
Verification of Data-Aware Processes
Verification Logics

Diego Calvanese, Marco Montali

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

KRDB
1

29th European Summer School in Logic, Language, and Information
(ESSLLI 2017)

Toulouse, France – 17–28 July 2017

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Outline

1 Verification Logics

2 First-order µ-Calculus

3 History and Persistence-Preserving µ-Calculus

4 First-order Linear Temporal Logics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (1/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Verification logics

Temporal/dynamic logics expressing (un)desired properties about the dynamic
system of interest.

Branching-time logics are directly interpreted over the transition system.
Notable examples: CTL, µ-calculus

Linear-time logics are interpreted over the runs represented by the
transition system. A property holds over the transition system if it is true
in every run.
Notable example: LTL

We consider in particular LTL and µ-calculus (µL) as two representative
verification logics.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (2/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

The verification logic µL

Remember that µL:

Is equipped with two local temporal operators to move over one (〈−〉) or
all ([−]) successors of the current state.

Employs fixpoint constructs to express sophisticated properties defined via
induction or co-induction.

Subsumes virtually all propositional temporal/dynamic logics, such as PDL,
LTL, CTL, CTL*.

Note: The encoding into µL of linear-time properties incurs in an
exponential blow-up.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (3/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Verification logics for DCDSs

Propositional temporal logics do not suffice!

We need first-order temporal logics:

To inspect data: FO queries

To capture system dynamics: temporal modalities

To track the evolution of objects: FO quantification across states

Example:

It is always the case that every order is eventually either cancelled or paid.

G(∀x.Order(x)→ F(State(x, cancelled) ∨ State(x, paid)))

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (4/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Outline

1 Verification Logics

2 First-order µ-Calculus

3 History and Persistence-Preserving µ-Calculus

4 First-order Linear Temporal Logics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (5/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

First-order µ-calculi for DCDSs

We employ variants of first-order µ-calculus (µLFO):

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

Extends the propositional µ-calculus µL with
first-order quantification.

The first-order quantifiers range over all objects in
the transition system (and not only over those in
the current state or in the current run). PDLLTL CTL

µL

µLFO

We also adopt the standard abbreviations, including:

[−]Φ for ¬〈−〉¬Φ

νZ.Φ for ¬µZ.Φ[Z/¬Z]

Example

∀x.Student(x)→ µZ.((∃y.Graduate(x, y)) ∨ 〈−〉Z)

For each student x (in the current state), there exists an evolution that
eventually leads to the graduation of x (with some final mark y).

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (6/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Semantics of µLFO

µLFO formulae: interpreted over RTS Υ = 〈∆,R, S, s0, db,⇒〉, using
valuations:

v: individual variable valuation mapping each individual variable x to a
value in ∆.
V : predicate variable valuation, parameterized by v, and mapping each
predicate variable Z to a subset V (v, Z) of S.

Evaluation of a µLFO formula Φ over Υ: given by an extension function
(Φ)Υ

(v,V) mapping Φ to the set of states in S where Φ holds.

(ϕ)Υ
(v,V) = {s | s ∈ S and 〈db(s), v〉 |= ϕ}

(¬Φ)Υ
(v,V) = S \ (Φ)Υ

(v,V)

(Φ1 ∧ Φ2)Υ
(v,V) = (Φ1)Υ

(v,V) ∩ (Φ2)Υ
(v,V)

(∃x.Φ)Υ
(v,V) = {s ∈ S | ∃d ∈ ∆.s ∈ (Φ)Υ

(v,V)[x/d]}

(〈−〉Φ)Υ
(v,V) = {s ∈ S | ∃s′ ∈ S.s⇒ s′ and s′ ∈ (Φ)Υ

(v,V)}

(Z)Υ
(v,V) = V (v, Z)

(µZ.Φ)Υ
(v,V) =

⋂
{E ⊆ S | (Φ)Υ

(v,V)[Z/E] ⊆ E}

stands for (v′, V),
where v′ is as v

except that v′(x) = d

stands for (v, V ′),
where V ′ is as V

except that V ′(v, Z) = E
Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (7/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Model checking µLFO

When the µLFO formula Φ is closed, (Φ)Υ
(v,V) does not depend on the

valuations v and V , and we simply denote it as (Φ)Υ.

Model checking an RTS

Input:

an RTS Υ = 〈∆,R, S, s0, db,⇒〉
a closed µLFO formula Φ

Output: yes, iff s0 ∈ (Φ)Υ

In this case, we write Υ |= Φ.

Model checking a DCDS

Input:

a DCDS X
a closed µLFO formula Φ

Output: yes, iff ΥX |= Φ

In this case, we write X |= Φ.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (8/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Outline

1 Verification Logics

2 First-order µ-Calculus

3 History and Persistence-Preserving µ-Calculus

4 First-order Linear Temporal Logics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (9/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

History-preserving µ-calculus (µLA)

Active-domain quantification: restricted to those
individuals present in the current database.

∃x.Φ ; ∃x.live(x) ∧ Φ

∀x.Φ ; ∀x.live(x)→ Φ

where live(x) states that x is present in the current active
domain (easily expressible in FO). PDLLTL CTL

µL

µLA

µLFO

Note: µLA is a syntactic restriction of µLFO.

Example

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ 〈−〉Z) ∧ [−]W)

Along every path, it is always true, for each student x, that there exists an
evolution eventually leading to a graduation of the student (with some final
mark y).

Note: No guarantee that all such students graduate within the same run.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (10/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Persistence-preserving µ-calculus (µLP)

In some cases, objects maintain their identity only if they persist in the active
domain (cf. business artifacts and their IDs).

. . .

StudId : 123

. . .

StudId : 123

. . .dismiss(123) newStud()
ID() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

〈−〉Φ(~x) ;

{
live(~x) ∧ 〈−〉Φ(~x) (strong persistence)

live(~x)→ 〈−〉Φ(~x) (weak persistence)

[−]Φ(~x) ;

{
live(~x) ∧ [−]Φ(~x) (strong persistence)

live(~x)→ [−]Φ(~x) (weak persistence)

PDLLTL CTL

µL

µLP

µLA

µLFO

Note: µLP is a syntactic restriction of µLA.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (11/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Strong vs. weak persistence

Strong persistence: property falsified by an object that disappears

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ (live(x) ∧ 〈−〉Z)) ∧ [−]W)

Along every path, it is always true, for each student x, that there exists an
evolution in which x persists in the database until she eventually graduates.

Weak persistence: property verified by an object that disappears

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ (live(x)→ 〈−〉Z)) ∧ [−]W)

Along every path, it is always true, for each student x, that there exists an
evolution in which either x does not persist, or she eventually graduates.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (12/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Outline

1 Verification Logics

2 First-order µ-Calculus

3 History and Persistence-Preserving µ-Calculus

4 First-order Linear Temporal Logics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (13/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

First-order linear temporal logics for DCDSs

LTL-FO extends propositional LTL with the possibility of querying the system
states using first-order formulas with quantification across:

Φ ::= ϕ | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | XΦ | Φ1 UΦ2

We also adopt the standard abbreviations, including:

FΦ for trueUΦ (Φ holds in the future)

GΦ for ¬F¬Φ (Φ holds globally)

Example

∀x.Student(x)→ F ∃y.Graduate(x, y)

For each student x (in the current state), x will graduate sometimes in the
future (with some final mark y).

Note: all encountered students graduate within the same run.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (14/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Semantics of LTL-FO

Formulae of LTL-FOA are interpreted over the infinite runs of a given serial
RTS Υ = 〈R, S, s0, db,⇒〉.

Serial RTS: every state has at least one successor state.

An (infinite) run τ over Υ

is an infinite sequence s0s1 · · · of states in S, where the first state of the
sequence corresponds to the initial state of Υ, and for every i ∈ N, it is true
that si ⇒ si+1. Given j ∈ N, by τ(j) we denote the j-th state sj of τ .

We inductively define when τ satisfies an LTL-FOA formula Φ at position i
under v, written 〈τ, i, v〉 |=ltl Φ

〈τ, i, v〉 |=ltl ϕ if 〈db(τ(i)), v〉 |= ϕ
〈τ, i, v〉 |=ltl ¬Φ if it is not the case that 〈τ, i, v〉 |=ltl Φ
〈τ, i, v〉 |=ltl Φ1 ∧ Φ2 if 〈τ, i, v〉 |=ltl Φ1 and 〈τ, i, v〉 |=ltl Φ2

〈τ, i, v〉 |=ltl ∃x.Φ if there exists d ∈ ∆
such that 〈τ, i, v[x/d]〉 |=ltl Φ

〈τ, i, v〉 |=ltl XΦ if 〈τ, i+ 1, v〉 |=ltl Φ
〈τ, i, v〉 |=ltl Φ1 UΦ2 if there exists k ≥ i such that 〈τ, k, v〉 |=ltl Φ2

and for every j, if i ≤ j < k then 〈τ, j, v〉 |=ltl Φ1

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (15/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

Model checking LTL-FO

When the LTL-FO formula Φ is closed, the satisfaction relation does not
depend on the valuation v, and we simply denote satisfaction as 〈τ, i〉 |=ltl Φ.

LTL model checking an RTS

Input:

an RTS Υ = 〈∆,R, S, s0, db,⇒〉
a closed LTL-FO formula Φ

Output: yes, iff for every run τ over Υ, 〈τ, 0〉 |=ltl Φ.

In this case, we write Υ |=ltl Φ.

LTL Model checking a DCDS

Input:

a DCDS X
a closed LTL-FO formula Φ

Output: yes, iff ΥX |=ltl Φ.

In this case, we write X |=ltl Φ.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (16/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

First-order LTL with restricted quantification

History-preserving quantification: LTL-FOA

FO quantification ranges over current active domain only:
∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

Example: ∀x.live(x) ∧ Customer(x)→ FGold(x)

Persistence-preserving quantification: LTL-FOP

FO quantification ranges over persisting individuals only.
∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

XΦ(~x) ;

{
live(~x) ∧XΦ(~x) (strong persistence)

live(~x)→ XΦ(~x) (weak persistence)

Φ1 UΦ2(~x) ;

{
(live(~x) ∧ Φ1)UΦ2(~x) (s.p.)

(live(~x) ∧ Φ1)U(live(~x)→ Φ2(~x)) (w.p.)

Example: ∀x.(live(x) ∧ Gold(x))→ ¬(live(x)U¬Gold(x))

LTL

LTL-FO

LTL-FOA

LTL-FOP

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (17/18)

Logics First-order µ-Calculus Restricted µ-calculi First-order LTL

LTL with persistence-preserving quantification – Example

Consider:
∀x.Gold(x)→ GGold(x)
∀x.Gold(x)→ ¬F¬Gold(x)
∀x.Gold(x)→ ¬(trueU¬Gold(x))

With strong persistence:
∀x.live(x)→ (Gold(x)→ ¬(live(x)U¬Gold(x)))
∀x.(live(x) ∧ Gold(x))→ ¬(live(x)U¬Gold(x))

With weak persistence:
∀x.live(x)→ (Gold(x)→ ¬(live(x)U(live(x)→ ¬Gold(x))))
∀x.(live(x) ∧ Gold(x))→ ¬(live(x)U(live(x)→ ¬Gold(x)))

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (18/18)

	Verification Logics
	First-order -Calculus
	History and Persistence-Preserving -Calculus
	First-order Linear Temporal Logics

