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ABSTRACT
In recent years, declarative, constraint-based approaches have been
proposed to model loosely-structured business processes, mediat-
ing between support and flexibility. A notable example is the De-
clare framework, equipped with a graphical declarative language
whose semantics can be characterized with several logic-based for-
malisms. Up to now, Declare constraints have been mainly used
to tackle control-flow aspects, abstracting away from data. In this
work, we extend Declare so as to include task data and data-aware
constraints. We show how the Event Calculus (EC) formalization
of Declare can be improved to deal with such extensions, and to ap-
ply a reactive EC reasoner for monitoring data-aware constraints.
Keywords: process monitoring, data-aware constraints, event cal-
culus.

1. INTRODUCTION
In recent years, declarative languages have been proposed to

model business rules and loosely-structured processes, mediating
between support and flexibility. A notable example are constraint-
based approaches. These approaches enjoy declarativeness by sup-
porting the modeler in the elicitation of the (minimal) set of be-
havioral constraints that must be respected to correctly execute the
process, without stating how the involved stakeholders must behave
to satisfy them. Acceptable courses of execution are not explicitly
enumerated in a pre-defined way; rather, they are implicitly de-
rived as the execution traces that comply with all the modeled con-
straints, thus enjoying flexibility by design. In this work, we focus
on the Declare constraint-based framework [13]. Declare provides
a graphical, declarative language [14] for the specification of activ-
ities and constraints: activities model atomic units of work, while
constraints impose expectations about the (non) execution of activi-
ties. Constraints range from classical sequence patterns to loose re-
lations, prohibitions and cardinality constraints. They are grouped
into four families: (i) existence constraints, used to constrain the
number of times an activity must/can be executed; (ii) choice con-
straints, requiring the execution of some activities selecting them
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Table 1: Some Declare constraints

0

a
1..∗

b Absence The target activity a cannot be executed
Existence Activity b must be executed at least once

a •−−−I b Response Every time the source activity a is exe-
cuted, the target activity b must be executed after a

a −−−I• b Precedence Every time the source activity b is exe-
cuted, a must have been executed before

a •−−−I‖ b Negation response Every time the source activity a
is executed, b cannot be executed afterwards

among a set of available alternatives; (iii) relation constraints, ex-
pecting the execution of some activity when some other activity has
been executed; (iv) negation constraints, forbidding the execution
of some activity when some other activity has been executed. Tab. 1
lists the Declare constraints that will be used throughout the paper.
One of the key advantages of Declare is that its semantics can be
characterized in different logic-based approaches, enabling a wide
range of reasoning and verification capabilities. At the time being,
Declare has been formalized using three logic-based frameworks:
Linear Temporal Logic (LTL) over finite traces [14], a rule-based
language relying on Abductive Logic Programming [9], and the
Event Calculus (EC) [11]. The Event Calculus formalization has
proven a successful choice for dealing with runtime verification and
monitoring, thanks to its high expressiveness and the existence of
reactive, incremental reasoners [3, 2].

In its original shape, Declare is mainly exploited to constrain
control-flow aspects, with three main limitations: lack of support
for (i) non-atomic, durative activities, (ii) metric temporal condi-
tions, and (iii) data, which are all key requirements when dealing
with real-world case studies, such as [16, 8, 5]. In [12], Pesic dis-
cussed how to address these issues, but the resulting extensions of
Declare were treated only at the tool level, due to the insufficient
expressive power of the underlying logic (propositional LTL over
finite traces). Consider these illustrative examples:
(C1) In case the respondent bank rating review is completed with

outcome “rejected”, an account must never be opened [1].
(C2) A loan processing involving more than 20K e can be com-

pleted only if the customer has completed her registration.
(C3) Every time a blood glucose test is executed, if the measured

level is less than 50 mg/dl, then the patient should start as-
suming sugar within 3 minutes.

Such rules correspond to specific Declare constraints, in particular
a negation response, precedence, and response, but
equipped with data. These data limit the range of events that match
with the constrained activities. Furthermore, some constraints ex-
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plicitly refer to multiple events associated to the involved activi-
ties (start and complete in particular), suggesting that a non-atomic
model for activities is needed. Beside custom data, events can be
associated, by default, to a set of common information, like the re-
source who originated the event (originator), and the time at which
the event has been generated. E.g., registration in constraint C2 will
be executed by some customer, whereas the patient is responsible
of assuming sugar in C3. In this latter constraint, also timestamps
are relevant: the deadline of 3 minutes relates to the actual time at
which the glucose test has been completed.

In general, the examples attest that: (i) activities could be atomic
or non atomic, and involve (input and output) data; (ii) data-aware
conditions contribute to determine when a business constraint must
be applied (e.g., C3 triggers only if the glucose level is lower than
50 mg/dl); (iii) data-aware conditions could be either absolute or
relative, referring in the latter case to data produced by another
activity. Recent works aimed at improving the treatment of these
aspects in the Declare framework. In [10], Declare is extended with
metric temporal annotations, and the resulting approach is formal-
ized with Abductive Logic Programming rules, to provide reason-
ing support. A similar version of Declare is used in [21], where
however the metric time logic MTL and timed automata are used
as the underlying formal framework. In [11], the EC-based formal-
ization of Declare does not only deal with metric time conditions,
but also supports non-atomic activities. This is made possible by
the first-order nature of EC, which allows to attach data to events,
to model parametrized business constraints using variables, and to
constrain such data as conditions over the corresponding variables.

In this work, we leverage on this expressiveness making Declare
data-aware. We do not make any assumption about the domain of
data and resources, which can be arbitrary and even infinite. This
makes the standard LTL-based formalization of Declare not appli-
cable: it is intractable with finite domains (it suffers from the state
explosion problem, because it requires to translate all data-aware
business constraints into corresponding propositional ones), and
even undecidable with infinite domains. More specifically, starting
from [9], we propose an extension of the Declare notation, where:
(i) activities are characterized by multiple ports, which denote the
different events associated to the activity lifecycle and constitute
anchor points for task data; (ii) constraints are attached to ports and
can employ the connected data to specify data-aware conditions,
affecting the constraint behavior. We then improve the EC-based
approach of [11] to include data and data-aware conditions. Notice
that this approach adopts logic programming (Prolog in particular)
to axiomatise the EC and provide the underlying reasoning facili-
ties. In this way, we do not only have the power of EC to formalize
business constraints, but we can leverage on the entire Prolog lan-
guage to specify data-aware conditions. In particular, the choice
of EC and logic programming as underlying formal representation
allows us to adopt a reactive reasoner [2] to monitor data-aware
constraints, providing advanced operational decision support facil-
ities to running processes, in the style of [7].

2. DATA-AWARE Declare
We introduce a data-aware extension of Declare, suitably extend-

ing its graphical notation. We tackle task data and embed the ex-
tensions proposed in [10] and [11] for metric time conditions and
non-atomic activities. For the sake of self-containedness, our ex-
amples will employ only the constraints shown in Tab. 1. An in-
depth presentation of Declare can be found in [14, 12, 9].

2.1 Atomic and Non-Atomic Activities
As discussed in Sec. 1, often activities are associated to multi-

ple, atomic events such as, for example, start and complete. This
calls for a non-atomic model for activities, where activity instances
span over time and are characterized by multiple, correlated event
occurrences. Obviously, a non-atomic model requires not only to
fix the event types, but also to determine the activity lifecycle, i.e.,
how events affect the state of an instance and which are the allowed
orderings. In the literature, there exist many possible activity life-
cycle models. They are commonly modeled using a state machine
[20]. In [12], Pesic introduced a simplified lifecycle model for De-
clare, which was then refined in [11] to explicitly account for an
error state, caused by out-of-order events. In particular, the model
in [11] supports the management of multiple lifecycle instances of
the same activity, to track its multiple (possibly parallel) execu-
tions. To this aim, it assumes that each event comes with an activity
name (the activity it refers to), an event type (a specific transition
in the activity lifecycle), and an event instance identifier. The sup-
ported transitions are ts, tc and tx, respectively modeling the start,
completion and cancelation of an activity instance. The lifecycle
specifies that each ts transition causes the creation of a new activ-
ity instance, putting it in an active state. The tc and tx transitions
for a certain activity instance can occur only when it is in the active
state. If so, they migrate the instance to a completed/canceled state,
and if not, to an error state. In order to understand to which activ-
ity instance these transitions refer to, the event instance identifier
is used. In particular, a start event creates a new activity instance
associated to an identifier, and only tc and tx transitions referring
to the same identifier trigger a state transition of the instance. This
form of correlation is necessary to manage multiple execution of
the same non-atomic activity. This lifecycle has been fully formal-
ized in [11], using the EC. Note that, thanks to the expressiveness of
the EC and its ability to capture state machines, the approach could
be easily extended to accommodate more complex lifecycles, such
as the transactional model of XES1 (eXtensible Event Stream), the
standard defined by the IEEE Task Force on Process Mining for
storing, exchanging, and analyzing event logs.

To support such a lifecycle model, we extend Declare with the
notion of port and use it as the basic building block for atomic and
non-atomic activities, and for anchoring constraints. Ports graphi-
cally depict the transitions of the lifecycle model, together with the
data required or produced by the corresponding activity.

DEFINITION 1 (PORT). A port P is a tuple P = 〈E,A, I,D,O〉,
where E is an event type that belongs to the lifecycle of activity A, while
I , D and O are three sets of strings representing the input, internal and
output data identifiers of the port.2

DEFINITION 2 (ATOMIC ACTIVITY). An atomic activity is a pair
〈N,P〉, where N is a string representing the activity name and P =
〈te, N, I,D,O〉 is a port associated to event te, representing the atomic
execution of the activity.

From the graphical point of view, a prototypical representation of
an atomic activity is provided in Fig. 1 (left). Since the activity is
associated to a single port, the port itself is not explicitly shown.
Input and output data can be differentiated by looking at the direc-
tion of the edges that connect them to the activity. The port there-
fore corresponds to 〈te, a, {Id1, . . . , Idn}, D, {Od1, . . . , Odm}〉,
where D is a set of standard attributes implicitly associated to all
activities. Following the approach of the XES standard, we do not
fix such attributes once and for all, but we leave instead the choice
open to the modeler. A typical situation is the one in which D con-
tains an indication about the originator responsible for the execu-
tion of an instance of the activity. In the remainder of the paper, we
1http://www.xes-standard.org/
2For simplicity, we do not deal here explicitly with data domains.
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Figure 1: Atomic and non-atomic activities in Declare++

assume that such an originator is indeed always implicitly present
for each activity, and we use string “O” to denote it.

DEFINITION 3 (NON-ATOMIC ACTIVITY). A non-atomic activity is
a tuple 〈N,Ps,Px,Pc〉, where Ps = 〈ts, N, I,D, ∅〉, Px =
〈tx, N, I,D, ∅〉 and Pc = 〈tc, N, I,D,O〉, such that ts, tx and tc rep-
resent the start, cancel and complete events of the activity lifecycle.

The three ports of a non-atomic activity are part of the graphical
notation, as shown in Fig. 1 (right). Input and output data are in this
case associated to the start and completion port of the activity, but,
according to the definition, input data are also visible to the cance-
lation and completion ports. Therefore, the three ports for the ac-
tivity shown in the figure are: Ps = 〈ts, a, {Id1, . . . , Idn}, D, ∅〉,
Px = 〈tx, a, {Id1, . . . , Idn}, D, ∅〉 and Pc =
〈tc, a, {Id1, . . . , Idn}, D, {Od1, . . . , Odm}〉. By definition,
we require that ports are associated to the same internal data
identifiers, but we also assume that the data corresponding to such
identifiers are the same for the start and complete/cancel ports.
This reflects the intuition that internal identifiers participate to the
definition of the activity instance itself. For example, we have that
one single originator must be responsible for the entire execution
of a non-atomic activity. A similar situation holds for input data:
they are provided when starting an instance of the activity, and
they are maintained unaltered also in the completion/cancelation
ports, which only access them for “visibility” reasons (see below).

2.2 Data-Aware Constraints
Data-aware constraints extend basic Declare constraints in two

directions. First, they are anchored to ports instead of activities,
supporting the modeler in the specification of fine-grained con-
straints regulating start, completion and cancelation of activities.
Second, the anchor points may be associated to data conditions,
which restrict the range of matching event occurrences. Remem-
ber that we accept Prolog predicates as special conditions (such as
member(E,L), which checks if element E belongs to list L).

DEFINITION 4 (DATA CONDITION). A data condition is a Prolog
predicate or a formula Expr1 Op Expr2 where Op ∈ {=, 6=, <,≤, >
,≥}, and Expr1, Expr2 are constituted by data identifiers, (numerical or
string) constants or expressions involving data identifiers and constants.

DEFINITION 5 (ANCHOR). An anchor is a pair 〈P, Cond〉, where
P = 〈E,N, I,D,O〉 is a port and Cond is a set of data conditions an-
chored to the port, and defined over the data identifiers in I ∪D ∪O.

As for data-aware constraints, we separate unary constraints, ex-
tending Declare existence and choice constraints, from binary con-
straints, tackling Declare relation and negation constraints. Some
binary constraints can also be associated to metric temporal con-
straints, following [10]. Examples of unary constraints are the
absence and existence constraints in Tab. 1, whereas exam-
ples of binary constraints are all the others reported there.

DEFINITION 6 (UNARY DATA-AWARE CONSTRAINT). A unary
data-aware constraint is a triple 〈T, Targets, Card〉, where T is the
constraint’s type, Targets is a set of anchors, and Card is the con-
straint’s cardinality. With T ∈ {existence, absence, exactly}, the
constraint models a data-aware existence constraint, Targets contains
a single anchor and Card ∈ N0 represent the minimum, maximum or

correlation conditions
between data of c and a

conditions 
on a's data

conditions
on a's data

0..1
a

b

conditions on b's data

c

conditions on c's data

correlation conditions
between data of b and a

Figure 2: Representation of data-aware Declare constraints

exact number of times that the anchored port must/can be executed. With
T ∈ {choice, exclusive choice}, the unary constraint models a
data-aware choice constraint, Targets contains at least two anchors and
Card ∈ {1, . . . , |Targets|} respectively denotes the minimum or exact
number of ports that must be executed among the possible choices.

DEFINITION 7 ((TIMED) BINARY DATA-AWARE CONSTRAINT). A
binary data-aware constraint is a triple 〈T, Source, CTargets〉, where
T is the constraint type (ranging over relation and negation constraints),
Source is an anchor for the constraint source, and CTargets is a set
of triples of the form 〈Cond, TCond, Target〉. In each of such triples,
Target is an anchor, Cond is a data-aware condition combining the data
identifiers of the ports attached to Source and Target, and TCond is
an optional metric temporal constraint [10], which can be applied only to
time-ordered relation constraints and to negation response.

Intuitively, binary constraints can be augmented with three groups
of data conditions, one attached to the source, and two attached to
each target. Targets are associated to two groups of conditions to
separate those involving only data identifiers of the target port from
those that correlate the target data with the source ones. We call
the latter correlation conditions. Note that we support alternative
branches only on one side of the constraint. In this way, ambigu-
ities and inconsistencies in correlation conditions are avoided: for
every branch there is a uniquely determined connection between
the two endpoints attached to it. It is worth noting that Declare
constraints branching on both sides can be reformulated as a set of
constraints branching only on one side. Therefore, our assumption
does not lead to a loss of generality, but only affects the compact-
ness of diagrams. Fig. 2 shows how the extended constraints can
be depicted in data-aware Declare. Anchor points are denoted by a
dashed connection and a diamond, associated to data-aware condi-
tions. The connection points to the associated port or, in case of a
correlation condition, to the associated branch. As for correlation
conditions, a dot notation activityName.DataId is used to re-
solve ambiguities. Tab. 2 shows the data conditions present in the
four sample constraints of Sec. 1, and the corresponding notation.

EXAMPLE 1 (CONSTRAINT C1). This constraint involves a rating
review and an open account activity. C1 is triggered each time a rating
review is completed with a rejection of the reviewed bank, and forbids to
open accounts to the reviewed bank. This is modeled with a negation
response that connects the completion of rating review to the start of
open account, and uses a source-anchored data condition to state that C1
is triggered only when Evaluation = “reject”. We use an (equality)
correlation between the reviewed bank and the one of open account, so that
accounts can still be opened for other banks.

EXAMPLE 2 (CONSTRAINT C2). This constraint uses a numerical
condition to determine whether a precedence constraint should trigger
or not. In particular, its source (the completion of loan processing) triggers
the constraint only if the amount is greater than 20K e. The target port is
the completion of register, with the condition that the originator executing
the registration is the same as the one who is requesting the loan, and that
the chosen registration type is “premium”. The first condition is modeled as
a correlation condition between the source and the target, while the second
one is anchored to the target port. In this way, a 20K+ loan processing can
be started only if the loan’s customer has completed a premium registration.
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Table 2: Data dependencies in the constraints of Sec. 1, and corresponding graphical representation

CONSTRAINT ACTIVITY DATA I/O CONDITIONS GRAPHICAL REPRESENTATION

C1 negation response source rating review bank I

EvaluationBank

Evaluation =  "reject" open.Bank = rating.Bank

rating 
review

open 
account

Account IDPers.
Data Bank

(complete) outcome O reject

target open account bank I reviewed bank
(start) accound id O

C2 precedence source loan processing customer I

Amount

Amount ≥ 20K

register loan 
processing

CustomerType

Type = "premium"
loan.Customer = register.O

Loan

(complete) amount I more than 20K e
loan O

target registration type O premium
(complete)

C3 response source test glucose patient I

Level

Level < 50 glucose test.Patient = eat.O

Patient

(0,180)
glucose 

test
take 

sugar
(complete) glucose level O less than 70 mg/dl

target take sugar person I patient
(start)

According to Def. 7, metric temporal conditions can be attached
to the constraint targets. These are employed to refine the qualita-
tive temporal ordering embedded into a Declare relationship with
further metric requirements, in particular with a time interval de-
limiting the timespan targeted by the constraint. By considering
Tab. 1, the (negation) response constraint can be refined with
a time interval (t1, t2) stating that if the source port is executed at
time t, then the target port is expected (not) to be executed after
t+ t1 and within the t+ t2. Hence, t1 and t2 play the role of delay
and deadline respectively. Symmetrically, metric precedence
allows the source port to be executed at time t only if the target one
was executed between t− t2 and t− t1.

EXAMPLE 3 (CONSTRAINT C3). This constraint handles a hypo-
glycemia for a diabetic patient, imposing that the patient must take sugar
if her glucose level is below 50 mg/dl. The glucose test activity is executed
on a patient and returns the glucose level in mg/dl. When a test is completed
and the measured level is 50 or less, then the target patient must eventually
take sugar. Differently from the other constraints, C3 also imposes a met-
ric temporal requirement on the execution of the target activity: it must be
promptly started within 3 minutes after the glucose test. This is modeled by
means of a (0, 180) temporal condition, assuming a granularity of seconds.

3. EVENT CALCULUS FORMALIZATION
We now show how the EC can be used to formalize data-aware

Declare constraints. The EC is a logic-based formalisms for mod-
eling and reasoning about actions and their effects. Starting from
the seminal work in [4], it has been increasingly applied in several
domains [17]. Many EC dialects have been proposed, using dif-
ferent underlying logical frameworks. As already mentioned, we
adopt one of the most diffused choices, namely logic programming
(Prolog in particular). In this setting, an EC specification contains
a set of clauses formalizing the calculus predicates (EC ontology),
and another set of clauses that use this ontology to formalize the
domain of interest. The EC ontology is built from the following
predicates: (i) happens(Ev, T ) states that event Ev occurred at
time T . A set of ground happens predicates constitutes a (par-
tial) execution trace of the system. (ii) initiates(Ev, F, T ) and
terminates(Ev, F, T ) represent the effects of events, i.e., prop-
erties that vary over time (fluents): initiates and terminates
clauses state that event Ev initiates or terminates fluent F at time
T . (iii) initially(F ) models that F holds at the beginning of exe-
cution. (iv) holds_at(F, T ) checks whether F holds at time T .

Given an EC execution trace and a theory constituted by domain-
dependent clauses defining initially, initiates and terminates

predicates, it is possible to compute the validity intervals of flu-
ents, i.e., to infer the evolution of fluents in response to events.
Thanks to the first-order nature of the EC, such clauses can
contain universally quantified variables (with scope the entire
clause), and match with several events and timestamps. E.g.,
initiates(pay(P,A), poor(P ), T ) ← A > 1000 states that each
person P paying an amount A > 1000 at any time becomes poor.

In our setting, fluents can be used to model and track the state of
activity and constraint instances, and to identify noncompliant state
of affairs that must be reported to the execution environment. As
an activity instance denotes a specific execution of that activity, so
a “constraint instance” identifies the instantiation of a constraint on
specific events and data, as in [11, 6].

3.1 Formalizing Events and Traces
The execution of activities consists of the execution of their

ports, which is represented by an event occurrence happens(e, t),
where e is a term that identifies the port and grounds its data, ac-
cording to Def. 8 below. We assume that data identifiers attached to
ports are listed in a pre-defined order (e.g., in alphabetical order), to
guarantee an unambiguous matching between data identifiers used
when formalising constraints and the real values carried by events.

DEFINITION 8 (EVENT). The execution of an atomic activity aA
with input data identifiers I1, . . . , In, internal data identifiers D1, . . . , Dr

and output data identifiers O1, . . . , Om is represented by the event
exec(te, aA, id, [i1, . . . , in], [d1, . . . , dr], [o1, . . . , om]), where id is an
instance identifier, i1, . . . , in are the values of input data identifiers,
i.e., Ij = ij for j = 1, . . . , n (similarly for internal/output data
identifiers). Given a non-atomic activity aN with input data identifiers
I1, . . . , In, internal data identifiers D1, . . . , Dr and output data iden-
tifiers O1, . . . , Om: (i) exec(ts, aN , id, [d1, . . . , dr], [i1, . . . , in]) is a
(possible) start event for aN , assigning values to internal and input data
identifiers; (ii) exec(tx, aN , id, [d1, . . . , dr], [ ]) is a (possible) cancela-
tion event for aN , providing concrete values to internal data identifiers;
(iii) exec(tc, aN , id, [d1, . . . , dr], [o1, . . . , om]) is a (possible) comple-
tion event for aN , assigning values for internal and output data identifiers.

DEFINITION 9 (TRACE). A trace is a set of event occurrences
{happens(e1, t1), . . . , happens(en, tn)} where t1, . . . , tn ∈ N (nu-
merical timestamps) and e1, . . . , en are events as in Def. 8.

Starting from these observable, external events, we introduce some
EC axioms dedicated to produce suitable corresponding internal
events. These are used to mark the proper starting, completion or
cancelation of an activity instance, though here we need to account
for input and output data. Once these axioms are established, they
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can be complemented with the axioms described in [11] for cap-
turing the formalization of the activity lifecycle and tracking the
current activity instance states. As for data, Def. 8 states that each
complete event only carries output data. However, according to the
visibility rules for ports, also input data associated to the previous
corresponding start event should be accessible. Hence, events and
ports execution do not match completely. The definition of internal
events bridges this gap. In the following, status(i(Id,A), S) is a
term modeling that instance Id of activity A is in state S.

happens(start(A, Id,D, I), T )← happens(exec(ts, A, Id,D, I), T ).

happens(compl(A, Id,D, I), T )← happens(start(A, Id,D, I), Ts)

∧ happens(exec(tc, A, Id,D,Out), T ) ∧ T > Ts

∧ holds_at(status(i(Id,A), active), T ) ∧ append(I, Out, IOut).

happens(cancel(A, Id,D, I), T )← happens(exec(ts, A, Id,D, I), Ts)

∧ happens(exec(tx, A, Id,D, []), T ) ∧ T > Ts

∧ holds_at(status(i(Id, act(A)), active), T ).

3.2 Formalizing Data-Aware Constraints
The EC-based formalization of data-aware constraints is an ex-

tension of the one proposed for the Declare language with quan-
titative time constraints, presented in [11]. To show how this ap-
proach can be augmented with data aware aspects, we focus on the
response constraint, and in particular on constraint C3 of Sec. 1.
The idea behind the formalization of response constraints is that
each time an instance of the source activity is completed, a new,
independent instance of the constraint is created. In fact, each
instance is associated to a specific “context” (data values, times-
tamps, actual deadlines and temporal conditions, . . . ) determined
by the involved ports execution. Three states are used for this pur-
pose: (i) sat means that the constraint instance is currently satisfied,
i.e., that the system trace complies with it; (ii) viol states that the
constraint instance is violated, i.e., that the trace does not comply
with it; (iii) pend represents that the constraint instance is currently
violated, but some further event can bring it to satisfied. By con-
sidering the contribution of data, a response constraint states
that “every time the source port is executed, and the source data
conditions are satisfied, then a future execution of the target port
is expected to occur, in such a way that the correlation conditions
as well as the target data conditions and the involved metric tem-
poral conditions are met”. This behavior can be then formalized
as follows: (1) Every time the source port is executed, then a new
instance of the constraint is generated and put into the pend state,
provided that the source data conditions are satisfied; the constraint
identifier can be directly inherited from the instance identifier asso-
ciated to the event occurrence. (2) A transition from the pend to the
sat state is triggered if the target port is executed, so that the corre-
lation and target data conditions, as well as the temporal conditions,
are satisfied. (3) A transition from the pend to the viol state is trig-
gered if the constraint instance is associated to a deadline, and the
deadline has expired. The deadline expiration can be recognized
by considering the timestamp associated to the currently processed
event. (4) A transition from the pend to the viol state is triggered if
the execution trace reaches an end, i.e., a special event is received to
attest that no further event will occur. This means that all instances
of constraints that are still pending cannot be satisfied anymore.
Hence, this transition is applied to all pending constraint instances.
All these conditions can be declaratively modeled by means of EC
axioms. Tab. 3 reports how they are formally grounded on the hypo
constraint, while Fig. 3 shows how they are applied to monitor a
sample process instance, using the EC reactive reasoner described
in [2] and a JAVA module that graphically depicts the validity inter-

Figure 3: Monitoring the hypoglicemia constraint

vals of fluents dynamically calculated by the reasoner.3 The mon-
itored trace in Fig. 3 involves three instances of glucose_test. The
first does not lead to trigger the corresponding constraint, being the
glucose level above 50. The other two trigger the constraints, since
they measure a glucose level of 49 (for James) and 42 (for Johanna).
Johanna promptly takes sugar, satisfying the pending constraint in-
stance. The completion of this activity instance is the first event
that occurs after 180s from the completion of Jame’s glucose_test:
the reasoner detects that the deadline for James’ constraint instance
(number 2) has expired, and detects a violation of the instance.

4. DISCUSSION AND CONCLUSION
We have proposed a data-aware extension of Declare, showing

how its EC-based formalization can be extended to deal with data.
The approach is general: all EC reasoners based on logic program-
ming can be used to reason about data-aware constraints. Deductive
reasoners can be employed to carry out ex-post analysis on event
logs, verifying whether they comply with the lifecycle of activities
as well as with the modeled constraints. At the same time, thanks to
the runtime verification framework presented in [11, 2], this work
paves the way for monitoring running processes w.r.t. data-aware
Declare constraints (see Fig. 3), leveraging on the promising ex-
perimental results presented in [11, 2]. A similar approach to ours
is [1], where the BPMN-Q language is extended with a data per-
spective to model compliance requirements. BPMN-Q rules are
used to specify queries to be checked against a BPMN process,
evaluating its compliance; a translation to LTL and model check-
ing are exploited for this goal. Declare is instead a framework for
modeling loosely-structured processes, and its EC formalization is
primarily thought for monitoring and operational support. Our ap-
proach currently deals with task data [15]. We plan to include case
data, which can be seamlessly introduced in EC, by associating
each case data identifier to a fluent that models its current value.
We also want to integrate constraints with data maintained into an
external source, such as a database. This would position our ap-
proach in the context of artifact-centric business processes [18], to
declaratively capture artifacts’ lifecycle dynamic constraints.

An important open issue concerns the usability and effectiveness
of the language as the size of constraint models increase. Although

3A stand-alone tester, equipped with the full formalization of the
example, can be downloaded from http://www.inf.unibz.
it/~montali/stuff/SAC2013-demo.zip.
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Table 3: EC formalization of the hypoglicemia response constraint

new initiates(complete(glucose_test, Id,O, [Patient, Level]), status(i(Id, con(hypo)), pend), T )← Level < 50.

pend to sat

terminates(start(take_sugar, Id2, O2, []), status(i(Id, con(hypo)), pend), T )← holds_at(status(i(Id, con(hypo)), pend), T )

∧ happens(complete(glucose_test, Id,O, [Patient, Level]), Ta) ∧ Patient = O2 ∧ T > Ta ∧ T ≤ Ta + 180.

initiates(start(take_sugar, Id2, O2, []), status(i(Id, con(hypo)), sat), T )← holds_at(status(i(Id, con(hypo)), pend), T )

∧ happens(complete(glucose_test, Id,O, [Patient, Level]), Ta) ∧ Patient = O2 ∧ T > Ta ∧ T ≤ Ta + 180.

pend to viol

terminates(start(take_sugar, Id2, O2, []), status(i(Id, con(hypo)), pend), T )← holds_at(status(i(Id, con(hypo)), pend), T )

∧ happens(complete(glucose_test, Id,O, [Patient, Level]), Ta) ∧ T > Ta + 180.

initiates(start(take_sugar, Id2, O2, []), status(i(Id, con(hypo)), viol), T )← holds_at(status(i(Id, con(hypo)), pend), T )

∧ happens(complete(glucose_test, Id,O, [Patient, Level]), Ta) ∧ T > Ta + 180.

pend to viol
terminates(exec(complete), status(i(Id, con(C)), pend), T ).

initiates(exec(complete), status(i(Id, con(C)), viol), T )← holds_at(status(i(Id, con(C)), pend), T ).

a1

 D1

b

 D1

b.D1 = a.D1

a2

 D2  D2

b.D2 = a.D2

(a) Explicit representation

a2  D2

b
a1  D1

(b) Implicit representation

Figure 4: Data-transfer constraints and a possible compact notation

this topic has not yet been extensively investigated for declarative
approaches, some insights have been provided in preliminary stud-
ies, such as the cognitive dimensions-based evaluation of ConDec
[9] and DecSerFlow [10], and the empirical test of [19]. These
studies confirm the benefits of declarative approaches, but point out
that their readability tend to decrease for complex models contain-
ing a huge number of constraints, unless suitable supporting tools
(such as reasoning and planning facilities) are provided. We plan to
attack this challenge by studying advanced visual techniques, but
also by introducing data-aware patterns that can be used to com-
pactly represent recurrent situations. Fig. 4 shows a specialised
representation for a recurrent form of “data-transfer” pattern, used
to model that an activity requires data produced by another activity.
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