
Monitoring Data-Aware Business Constraints
with Finite State Automata

Riccardo De Masellis
Sapienza Università di

Roma, Italy
demasellis@dis.uniroma1.it

Fabrizio M. Maggi
University of

Tartu, Estonia
f.m.maggi@ut.ee

Marco Montali
Free University of

Bozen-Bolzano, Italy
montali@inf.unibz.it

ABSTRACT
Checking the compliance of a business process execution
with respect to a set of regulations is an important issue in
several settings. A common way of representing the expected
behavior of a process is to describe it as a set of business con-
straints. Runtime verification and monitoring facilities allow
us to continuously determine the state of constraints on the
current process execution, and to promptly detect violations
at runtime. A plethora of studies has demonstrated that
in several settings business constraints can be formalized in
terms of temporal logic rules. However, in virtually all exist-
ing works the process behavior is mainly modeled in terms
of control-flow rules, neglecting the equally important data
perspective. In this paper, we overcome this limitation by
presenting a novel monitoring approach that tracks streams
of process events (that possibly carry data) and verifies if
the process execution is compliant with a set of data-aware
business constraints, namely constraints not only referring
to the temporal evolution of events, but also to the temporal
evolution of data. The framework is based on the formal
specification of business constraints in terms of first-order
linear temporal logic rules. Operationally, these rules are
translated into finite state automata for dynamically rea-
soning on partial, evolving execution traces. We show the
versatility of our approach by formalizing (the data-aware
extension of) Declare, a declarative, constraint-based process
modeling language, and by demonstrating its application on
a concrete case dealing with web security.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]: Mathe-
matical logic—Temporal logic; H.4.1 [Information System Ap-
plications]: Office Automation—Workflow Management ; D.2.3
[Software Engineering]: Software/Program Verification—For-
mal Methods; E.0 [Data]: General

General Terms
Design, Languages, Management, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP ’14, May 26-28, 2014, Nanjing, China
Copyright 2014 ACM 978-1-4503-2754-1/14/05 ...$15.00.

Keywords
Compliance Monitoring, Runtime Verification, First-order Linear

Temporal Logic, Operational Decision Support

1. INTRODUCTION
Checking the compliance of a business process execution

with respect to a set of (dynamic) regulations is an important
issue in several settings. A compliance model is, in general,
constituted by a set of business constraints that can be used
to monitor at runtime whether a (running) process instance
behaves as expected or not. The declarative nature of busi-
ness constraints makes it difficult to use procedural languages
to describe compliance models [31]. First, the integration of
diverse and heterogeneous constraints would quickly make
models extremely complex and difficult to maintain. Second,
business constraints often target uncontrollable aspects, such
as activities carried out by internal autonomous actors or
even by external independent entities.

These characteristics make constraint-based approaches
suitable for capturing loosely structured and knowledge-
intensive processes, such as the treatment of a patient in a
hospital. In this case, there is no strict process that physicians
have to follow, but only some (underspecified) guidelines and
clinical pathways. Even though it is not possible to guarantee
that clinical experts behave as specified by the guidelines,
it is still crucial to timely detect whether their behavior is
aligned with the expected one and, if not, to promptly detect
and report deviations. This calls for runtime verification and
monitoring as a flexible form of execution support. Since
the main focus here is on the dynamics of an evolving sys-
tem as time flows, ltl (Linear Temporal Logic) has been
extensively proposed as a suitable framework for formalizing
the properties to be monitored, providing at the same time
effective verification procedures. A distinctive feature in
the application of ltl to business constraints modeling and
monitoring, is that process executions do not continue indef-
initely, but eventually reach a termination point. This, in
turn, requires to shift from standard ltl over infinite traces
(and corresponding techniques based on Büchi automata), to
ltl over finite traces (and corresponding techniques based
on finite state automata).

In this paper, we represent business constraints using De-
clare [32, 34]. Declare is a declarative language that combines
a formal semantics grounded in ltl with a graphical rep-
resentation for users. Differently from procedural models,
which explicitly enumerate the allowed execution traces (con-
sidering all the other to be implicitly forbidden), a Declare
model describes a process in terms of a set of constraints

that must be satisfied during the process execution. Declare
follows a sort of “open world assumption” where every ac-
tivity can be freely performed unless it is forbidden. One
key limitation of Declare is that it completely neglects the
data perspective [29], which is crucial in several settings (e.g.,
healthcare, web security as well as financial institutions that
need solid auditing techniques to prevent accounting scan-
dals and frauds). In this light, a compliance model should
also include data-aware constraints to guarantee the correct
execution of a process in terms of control and data flow.
Since, the standard ltl-based formalization of Declare is not
sufficient to represent data-aware constraints, it consequently
becomes necessary to reformulate them by relying on a more
expressive formalism. A first attempt in this direction has
been proposed, in [29, 30], where the Event Calculus (ec)
is used to formalize data-aware Declare constraints. The
limitation of this approach, however, is that it is unable to
detect violations at the earliest possible time and also viola-
tions that cannot be ascribed to an individual constraint but
are determined by the interplay of two or more constraints
(cf. [23, 27]). To address this issue, the approach presented
in this paper aims at reconciling the data-aware nature of
[29, 30] and the advanced reasoning capabilities of [23, 27].
On the one hand, this is done by adopting a (finite-trace
variant) of the first-order extension of ltl, which we call
foltl, to formalize data-aware Declare constraints; on the
other hand, a characterization of this logic in terms of finite
state automata is exploited to carry out the actual monitor-
ing task. Employing finite state automata for monitoring
foltl rules allows us to lift the technique used in [23] for
the early detection of violations to the data-aware case.

The standard foltl semantics produces as output a
boolean value representing whether the current (finite) trace
complies with the monitored constraint or not. In the context
of monitoring, however, it is typically required to provide
a more fine-grained analysis, which distinguishes between
a temporary vs a permanent satisfaction/violation of the
constraint, by reasoning on the finite prefixes of the evolving
trace [6, 23]. This reflects that, when checking evolving traces,
it is not always possible to produce at runtime a definitive
answer about compliance. To tackle this issue, we further
extend foltl for finite traces with the four-valued semantics
of rv-foltl (foltl for Runtime Verification). This makes
the approach able to provide advanced diagnostics to the
end users, reporting which constraints are violated and why.
More specifically, our approach does not only communicate
if a running trace is currently compliant with the constraint
model, but also computes the state of each constraint, which
is one among temporarily satisfied, permanently satisfied, tem-
porarily violated and permanently violated. The first state
attests that the monitored process instance is currently com-
pliant with the constraint, but it can violate the constraint in
the future. The second state indicates that the constraint is
satisfied permanently, i.e., it is no longer possible to violate
the constraint. The third state models that the constraint is
currently violated, but it is possible to bring it back to a sat-
isfied state by continuing the trace. The last state models the
situation where the violation cannot be repaired anymore.

The paper is structured as follows. Section 2 introduces
the basic Declare notation and gives an overview on existing
analysis tools for Declare. Section 3 recalls foltl, and shows
how to apply it for formalizing data-aware Declare. In Sec-
tion 4, the monitoring technique is thoroughly investigated.

Table 1: Graphical notation and ltl formalization of
some Declare templates

template formalization

existence(A) 3A

absence(A) ¬3A
choice(A,B) 3A ∨3B

exclusive choice(A,B) (3A ∨3B) ∧ ¬(3A ∧3B)

responded existence(A,B) 3A→ 3B

response(A,B) 2(A→ 3B)

precedence(A,B) ¬BW A

alternate response(A,B) 2(A→◦(¬AU B))

alternate precedence(A,B) (¬BW A) ∧ 2(B →◦(¬BW A))

chain response(A,B) 2(A→◦B)

chain precedence(A,B) 2(◦B → A)

not resp. existence(A,B) 3A→ ¬3B
not response(A,B) 2(A→ ¬3B)

not precedence(A,B) 2(A→ ¬3B)

not chain response(A,B) 2(A→ ¬◦B)

not chain precedence(A,B) 2(A→ ¬◦B)

Section 5 grounds our approach on a concrete case study in
the context of web security. Section 6 further discusses the
concrete of the framework and its versatility. Finally, Section
7 concludes the paper and spells out directions for future
work.

2. PRELIMINARIES
In this section, we introduce some background notions

about Declare, and give an overview of the existing techniques
for the formal analysis and runtime monitoring of Declare
models.

2.1 Declare
Declare is a declarative process modeling language origi-

nally introduced by Pesic and van der Aalst in [33]. Instead
of explicitly specifying the flow of the interactions among
process activities, Declare describes a set of constraints that
must be satisfied throughout the process execution. The
possible orderings of activities are implicitly specified by con-
straints and anything that does not violate them is possible
during execution. In comparison with procedural approaches
that produce “closed” models, i.e., all what is not explicitly
specified is forbidden, Declare models are “open” and tend
to offer more possibilities for the execution. In this way,
Declare enjoys flexibility and is very suitable for specifying
compliance models that are used to check if the behavior of
a system complies with desired regulations. The compliance
model defines the rules related to a single process instance,
and the overall expectation is that all instances comply with
the model.

A Declare model consists of a set of constraints applied
to (atomic) activities. Constraints, in turn, are based on
templates. Templates are patterns that define parameterized
classes of properties, and constraints are their concrete in-
stantiations. Table 1 summarizes some Declare templates
(the reader can refer to [33] for a full description of the
language), where the 3, 2 and W ltl operators have the
following intuitive meaning (see Section 3.1 for the formal

semantics): formula 3φ1 means that φ1 holds sometime in
the future, 2φ1 says that φ1 holds forever and lastly φ1W φ2

means that either φ1 holds forever or sometime in the future
φ2 will hold and until that moment φ1 holds (with φ1 and
φ2 ltl formulas).

Templates existence and absence require that activity A
occurs at least once and never occurs inside every process
instance, respectively. Templates choice and exclusive choice
indicate that A or B occur eventually in each process in-
stance. The exclusive choice template is more restrictive
because it forbids A and B to occur both in the same process
instance. The responded existence template specifies that if
A occurs, then B should also occur (either before or after A).
The response template specifies that when A occurs, then
B should eventually occur after A. The precedence template
indicates that B should occur only if A has occurred be-
fore. Templates alternate response and alternate precedence
strengthen the response and precedence templates respec-
tively by specifying that activities must alternate without
repetitions in between. Even stronger ordering relations are
specified by templates chain response and chain precedence.
These templates require that the occurrences of the two activ-
ities (A and B) are next to each other. Declare also includes
some negative constraints to explicitly forbid the execution
of activities. The not responded existence template indicates
that if A occurs in a process instance, B cannot occur in the
same instance. According to the not response template any
occurrence of A cannot be eventually followed by B, whereas
the not precedence template requires that any occurrence of
B is not preceded by A. Finally, according to the not chain
response and not chain precedence, A and B cannot occur
one immediately after the other.

2.2 Analysis Tools for Declare
Several analysis plug-ins are available for Declare in the

process mining tool ProM [24].1 In [23, 26], the authors
propose an approach for monitoring Declare models based
on finite state automata. This approach provides the same
functionalities described in this paper but it is limited to
standard Declare specifications (i.e., data are not supported).
Differently from their approach, in the technique presented
here a compliance model can also include data-aware business
constraints. In [35], the authors define Timed Declare, an ex-
tension of Declare based on a metric temporal logic semantics.
The approach relies on timed automata to monitor metric
dynamic constraints, but again data-aware specifications are
not supported. As already mentioned in the introduction, in
[29] the ec is used for defining a data-aware semantics for De-
clare. Moreover, in [30], the authors propose an approach for
monitoring data-aware Declare constraints at runtime based
on this semantics. This approach also allows the verification
of metric temporal constraints, i.e., constraints specifying
required delays and deadlines. This expressiveness comes
with the limitation that the ec does not guarantee decid-
ability when reasoning on the possible future outcomes of
a partial trace, and hence is only used to check the actual
events received so far. Automata-based techniques makes
it instead possible to early-identify violations. In [25], the
authors relies on a first-order variant of ltl to specify a
limited version of data-aware patterns. Such extended pat-
terns are used as the target language for a process discovery
algorithm, which produces data-aware Declare constraints

1www.processmining.org

from raw event logs. Our foltl formalization for Declare
extends the one presented in [25], and is tailored to a formal
semantics that makes it suitable for the runtime monitoring
of evolving traces.

3. FO-LTL FOR DATA-AWARE DECLARE
Traditional ltl on finite traces is inadequate for expressing

data-aware business constraints, as its propositional variables
are not expressive enough to query complex data structures.
We propose a first-order variant of ltl, called First-Order
ltl (foltl), which merges the expressivity of first-order
logic together with the ltl temporal modalities.

3.1 Syntax of FOLTL
We assume a relational representation of data and we define

the data schema S as a set of relations, each one with an
associated arity, and an interpretation domain ∆, which is a
fixed a-priori and finite set of constants. A database instance
I of S interprets each relation symbol with arity n as a subset
of the cartesian product ∆n. Values in ∆ are interpreted as
themselves, blurring the distinctions between constants and
values. Given a schema S, I denotes all possible database
instances for S.

Definition 1 (foltl syntax). Given a data schema
S, the set of closed foltl formulas Φ obeys to the following
syntax:

Φ` := true | Atom | ¬Φ` | Φ`
1 ∧ Φ`

2 | ∀x.Φ`

Φt := Φ` |◦Φt | Φt
1 U Φt

2 | ¬Φt | Φt
1 ∧ Φt

2

Φ := Φt | ¬Φ | ∀x.Φ

where x is a variable symbol and Atom is an atomic first-
order formula or atom, i.e., a formula inductively defined as
follows: (i) true is an atomic formula; (ii) if t1 and t2 are
constants in ∆ or variables, then t1 = t2 is an atomic formula,
and (iii) if t1 . . . tn are constants or variables and R ∈ S
a relation symbol of arity n, then R(t1 . . . tn) is an atomic
formula. Since Φ is closed, we assume that all variables
symbols are in the scope of a quantifier.

Intuitively,◦Φ (next Φ) says that Φ holds in the next instant,
while Φ1 U Φ2 (Φ1until Φ2) says that there exists a future
instant in which Φ2 will hold and, until that moment, Φ1

holds.
We define the logic symbols ∨ and ∃ as Φ1∨Φ2 := ¬(¬Φ1∧
¬Φ2) and ∃x.Φ := ¬∀x.¬Φ respectively. Moreover, the ltl
temporal operators finally 3, globally 2 and weak until W
are defined as: 3Φ := true U Φ; 2Φ := ¬3Φ and Φ1W Φ2 :=
(Φ1 U Φ2) ∨ (2Φ1).

We observe that quantifiers for variables which occur in the
scope of temporal operators are required to be in the front
of the formula. We call such variables across-state variables.

3.2 Semantic of FOLTL over Finite Traces
Our analysis is not only based on finite traces, but it is

performed at runtime, meaning while such traces are evolv-
ing. Roughly speaking, we assume a business process that
produces events and possibly modifies data: each time it
does so, we take the trace seen so far, i.e., the history of
events and data, and we evaluate it considering that the
process execution can still continue. This evolving aspect has
a significant impact on the evaluation function: at each step,
indeed, the monitor may return truth values which have a

www.processmining.org

degree of uncertainty due to the fact that future executions
are yet unknown.

Without loss of generality, in what follows, we assume
that the events generated by the process are stored in the
database instance, and hence they are treated like data. A
more detailed explanation on how we deal with events is
given in Section 3.3. We now define the foltl semantics for
finite traces that evaluates a foltl formula given a finite and
completed trace. Then, we show how to use this semantics for
building our evaluation function and monitoring progressing
data instances.

Before showing the semantics of the language, we need to
introduce the notion of assignment. An assignment η is a
function that associates to each free variable x a value η(x)
in ∆. Let η be an assignment, then ηx/d is the assignment
that agrees with η except for the value d ∈ ∆ that is now
assigned to x. We denote with Φ[η] the formula obtained
from Φ by replacing variables symbols with values in η.

A finite trace of length n+1 for a data schema S is a finite
sequence I0, I1, . . . In of database instances over S, i.e., is a
function π : {0 . . . n} → I that assigns a database instance
π(i) ≡ Ii to each time instant i ∈ {0 . . . n}.

Definition 2 (foltl finite-trace semantics).
Given a foltl formula Φ over a schema S, a domain ∆,
an assignment η and a finite trace π of length n + 1, we
inductively define when Φ is true at an instant of time
0 ≤ i ≤ n, written (π, i, η) |= Φ, as follows:
• (π, i, η) |= true;
• (π, i, η) |= Atom iff (π(i), η) |= Atom, where (π(i), η) |=
Atom is the usual fo evaluation function;
• (π, i, η) |= ¬Φ iff (π, i, η) 6|= Φ;
• (π, i, η) |= Φ1 ∧Φ2 iff (π, i, η) |= Φ1 and (π, i, η) |= Φ2;
• (π, i, η) |= ∀x.Φ iff for all d ∈ ∆, (π, i, ηx/d) |= Φ;
• (π, i, η) |=◦Φ iff i < n and (π, i+ 1, η) |= Φ;
• (π, i, η) |= Φ1 U Φ2 iff for some i ≤ j ≤ n we have

(π, j, η) |= Φ2 and for all i≤k<j we have (π, k, η) |=
Φ1.

Furthermore, (π, η) |= Φ iff (π, 0, η) |= Φ and, when Φ is
closed (which is our assumption for constraints), we can
simply write π |= Φ.

Notice that when a formula does not contain any temporal
operator, its semantics corresponds to the traditional first-
order semantics. Notice also that the domain ∆ is the same
for each instant of time (cf. [16] for a dissertation on different
semantics for first-order modal logics). From the syntax, the
semantics and the assumption of finite and fixed domain, we
can translate every foltl formula into one in temporal prenex
normal form, i.e., with all across-state quantifier in the front.
From now on, we assume formulas to be in this form.

Since the interest of the verification community on runtime
monitoring, different monitoring evaluation functions have
been proposed [15, 10, 5]. Here, we adapt rv-ltl [5] to our
first-order setting, and we call it rv-foltl. Such a semantics
is tightly related to the notion of bad and good prefixes
introduced in [22]. Given a foltl formula Φ, a bad prefix for
Φ is a finite trace such that any (finite) extension of it does
not satisfy Φ. In other words, no matter the continuation of
the prefix, the formula Φ will always be evaluated to false
since that moment on. Analogously, a good prefix can be
defined as a finite trace which, no matter its continuation, will
always satisfy (together with any continuation) property Φ.

Recalling that we are monitoring evolving executions, the
definition of good and bad prefixes is particularly useful,
because it allows us to evaluate the formula with a definitive
truth value even if the trace is still evolving. Unfortunately,
there are foltl formulas that do not have any good nor
bad prefix, and hence cannot be evaluated as true or false
until the current execution is actually finished. In such cases,
we are still able to return a “temporary” truth value. In
particular, we consider the partial trace π seen so far as if it
was completed and we evaluate it according to the semantics
in Definition 2: if π currently satisfies Φ but there is a possible
prosecution of it that leads to falsifies Φ, then we say that Φ
is temporary satisfied ; if, instead, π currently falsifies Φ but
there is a possible prosecution of it that leads to verify Φ,
then we say that Φ is temporary violated.

Notice that, while evaluating a progressing trace, at each
time instant we do not know whether the trace will still
evolve, or the current instance seen is the last one, i.e., the
process execution is finished. Without loss of generality, we
introduce a propositional variable Last which is set to true
by the external process when it terminates, and indicates
that the current one is the closing instance of the trace.

Definition 3 (rv-foltl semantics). Given a foltl
formula Φ and a finite trace π of current length n (but possibly
still progressing), the monitoring evaluation function of a
formula Φ on π, denoted by [π |= Φ], is an element of the set
{true, false, temp true, temp false} defined as follows:
• [π |= Φ] := true iff π(n) |= Last and π |= Φ or
π(last) 6|= Last, π |= Φ and for all finite possible prose-
cution σ we have that πσ |= Φ, i.e., π is good prefix for
Φ;
• [π |= Φ] := false iff π(n) |= Last and π 6|= Φ or
π(last) 6|= Last, π 6|= Φ and for all finite possible prose-
cution σ we have that πσ 6|= Φ, i.e., π is bad prefix for
Φ;
• [π |= Φ] := temp true iff π(last) 6|= Last, π |= Φ and

there exists a possible prosecution σ such that πσ 6|= Φ;
• [π |= Φ] := temp false iff π(last) 6|= Last, π 6|= Φ and

there exists a possible prosecution σ such that πσ |= Φ.

No other cases are possible. In particular, if Φ is temporar-
ily verified or temporarily falsified, there always exists both a
prosecution that falsifies Φ and one that verifies it, otherwise
π would be a good or bad prefix, respectively.

3.3 Declare Patterns in FOLTL
We now ground our foltl-based approach to the case of

Declare, extending it to accommodate not only control-flow
aspects, but also data-related ones, in the style of [28, 29,
30]. We remark that this is the first attempt to formalize
data-aware Declare with temporal logics and exploit (finite
state) automata-based techniques for monitoring.

As pointed out in [28, 29], a fundamental limitation of
Declare in its basic form is the lack of data support: only
(atomic) activities can be constrained. To overcome this
limitation, [29] proposes an extension of the language to
support data-aware activities and data conditions to aug-
ment the original Declare templates. The extension can be
applied to both atomic and non-atomic activities, following
the approach proposed in [30]. Here we focus on atomic
activities only, briefly discussing the extension to non-atomic
activities in Section 6.2. Nevertheless, the semantics we give
here reconstructs faithfully the ideas presented in [30].

Table 2 shows how the basic Declare templates, extended
with data, can be formalized using fo-ltl. The idea is to
attach a payload that carries the data involved in execution
of an activity. For example, the fact that customer john
closes an order identified by 123 can be represented by the
activity instance close order(john, 123). This corresponds
to an instance of the activity close order/2 with payload
〈john, 123〉, which in our model corresponds to a fact of
relation close order(Cust,Oid) (called activity type). We
then assume that relations in S are partitioned into two
sets: A]R, where A is a set of activity relations (one per
activity type), and R contains the other (business) relevant
relations of the domain of interest. When monitoring a
concrete system execution, the extension of such relations is
manipulated as follows: every time an activity A is executed

with payload ~d ∈ ∆, (i) the content of all relations in A is

emptied, (ii) payload ~d is inserted into relation A ∈ A, and
(iii) the effects of the activity execution are incorporated,
manipulating the extension of relations in R accordingly.
Notice that this is a widely used mechanism to store payloads
in data-aware processes (cf. [21]). To enforce the last bullet,
we assume that the traced log of the system execution does
not only lists which activities have been executed and with
which payload, but also which facts are deleted and added by
each activity execution. More specifically, we define an event

as a tuple 〈A(~d),ADD ,DEL〉, where A is an activity in A, ~d
is the payload of the executed activity instance, constituted
by elements from ∆ and such that its size is compatible with
the arity of A ∈ A, and ADD/DEL contain a set of facts over
R that must respectively be added to and deleted from the
current database. We assume that ADD has higher priority
than DEL (i.e., if the same fact is asserted to be added and
deleted in the same event, it is added).

With this notion at hand, we define a system log as a pair
〈I0, E〉, where I0 is the (initial) database instance (defined in
such a way that the extension of each activity type A ∈ A
is empty), and E is a finite list of events 〈e1, . . . , en〉. A
system log maps into a trace I0, I1 . . . In in the sense of
Section 3.2 as follows: for each Ii with i > 0, given ei =

〈A(~d),ADD i,DELi〉, we have Ii = (Ii−1|R \DELi)∪ADD i∪
{A(~d)}, where Ii−1|R is the database instance obtained from
Ii−1 by considering only tuples of relations R. In this light,
query ξA(~x) = A(~p)∧Φ(~p, ~y), issued over the current database
I, returns false if A is not the last-executed activity, or the

answer of Φ(~d, ~y) over I if A has been the last-executed

activity, with payload ~d. Queries of the form ξA(~x) are the
basic building components for the fo-ltl-based formalization
of data-aware Declare templates: they combine a test over
the execution of the involved activity, together with a query
over the current database. Such queries replace the activity
name propositions used in standard Declare (cf. Table 1). As
shown in Table 2, first-order quantification is used as follows.

Existence, absence and (exclusive) choice templates ex-
istentially quantify over ~x, asserting that there must exist
a state where the target activity (or one of the target ac-
tivities) is executed so as to satisfy query Φ. For example,
existence(Close order(c, oid)∧Gold(c)) models that at least
one gold customer is expected to close an order during a
system execution. All the other (binary) templates with
source ξA(~x) = A(~pA) ∧ ΦA(~x) (with ~pA ⊆ ~x) and target
ξB(~x, ~y) = A(~pB) ∧ ΦB(~x, ~y) (with ~pB ⊆ ~x~y) universally
quantify over ~x (with scope the entire constraint), and ex-

Table 2: fo-ltl formalization for data-aware Declare;
formula ξA(~x) corresponds to A(~p)∧Φ(~x), where ~p ⊆ ~x,
A is an activity type with payload ~p, and Φ(~x) is a
first-order formula that queries the current database

pattern formalization

existence(ξA(~x)) 3∃~x.ξA(~x)

absence(ξA(~x)) ¬3∃~x.ξA(~x)

choice(ξA(~x),ξB(~y)) 3∃~x.ξA(~x) ∨3∃~y.ξB(~y)

exclusive choice(ξA(~x),ξB(~y)) 3∃~x.ξA(~x) ∨3∃~y.ξB(~y) ∧

¬(3∃~x.ξA(~x) ∧3∃~y.ξB(~y))

responded existence(ξA(~x),ξB(~x, ~y)) ∀~x.(3ξA(~x)→ 3∃~y.ξB(~x, ~y))

response(ξA(~x),ξB(~x, ~y)) ∀~x.2(ξA(~x)→◦3∃~y.ξB(~x, ~y))

precedence(ξA(~x, ~y),ξB(~x)) ∀~x.(¬ξB(~x)W ∃~y.ξA(~x, ~y))

alternate response(ξA(~x),ξB(~x, ~y)) ∀~x.2(ξA(~x)→◦(¬ξA(~x)U ∃~y.ξB(~x, ~y))

alternate precedence(ξA(~x, ~y),ξB(~x)) ∀~x.(¬ξB(~x)W ∃~y.ξA(~x, ~y))∧

∀~x.2(ξB(~x)→◦(¬ξB(~x)W ∃~y.ξA(~x, ~y))

chain response(ξA(~x),ξB(~x, ~y)) ∀~x.�(ξA(~x)→◦∃~y.ξB(~x, ~y))

chain precedence(ξA(~x, ~y),ξB(~x)) ∀~x.�(◦ξB(~x)→ ∃~y.ξA(~x, ~y))

not resp. existence(ξA(~x),ξB(~x, ~y)) ∀~x.(3ξA(~x)→ ¬3∃~y.ξB(~x, ~y))

not response(ξA(~x),ξB(~x, ~y)) ∀~x.�(ξA(~x)→◦¬3∃~y.ξB(~x, ~y))

not precedence(ξA(~x, ~y),ξB(~x)) ∀~x.�(∃~y.ξA(~x, ~y)→ ¬3ξB(~x))

not chain response(ξA(~x),ξB(~x, ~y)) ∀~x.�(ξA(~x)→ ¬◦∃~y.ξB(~x, ~y))

not chain precedence(ξA(~x, ~y),ξB(~x)) ∀~x.�(◦ξB(~x)→ ¬∃y.ξA(~x, ~y))

istentially quantify over ~y, asserting that for every payload
~pA of A, and every query answer ~x to ΦA, an execution
of activity B is expected to happen by satisfying the dy-
namic constraint imposed by the template, as well as the
involved data-aware conditions over ~pB and ΦB(~x, ~y). It
is worth noting that both the payload of B as well as the
query ΦB could make use of some of the variables contained
in ~pA and/or ~x. If this is the case, the common variables
play the role of a correlation mechanism between the source
and target activities/conditions. For example, constraint
response(Close order(c, oid), Pay order(c′, oid)∧ (c′ = c∨
Responsible(c′, c)) states that whenever an order oid is closed
by customer c, that order must be eventually paid by either
c herself, or by another customer c′ who is responsible for c.
Observe that the constraint universally quantify over c and
oid, whereas it existentially quantify over c′. Furthermore,
oid and c are used to correlate the source and target activities
and conditions. Finally, as in the propositional case, negation
templates express the negative version of relation templates.

4. THE MONITORING APPROACH
In this section, we show how to actually build the mon-

itor for data-aware Declare constraints. The problem of
verifying (both offline and at runtime) data-aware temporal
constraints is theoretically challenging, being undecidable
in general. It requires knowledge of both verification and
databases, and only recently has been actually addressed by
the scientific community [20, 7, 9, 12]. Indeed, most of the
literature on runtime monitoring focuses on checking propo-
sitional formulas [10, 5, 11], while the database community
mainly studied offline analysis of temporal constraints on
a database history [14, 8]. In [3], open first-order tempo-
ral properties are monitored, and the technique proposed

returns assignments that falsify the formula. However, the
logic is too expressive for supporting satisfiability and, more
important, there is no “lookahead” mechanism of possible
future evolutions (automata are not used indeed) so the bad
prefixes recognized are not minimal. Also, [19] investigates
monitoring of first-order formulas, but a naive solution is
adopted and no emphasis on complexity is placed.

4.1 Monitoring FOLTL Constraints
The recent work in [13] presents a flexible and automaton-

based approach for runtime monitoring data-aware properties
showing how to efficiently build a finite-state machine which
recognizes good and bad prefixes of foltl formulas under
the assumption of finite and fixed domain. One of the major
issues when taking into account data is about efficiency.
The main contribution of [13] is providing an expspace
complexity in the size of the formula for building the monitor,
while a naive approach would require exponential space in
the size of the domain. Note that usually formulas are short,
being written by humans, while the domain of constants (of
a database) is large. We briefly discuss this approach and
illustrate how to adapt it to our case.

The technique relies on the propositional Büchi automaton
construction [2, 17] for a (propositional) ltl formula. How-
ever, since the language used in [13] is foltl, the notion of
first-order (fo) automaton is introduced. A fo automaton is
essentially built with the same procedure of a propositional
Büchi automaton, but its transitions are labeled with first-
order formulas with no temporal operators and its states
contain data structures to smartly keep track of data. A
Büchi automaton for a propositional ltl formula Φp is a
finite state machine which accepts the infinite traces satis-
fying Φp by requiring that a final state is visited infinitely
often. States of the automaton which does not lead to a
cycle including a final state are marked as bad, as from them
the accepting condition cannot ever be satisfied.

In order to recognize both the bad and good prefixes of a
foltl formula Φ, two automata are needed: one is the fo
automaton for Φ and the other one is the fo automaton for
¬Φ. The first one is transformed into a final state machine
which recognizes the bad prefixes of Φ by simply determin-
ing its bad states. Analogously, the automaton for ¬Φ is
transformed into a finite state machine recognizing the bad
prefixes of ¬Φ, which are the good prefixes of Φ. The final
monitor is the conjunction of the two.

As explained in [13], to monitor an evolving trace it is
enough to navigate the resulting automaton’s states: from the
current state(s), transitions satisfying the current database
instance and the data in the current state (recall that transi-
tions are labeled with first-order formulas) are identified, and
the new state(s) of the automaton are updated accordingly
(more details are provided in Section 4.3). The semantics
used in [13] is called ltl3 [5], as it accounts three truth
values: if a bad state is reached, the formula is falsified; if a
good state is reached the formula is verified and if none of the
two, the monitor returns the truth value ?. This semantics
differs from the one given in Definition 3 but the technique in
[13] is flexible enough to be extended to match our purposes.
In what follows, we first illustrate the traditional technique
to monitor propositional formulas with the rv-ltl semantics,
and then we show how to adapt it to our first-order scenario
using the ideas in [13].

4.2 Monitoring RV-LTL Constraints
Runtime verification of propositional ltl declarative pro-

cess models under rv-ltl semantics has been studied in [27,
23]. The task is performed by means of a finite state machine
which is built from a propositional ltl formula using the
translation in [18]. This translation is, again, based on the
propositional Büchi automaton for the formula and on the
notion of good and bad prefixes. However, it presents signifi-
cant differences with the analysis described in the previous
section based on ltl3 semantics. Indeed, while ltl3 relies on
the traditional infinite trace ltl semantics, the technique in
[18] naturally follows from the finite ltl semantics in Defini-
tion 2. From the theoretical viewpoint, given a propositional
ltl formula Φp, the finite-state machine for Φp obtained as
described [18] recognizes all finite traces satisfying Φp. The
algorithm simply navigates the automaton states and checks
if the current state is final. If it is final, the trace is accepted,
otherwise is rejected.

The work in [27, 23] adapts this algorithm to monitor
evolving traces as follows. Automaton states are traversed
as the trace is evolving, and at each step:
• if the execution is finished (i.e, Last is true) and the

current state is final or the execution is not finished,
the current state is final and there is no path from it
reaching a non-final state, then return true;
• if the execution is finished (i.e, Last is true) and the

current state is non-final or the execution is not finished,
the current state is non-final and there is no path from
it reaching a final state, then return false;
• if the trace is still evolving, the current state is final

and there is a path from it reaching a non-final state,
then return temp true;
• if the trace is still evolving, the current state is non-final

and there is a path from it reaching a final state, then
return temp false.

It is easy to see that this technique implements the seman-
tics in Definition 3. The difference between ltl3 and rv-ltl
semantics is more evident when we consider what happens
when Last holds. Since the semantics of ltl3 is based on
infinite traces, when the execution finishes and neither a
good nor a bad prefix have been seen so far, the truth value
of the monitoring remains undetermined, namely, ?. On the
contrary the rv-ltl semantics guarantees that either true
or false is returned when the execution terminates.

4.3 FO Automaton for RV-LTL
The ideas presented in [13] are versatile and can be used

on every kind of finite-state machine. We illustrate how they
can be used to build an rv-ltl monitor for foltl formulas.

As a first step, since the domain of constants ∆ is fi-
nite, a foltl formula Φ can be propositionalized, i.e.,
transformed into an equivalent propositional formula. In-
tuitively, the propositionalization (recursive) procedure p,
when applied to a universal quantifier returns the con-
junction of each assignments for the variables (analogously
it returns the disjunction for the existential quantifier),
and then it associates a propositional variable to each
atom of Φ. Given that Φ can be translated in tem-
poral prenex normal form, formula p(Φ) has the struc-
ture

∧
d1∈∆

∨
d2∈∆ . . .

∧
dn+m∈∆ p(Φ[x/d1, y/d2 . . . z/dn+m]).

This allows us to monitor Φ[x/d1, y/d2 . . . z/dn+m] for each
assignment to across-state variables separately, which (when
substituted to variables of Φ) returns a value among

∧ true false
temp true temp true false
temp false temp true false

Table 3: Evaluation functions for the conjunction
operator under the rv-ltl semantics

∨ true false
temp true true temp true
temp false true temp false

Table 4: Evaluation functions for the disjunction op-
erator under the rv-ltl semantics

{true, false, temp true, temp false}. The result of the whole
formula Φ is then obtained as in Table 3 and 4.

Based on the general technique presented in [13], we can
use an automaton plus some auxiliary data structures to
monitor each assignment. Let Φ be a foltl formula with
all acoss-state quantifier in the front, being in temporal
prenex normal form. We first get rid of them obtaining a
formula Φ̂. Then, we build the monitor A for Φ̂ following
the procedure in [18] by treating the atomic formulas of Φ̂
as propositional symbols. The resulting fo automaton A is
likewise a propositional one, except for its transitions that
are labeled with possibly open (because we got rid of the
quantifiers) first-order formulas.

Also, we need to keep track of data. Let η be the set of
all assignment to across-state variables for Φ. Each state s
of A is marked with a set of assignments given by a marking
function m, and at each step such a marking is updated
according to the new database instance presented as input.
At the beginning, the initial state s0 is marked with all
assignments, namely m(s0) = η. When a new event ei =

〈A(~di),ADD i,DELi〉 is presented as input, we first compute
the new database instance Ii from ei and Ii−1 as described
in Section 3.3. Then we check, for each state s of A and
for each assignment η ∈ m(s) which outgoing transition
is satisfied by Ii. Recalling that a transition s → s′ is
labeled with a open first-order formula γ, we check whether
Ii |= γ[η]: if it does, then we move the assignment η to state
s′. When the new marking has been computed for all state,
we perform the analysis described in the previous section,
i.e., for each assignment η we check if there exists a path
p that leads η to a final state, in order to assign a truth
value in {true, false, temp true, temp false} to η. Notice
that in doing so, free variables of transitions involved in p
has to be assigned according to η (cf. Section 5). Finally, we
compose such values in order to evaluate the overall formula.
This result is the output of the monitor and implements the
rv-foltl runtime semantics in Definition 3.

5. APPLICATION TO WEB SECURITY
We believe the runtime monitoring technique presented

here can be widely used in a broad range of security scenarios,
where, to the best of our knowledge, no sophisticated anal-
ysis based on temporal formulas (and their corresponding
automata) has been yet put in place.

For example, with the increasing attention of governments
in open-intelligence analysis (OSINT), public forums admin-
istrators would decline their responsibility for risky behavior
of group of users. To this purpose, administrators want

to automatically check if (temporal) forum constraints are
met by users. We assume a database schema containing the
following set R of business relevant relations:
• Users(usr, cntr), the list of people registered to the

forum;
• UntsdCntr(cntr), the list of countries whose govern-

ment is not trusted by intergovernmental organizations;
• BnndWrd(str), the list of banned words.

We also assume the system processes events of different
types, which capture different activities performed by the
users. Hence, we have the following activity relations A:
• Post(usr, str) stores the payload of post events, which

(singleton) tuple represents a user usr posting a new
comment str;
• Login(usr, cntr) captures the login event of usr from a

device located in cntr;
• Delete(usr, str) stores the payload of delete events,

which deletes str previously written by usr.
Forum administrator checks the following constraints:
• alternate response: users cannot login outside their

own country unless they delete all post showing banned
words.
∀usr, str.2((Post(usr, str) ∧BnndWrd(str))→◦(¬(∃cntr, usrc.Login(usr, cntr)∧
User(usr, usrc) ∧ cntr 6= usrc)U Delete(usr, str)))

• Absence: user from untrusted countries cannot remove
posts.
¬3∃usr, cntr, str.Delete(usr, str) ∧ User(usr, cntr) ∧
UntsdCntr(cntr)
• Response: posts with banned words have to be eventu-

ally deleted.
∀usr, str.2((Post(usr, str) ∧BnndWrd(str)→
3Delete(usr, str))

Moreover we assume a sort of safety constraints that once
a user is registered, it will be forever, and once an untrusted
country is added, it will be forever, which can be expressed in
foltl as: ∀usr, cntr.2(User(usr, cntr)→ 2User(usr, cntr))
and ∀cntr.2(UntsdCntr(cntr)→ 2UntsdCntr(cntr)) respec-
tively. We observe that, even if the above formulas do not
mention events (and indeed they do not follow any Declare
pattern) they can still be expressed in foltl to constraint
the evolution of data.

5.1 Construction of the FO Automaton
For the sake of simplicity, we now show how to get the fo

automaton that monitors the conjunction of the absence and
response formulas only, along with the two safety constraints
above. The prenex normal form of their conjunction is:

Φ : ∀usr2, str2, usr3, cntr3, cntr4.
(2(¬∃usr, cntr, str.(Delete(usr, str)∧
User(usr, cntr) ∧ UntsdCntr(cntr)))∧
2((Post(usr2, str2) ∧BnndWrd(str2)→
3Delete(usr2, str2)))∧
2(User(usr3, cntr3)→ 2User(usr3, cntr3))∧
2(UntsdCntr(cntr4)→ 2UntsdCntr(cntr4)))

Then, we discard all the quantifiers in the front and we
build the fo automaton of the formula considering atoms
as propositional variables. The fo automaton for Φ has 8
states and 72 transitions. For lack of space Figure 1 shows
only the fragment of the automaton that is meaningful for
our example (we pruned transitions which do not satisfy the
antecedent of the safety constraints and transitions leading

q0

�2 = Post(usr2, str2)^BnndWrd(str2)

�3 = Delete(usr2, str2)

�1 = 9usr, str, cntr.Delete(usr, str) ^
User(usr, cntr)^UntsdCntr(cntr)

�4 = User(usr3, cntr3) ^ UntsdCntr(cntr4)

q2

q1

¬�1^�2^
¬�3^�4

(¬�1^¬�2^ �4)_
(¬�1^�3^ �4)

¬�1^¬�3^ �4

(¬�1^¬�2^ �4)_
(¬�1^�3^ �4)

¬�1^�3^ �4

¬�1^�2^
¬�3^�4

(¬�1^¬�2^ ¬�4)_
(¬�1^�3^ ¬�4)

Figure 1: Partial fo automaton for formula Φ in
Section 5

to non-final sink states). Double circled states q0 and q1 are
final, and q0 is also initial.

5.2 Monitoring Sample Process Instances
In what follows, we consider domain ∆ =
{u1, u2, c1, c2, str1, str2}, the following initial database
instance I0:{

User(u1, c1) User(u2, c2) UntstdCntr(c2)
BnndWrd(s1)

}
and we simulate the execution of the algorithm as new events
are presented as input.

Let η be the set of all assignment for the across-states
variables (usr2, str2, usr3, cntr3, and cntr4) of Φ with
values in ∆. At the beginning, the marking function m
is: m(q0) = η, m(q1) = ∅ and m(q2) = ∅. When event
e1 = 〈Post(u1, s5), ∅, ∅〉 is processed, the resulting database
instance I1 is:{

User(u1, c1) User(u2, c2) UntstdCntr(c2)
BnndWrd(s1) Post(u1, s5)

}
and the new marking is m(q0) = η1, m(q1) = η2 and
m(q2) = ∅, where η1 = {η | (I1, η) |= (¬φ1 ∧ ¬φ2 ∧
¬φ4) ∨ (¬φ1 ∧ φ3 ∧ ¬φ4)}, i.e., the set of assignments satis-
fying the formula in looping transition in q0 given I1 (e.g.,
assignment 〈usr2/s2, str2/s2, usr3/s2, cntr3/s2, cntr4/s2〉)
and η2 = {η | (I1, η) |= (¬φ1 ∧ ¬φ2 ∧ φ4) ∨ (¬φ1 ∧
φ3 ∧ φ4)}, i.e., the set of assignments satisfying the for-
mula on transition from q0 to q1 given I1 (e.g., assignment
〈usr2/u2, str2/s2, usr3/u2, cntr3/c2, cntr4/c2〉). Since both
q0 and q1 are final states, no further analysis is required to
check if a final state is reachable and the output of the mon-
itor is temp true. In this case, the fixed and finite domain
assumption is not too strict: indeed, even though s5 6∈ ∆, the
algorithm still works correctly, since strings which “activate”
the constraints are those matching banned words (that, by
consequence are already in the domain).

The next event is e2 = 〈Post(u2, s2), {BnndWrd(s2)}, ∅〉,
hence, we get the following database instance I2:{

User(u1, c1) User(u2, c2) UntstdCntr(c2)
BnndWrd(s1) BnndWrd(s2) Post(u2, s2)

}
Notice that not only a new event is seen, but also data
has changed (a new banned word has been added). Now,
a user of an untrusted country is posting something bad.

All assignment in q1 with usr2/u2 and str2/s2, by sat-
isfying transition ¬φ1 ∧ φ2 ∧ ¬φ3 ∧ φ4, move to state
q2. Let us focus on one of such assignments, namely
η̄ = 〈usr2/u2, str2/s2, usr3/u2, cntr3/c2, cntr4/c2〉. We
have to compute the truth value for η̄, which means we
have to check if there is a path from q2 that can reach
a final state (q1 in this case, as q0 cannot be reached
from q2). Assignment η̄ will not ever satisfy transition
¬φ1 ∧ φ3 ∧ φ4 (that is the only path to q1) as it con-
tains the contradiction ¬∃usr, str, cntr.Delete(usr, str ∧
User(usr, cntr) ∧ UntsdCntr(cntr)) ∧ Delete(u2, s2) ∧
User(u2, c2) ∧ UntsdCntr(c2) when its free variables are
substituted according to η̄. From the semantics in Definition
3, η̄ is evaluated to false. The truth value of Φ is the con-
junction of the truth value of each assignment, being all its
variables universally quantified, hence resulting in false as
shown by Table 3.

This result may come unexpected, since there is no con-
straint forcing users from untrusted countries to post no
banned words. However, this is an example of early de-
tection: nothing bad has happened yet, but the reasoning
capabilities enabled by the use of temporal logics and au-
tomata realize that there exists no prosecution of the current
trace that satisfies the constraints. Indeed, our temporal
analysis recognizes that the conjunction of the absence con-
straint (users from untrusted countries cannot delete posts)
with the response (post with banned words have to be even-
tually deleted) and the two safety constraints (users and
banned words cannot be deleted from the database), entails
that as soon as a user from an untrusted country posts a
banned word, the constraints are violated.

Few other remarks are in order. First of all, when the
monitor returns true or false, the runtime analysis can be
stopped, as from Definition 3, such truth values will not
change regardless of future prosecution of the trace. Also,
notice that this approach does not require the whole trace
to evaluate a formula, but the current database instance
only: data are kept in the automaton as assignments to the
formula to be monitored, and in such a way that only data
relevant to evaluate this formula are stored. Finally, in many
scenarios such as the one described in this example, the
finite and fixed domain assumption is not too strict. On the
one hand, usually the active domain of the initial database
instance I0 is taken as the monitoring domain, and it can
also be augmented with other business relevant constants.
On the other hand, it is the cost to be paid in order to gain in
decidability and in efficiency: when we relax this assumption,
the monitoring task becomes undecidable, as shown in [4].

6. DISCUSSION
We conclude the analysis of our framework by discussing

its applicability to monitoring concrete system traces stored
in the XES format [1], and its versatility in modeling dynamic
constraints that go beyond data-aware Declare.

6.1 Monitoring XES Traces
Recently, the IEEE Task Force on Process Mining has

proposed XES [1] as a standard, XML-based format for
representing (process) execution traces. It is the result of
a thorough analysis of concrete process-aware information
systems and the kind of information they log.

A XES log is minimally conceived as consisting of a set
of traces (i.e., specific process instances), which, in turn,

are described by sequences of events. Each of these three
concepts can be further described by an arbitrary set of
attributes that maintain the actual data. To attach specific
semantics to data in an event log, XES introduces the concept
of extension. An extension defines a number of standardized
attributes for each level in the hierarchy (e.g., log, trace,
attributes), together with their type (e.g., string, boolean)
and their specific attribute keys. For example, the XML
snippet

<event>
<string key="concept:name" value="pay_order"/>
<date key="time:timestamp" value="..."/>
<string key="org:resource" value="john"/>
<string key="Order ID" value="123"/>

</event>

models an event attesting that John has paid the order
identified by code 123. To do so, it exploits three of the pre-
defined XES extensions: 1. concept extension, so as to include
the name of the executed activity; 2. time extension, so as to
store the time point in which the event occurred; 3. organiza-
tional extension, so as to qualify the name/role/group of the
resource that has triggered the event. The main difference
between this kind of event and the notion of event used in
Section 3.3 is that in the XES snippet there is no information
about the facts that are deleted and added by the event.
This can however be seamlessly captured in XES by defining
a specific DB manipulation extension that adds two children
elements to event: a complex attribute toDel to manage
tuples that must be deleted, and a complex attribute toAdd

to manage tuples that must be added. Such elements, in
turn, contain a set of tuple elements, each denoting a tuple,
constituted by a relation name and a list of (named) fields
(or, in the case of deletion, simply by the primary key of the
tuple). For example,

<event>
<string key="concept:name" value="pay_order"/>
<date key="time:timestamp" value="..."/>
<string key="org:resource" value="john"/>
<string key="Order ID" value="123"/>
<string key="toAdd">

<tuple relation="CLOSED-ORDERS">
<field key="OID" value="123"/>
<field key="OWNER" value="john"/>

</tuple>
</string>
<string key="toDel">

<tuple relation="PENDING-ORDERS" PK="123"/>
</string>

</event>

extends the aforementioned XES event by stating that the
event has the effect of moving order 123 from table PENDING-

ORDERS to table CLOSED-ORDERS, also inserting the informa-
tion about the owner (John).

6.2 Modeling Extended Constraints
We observe that our approach is versatile enough to seam-

lessly capture dynamic constraints that go beyond those
addressed by Declare. First, notice that the distinction be-
tween activities and other relations is, in our framework,
only done for modeling convenience, but both aspects are
treated uniformly as relations in the data schema. This
makes directly possible to model dynamic constraints that
single out the expected/forbidden evolutions of data, inde-
pendently from the actual executed activities. E.g., con-
straint 2∀c.(¬Gold(c)W ∃c1, c2.c 6= c1 ∧ c 6= c2 ∧ c1 6=

c2 ∧Responsible(c, c1) ∧Responsible(c, c2)) is a data-driven
precedence stating that customers can become gold only if
they become responsible of at least two other customers.

A second important extension concerns the possibility of
tackling cross-instance constraints, i.e., dynamic constraints
spanning multiple process instances. From the logging point
of view, this requires to see the entire system log as a unique
execution trace, and at the same time to attach an explicit
instance identifier to each logged events, so as to enable cor-
relation among events of the same process instance. There
are various techniques to track this kind of information,
such as WS-Addressing in the context of web service in-
teraction. From the language point of view, it is possible
to model constraints that are applied on a per-instance ba-
sis (by just correlating on the process instance identifier),
or constraints that possibly cross multiple instances. E.g.,
response(Close order(pid, c, oID), Pay order(pid, c′, oID)∧
(c′ = c ∨ Responsible(c′, c)) reconstructs the response con-
straint modeled in Section 3.3 by correlating on the in-
stance identifier pid, whereas not response(Block(pid1, c, a)∧
Admin(a), Open order(pid2, o, c)) models a cross-instance
negation response stating that whenever a customer is blocked
by a certain administrator, she cannot open orders anymore
(notice the correlation on the customer variable c, but not on
the process identifiers, which can be possibly different). A
similar approach can be used to model activity-based corre-
lation, and in turn support non-atomic activities in the style
of [30].

7. CONCLUSIONS
The framework presented in this paper represents the first

attempt of exploiting an automata-based approach for the
runtime monitoring of process execution traces against dy-
namic, first-order constraints, which are able to accommodate
a plethora of different templates, including all those of the
Declare language, extended with data-related aspects. The
framework currently assumes a finite, rigid quantification
domain for constraints, which is parsimoniously handled by
the monitoring technique. We are currently studying an ex-
tension for dealing with varying domains. At the same time,
an implementation of our technique is currently under testing.
It has been developed as an extension of the automata-based
approach for standard Declare, in the form of an operational
support provider inside the well-known ProM process mining
framework.

For the time being, the monitoring technique supports all
the fine-grained truth values of rv-ltl. The next step is to
extend it to provide continuous support (to provide verifica-
tion capabilities even after a violation has taken place) and
advanced diagnostics, starting from the ltl-based approach
in [23] and lifting it to the case of foltl.

8. REFERENCES

[1] XES Standard Definition, 2009.
www.xes-standard.org.

[2] C. Baier and J.-P. Katoen. Principles of model
checking. MIT Press, 2008.

[3] D. A. Basin, F. Klaedtke, and S. Müller. Policy
monitoring in first-order temporal logic. In CAV, pages
1–18, 2010.

www.xes-standard.org

[4] A. Bauer, J.-C. Küster, and G. Vegliach. From
propositional to first-order monitoring. In RV, pages
59–75, 2013.

[5] A. Bauer, M. Leucker, and C. Schallhart. The good,
the bad, and the ugly, but how ugly is ugly? In RV,
pages 126–138, 2007.

[6] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for ltl and tltl. ACM Trans. Softw. Eng.
Methodol., 20(4):14:1–14:64, Sept. 2011.

[7] F. Belardinelli, A. Lomuscio, and F. Patrizi.
Verification of deployed artifact systems via data
abstraction. In ICSOC, pages 142–156, 2011.

[8] J. Chomicki. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM
Transactions on Database Systems, 20(2):149–186, 1995.

[9] E. Damaggio, A. Deutsch, R. Hull, and V. Vianu.
Automatic verification of data-centric business
processes. In BPM, pages 3–16, 2011.

[10] M. d’Amorim and G. Rosu. Efficient monitoring of
omega-languages. In CAV, pages 364–378, 2005.

[11] B. D’Angelo, S. Sankaranarayanan, C. Sánchez,
W. Robinson, B. Finkbeiner, H. B. Sipma, S. Mehrotra,
and Z. Manna. Lola: Runtime monitoring of
synchronous systems. In TIME, pages 166–174, 2005.

[12] G. De Giacomo, R. De Masellis, and R. Rosati.
Verification of conjunctive artifact-centric services. Int.
J. Cooperative Inf. Syst., 21(2):111–140, 2012.

[13] R. De Masellis and J. Su. Runtime enforcement of
first-order ltl properties on data-aware business
processes. In ICSOC, pages 54–68, 2013.

[14] G. Dong, J. Su, and R. Topor. Nonrecursive
incremental evaluation of datalog queries. Annals of
Mathematics and Artificial Intelligence, 14:187–223,
1995.

[15] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig,
A. McIsaac, and D. V. Campenhout. Reasoning with
temporal logic on truncated paths. In CAV, pages
27–39, 2003.

[16] M. Fitting and R. L. Mendelsohn. First-Order Modal
Logic. Kluwer Academic Press, 1998.

[17] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper.
Simple on-the-fly automatic verification of linear
temporal logic. In PSTV, pages 3–18, 1995.

[18] D. Giannakopoulou and K. Havelund. Automata-based
verification of temporal properties on running programs.
In ASE, pages 412–416, 2001.

[19] S. Hallé and R. Villemaire. Runtime monitoring of
message-based workflows with data. In EDOC, pages
63–72, 2008.

[20] B. B. Hariri, D. Calvanese, G. De Giacomo, R. De
Masellis, and P. Felli. Foundations of relational
artifacts verification. In BPM, pages 379–395, 2011.

[21] R. Hull, E. Damaggio, R. De Masellis, F. Fournier,
M. Gupta, F. T. Heath, S. Hobson, M. H. Linehan,
S. Maradugu, A. Nigam, P. N. Sukaviriya, and
R. Vacuĺın. Business artifacts with
guard-stage-milestone lifecycles: managing artifact
interactions with conditions and events. In DEBS,
pages 51–62, 2011.

[22] O. Kupferman and M. Y. Vardi. Model checking of
safety properties. Formal Methods in System Design,
19(3):291–314, 2001.

[23] F. Maggi, M. Montali, M. Westergaard, and W. van der
Aalst. Monitoring business constraints with linear
temporal logic: An approach based on colored
automata. In BPM 2011, volume 6896, pages 132–147,
2011.

[24] F. M. Maggi. Declarative process mining with the
declare component of prom. In BPM (Demos), 2013.

[25] F. M. Maggi, M. Dumas, L. Garćıa-Bañuelos, and
M. Montali. Discovering data-aware declarative process
models from event logs. In BPM, volume 8094 of
Lecture Notes in Computer Science, pages 81–96.
Springer, 2013.

[26] F. M. Maggi, M. Westergaard, M. Montali, and
W. M. P. van der Aalst. Runtime verification of
LTL-based declarative process models. In RV 2011,
volume 7186, pages 131–146.

[27] F. M. Maggi, M. Westergaard, M. Montali, and
W. M. P. van der Aalst. Runtime verification of
ltl-based declarative process models. In RV, pages
131–146, 2011.

[28] M. Montali. Specification and Verification of
Declarative Open Interaction Models: a Logic-Based
Approach, volume 56 of Lecture Notes in Business
Information Processing. Springer, 2010.

[29] M. Montali, F. Chesani, F. M. Maggi, and P. Mello.
Towards data-aware constraints in declare. In SAC,
pages 1391–1396. ACM Press and Addison Wesley,
2013.

[30] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and
W. M. P. van der Aalst. Monitoring business
constraints with the event calculus. ACM TIST,
5(1):17, 2013.

[31] M. Montali, M. Pesic, W. M. P. van der Aalst,
F. Chesani, P. Mello, and S. Storari. Declarative
Specification and Verification of Service Choreographies.
ACM Transactions on the Web, 4(1), 2010.

[32] M. Pesic, H. Schonenberg, and W. van der Aalst.
DECLARE: Full Support for Loosely-Structured
Processes. In Proc. of EDOC, pages 287–300. IEEE,
2007.

[33] W. van der Aalst, M. Pesic, and H. Schonenberg.
Declarative Workflows: Balancing Between Flexibility
and Support. Computer Science - R&D, pages 99–113,
2009.

[34] M. Westergaard and F. M. Maggi. Declare: A tool suite
for declarative workflow modeling and enactment. In
BPM (Demos), 2011.

[35] M. Westergaard and F. M. Maggi. Looking into the
future: Using timed automata to provide a priori
advice about timed declarative process models. In
OTM, volume 7565 of Lecture Notes in Computer
Science, pages 250–267. Springer, 2012.

	Introduction
	Preliminaries
	Declare
	Analysis Tools for Declare

	FO-LTL for Data-aware Declare
	Syntax of FOLTL
	Semantic of FOLTL over Finite Traces
	Declare Patterns in FOLTL

	The Monitoring Approach
	Monitoring FOLTL Constraints
	Monitoring RV-LTL Constraints
	FO Automaton for RV-LTL

	Application to Web Security
	Construction of the FO Automaton
	Monitoring Sample Process Instances

	Discussion
	Monitoring XES Traces
	Modeling Extended Constraints

	Conclusions
	References

