) U =Gold(x)))
Va.(LIVE(x) A Gold(z)) — —(LIVE(2) U =Gold(x))

With weak persistence:

Va.LIVE(x) — (Gold(x) — —(L1vE(2) U(LIVE(2) — —Gold(2))))
Va.(LIVE(x) A Gold(z)) — —(LIVE(z) U(LIVE(2z) — —Gold(x)))

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 — 24-28/07/2017 (18/18)

	Verification Logics
	First-order -Calculus
	History and Persistence-Preserving -Calculus
	First-order Linear Temporal Logics

