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Abstract. Since its introduction, the Event Calculus (EC) has been recognized for being an excellent
framework to reason about time and events, and it has been applied to a variety of domains. However,
its formalization inside logic-based frameworks has been mainly based on backward, goal-oriented
reasoning: given a narrative (also called execution trace) and a goal, logic-based formalizations of
EC focus on proving the goal, i.e., establishing if a property (called fluent) holds.

These approaches are therefore unsuitable in dynamic environments, where the narrative typically
evolves over time: indeed, each occurrence of a new event requires to restart the reasoning process
from scratch. Ad-hoc, procedural methods and implementations have been then proposed to over-
come this issue. However, they lack a strong formal basis and cannot guarantee formal properties.
As a consequence, the applicability of EC has been somehow limited in large application domains
such as run-time monitoring and event processing, which require at the same time reactivity features
as well as formal properties to provide guarantees about the computed response.

We overcome the highlighted issues by proposing a Reactive and logic-based axiomatization of EC,
called REC, on top of the SCIFF Abductive Logic Programming framework. Our solution exhibits
the features of a reactive verification facility, while maintaining a solid formal background.

Keywords: Event Calculus, Reactive Reasoning, Monitoring, Computational Logic, Abductive
Logic Programming.

∗Address for correspondence: University of Bologna – V.le Risorgimento, 2 – 40136 Bologna, Italy



2 F. Chesani et al. / A Logic-Based, Reactive Calculus of Events

1. Introduction

More than 20 years ago, Kowalski and Sergot [21] introduced the Event Calculus (EC) as a general
framework to reason about time and events, overcoming limitations of other previous approaches, such
as the situation calculus. The event calculus has many interesting features [21, 31]. Among them: an ex-
tremely simple and compact representation, symmetry of past and future, generality with respect to time
orderings, executability and direct mapping with computational logic frameworks, modeling of concur-
rent events, immunity from the frame problem, and explicit treatment of time and events. It has therefore
been applied to a variety of domains, such as cognitive robotics [30], planning [32], service interaction
[23] and composition [28], active databases [16], workflow modeling [11] and legal reasoning [15].

Logic-based implementations of EC have been based on backward, goal-oriented reasoning, and
extensively used in the past to carry out two main reasoning tasks: deductive narrative verification, to
check whether a certain property (called fluent) holds given a narrative (set of events) [21], and abductive
planning, to generate a possible narrative which satisfies some requirements [32]. For a survey on the
different versions of EC and the corresponding reasoning tasks, see [31]. These tasks take place after or
prior to execution, i.e., in presence of a complete narrative or with no narrative at all.

The existing EC logic-based approaches are instead unsuitable to perform reasoning during the ex-
ecution, i.e., to deal with dynamic environments characterized by external narratives which typically
evolve over time. However, there are several settings which require run-time reasoning, to the aim of
monitoring their dynamics. For example, Business Process Management calls for a constant opera-
tional decision support during the execution of a business process, to provide auditing facilities checking
whether the workers involved in the process executions comply with regulation and norms [1]. Similarly,
in the Service Oriented Computing setting, several services, possibly implemented by different vendors,
must properly interact to solve complex tasks; to ensure the correctness of the interactions, the exchanged
messages must be dynamically verified against a global contract (called choreography), which specifies
the agreed mutual rules of engagement.

In all these situations, the execution traces cannot be controlled nor influenced: they are gener-
ated by the autonomous interacting entities. Monitoring is therefore of utmost importance, to provide
a constantly updated feedback about the reached state of affairs, and to promptly detect undesired or
exceptional situations. Monitoring requires the capability of reacting to the occurrence of new events,
but while backward, goal-oriented approaches enable a straightforward update of the theory each time an
event occurs (it suffices to add the new event occurrence to the knowledge base), they incur a substantial
increase of the total time, since reasoning has to be restarted from scratch. Furthermore, monitoring
calls for the ability of carrying out “open” reasoning, i.e., of reasoning upon the partial and incomplete
information acquired during the execution, extending the inferred results as new events occur.

Reactive EC implementations based on ad-hoc, procedural methods and implementations have been
then proposed to overcome this issue. For example, in [23] Mahbub and Spanoudakis present a frame-
work for monitoring the compliance of a service composition w.r.t. behavioral properties. EC is exploited
to monitor the effective behavior of interacting services and report different kinds of violation. Reason-
ing is implemented by means of an ad-hoc event processing algorithm, which fetches occurred events
updating the status of the involved fluents. A JAVA-based EC engine is instead the reasoning core of
the Event Calculus State Tracking Architecture [15], proposed by Farrel et al. to track at run-time the
normative state of contracts. The contract’s constraints are specified by means of EC axioms, encoded in
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a dialect of XML, while a JAVA GUI is exploited to deliver occurring events to the underlying engine
and to provide a feedback concerning the computed state of affairs.

Even if all these ad-hoc, procedural approaches exhibit reactivity, they all suffer from the same
drawback: they lack a strong formal basis. In particular, it is very difficult to understand and prove their
formal properties, and it is therefore impossible to provide guarantees about the computed responses. As
a consequence, the applicability of EC has been somehow limited in large application domains such as
run-time monitoring and event processing, which require at the same time reactivity features as well as
formal properties to give the aforementioned guarantees.

Following a different line of research, Kowalski and Sadri [20] proposed to use Abductive Logic
Programming (ALP) as a way to reconcile backward with forward reasoning inside an intelligent agent
architecture. However, besides planning [14], ALP has not been used in combination with the EC, and
its forward reactive features have therefore remained unexplored in this context. Nor are we aware of
other logical frameworks that implement the EC in a reactive way: a logic-based implementation of EC
that dynamically reacts to happening events is missing.

Building on Kowalski et al.’s work, in this work we equip the EC framework with the reactive features
of a powerful, general purpose ALP language and proof-procedure named SCIFF. We obtain a version of
the calculus, which we call Reactive Event Calculus (REC), which exhibits all the features of a reactive
verification facility, while maintaining a solid formal background.
REC draws also inspiration from the work of Chittaro and Montanari [9], who were the first authors

to recognize the importance of proposing forms of EC which shift the focus from the query perspective
to the capability of updating the computed answers when new event occurrences are detected.

In particular, Chittaro and Montanari proposed a mechanism, called Cached Event Calculus (CEC),
to cache the outcome of the inference process every time the knowledge base is updated by a new event.
The difference between CEC and the classical axiomatization of EC is twofold:

• While the classical EC reasons upon the time intervals in which fluents are terminated and initiated,
CEC reasons upon the maximal time intervals in which fluents hold; these intervals are called
Maximal Validity Intervals (MVIs).

• The computed MVIs are cached by exploiting assert and retract predicates; this choice has a posi-
tive impact on the performance of the calculus, but undermines the declarative semantics of CEC.

REC relies on the same idea, but its formalization is fully declarative: the caching mechanism is im-
plicitly realized by combining the notion of abduction and the reactivity of the SCIFF proof procedure,
which natively supports the dynamic acquisition and treatment of event occurrences. After having de-
scribed howREC can be axiomatized on top of SCIFF, we investigate it from a theoretical point of view,
discussing its formal properties and the use of negation, as well as from a practical perspective, by means
of a representative example dealing with quantitative temporal aspects, violations and compensations.

The paper is organized as follows. After having introduced EC and the SCIFF framework in Sec-
tions 2 and 3, we show how they can be combined to obtainREC (Section 4). In Section 5 we describe a
simple yet challenging case study, whereREC is used to monitor the flow of employees at the entrance of
a company. Section 6 is devoted to discuss how standard treatment of negation must be properly adapted
inREC, to reflect the intended semantics. Section 7 discusses the formal properties ofREC. Discussion
and conclusion follow.
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2. The Event Calculus

The Event Calculus (EC) was introduced as a logic programming framework for representing and rea-
soning about events and their effects [21].

Basic concepts are that of event, happening at a point in time, and property (called fluent), holding
during time intervals. Fluents are initiated/terminated by events. Given an event narrative (a set of
events), the EC theory and domain-specific axioms together (called EC axioms) define which fluents
hold at each time. There are many different formulations of these axioms [10]. One possibility is given
by the following axioms, where P stands for Fluent, E for Event, T represents time instants and ¬ is
interpreted as Negation As Failure [12]:

holds at(P, T )← initiates(E,P, TStart)

∧ TStart < T ∧ ¬clipped(TStart, P, T ).
(ec1)

clipped(T1, P, T3)← terminates(E,P, T2)

∧ T1 < T2 ∧ T2 < T3.
(ec2)

initiates(E,P, T )← happens at(E, T ) ∧ [¬]holds at(P1, T )

∧ ... ∧ [¬]holds at(PM , T ).
(ec3)

terminates(E,P, T )← happens at(E, T ) ∧ [¬]holds at(P1, T )

∧ ... ∧ [¬]holds at(PN , T ).
(ec4)

Axioms (ec1) and (ec2) are domain-independent axioms which formalize the relationship between events
and fluents. In particular, Axiom (ec1) states that a fluent holds at a certain time iff it has been previously
initiated by some event, and it has not been clipped in between. Axiom (ec2) formalizes the meaning
of “clipped”: a fluent is clipped inside a given time interval if an event has terminated the fluent in that
interval1.

Axioms (ec3) and (ec4) are instead schemas for defining the domain-specific axioms: a certain fluent
P is initiated/terminated at a time instant T if an event E happened at the same time, and if some other
fluents Pi (do not) hold at that time; testing if these fluents hold or not enables the possibility of defining
contexts, i.e. of expressing that the relationship between an event and a fluent depends on particular states
of affairs. Furthermore, note that EC adopts a time structure with a minimal element. At the minimal
time, the system is in its initial state, which can be characterized by describing the set of fluents holding
at the beginning of the execution. This is done by means of initially predicates.

As pointed out in the introduction, the proposed formulation is not suited to deal with dynamic
environments, where the narrative of the system evolves in time: every time a new event occurs, reasoning
has to be restarted from scratch. To overcome this issue, Chittaro and Montanari proposed a different
formulation, which caches the outcome of the inference process every time the knowledge base is updated
by a new event. The Cached Event Calculus (CEC) [9] computes and stores fluents’ maximum validity
intervals (MVIs), which are the maximum time intervals in which fluents hold, according to the known
events. The set of cached validity intervals is then extended/revised as new events occur or get to be

1Dual axioms and predicates can be added to define when fluents do/do not hold [31]: e.g., an axiom can be added to define
declipped/3 (an event has made a certain fluent holding).
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happens at(Ev, T ) Event Ev happens at time T
mvi(F, Ti, Tf ) Fluent F begins to hold from time Ti and persists to hold until time Tf : (Ti, Tf ]

is a maximum validity interval for F
holds at(F, T ) Fluent F holds at time T
initially(F ) Fluent F holds from the initial time

initiates(Ev, F, T ) Event Ev initiates fluent F at time T
terminates(Ev, F, T ) Event Ev terminates fluent F at time T

Table 1. The EC ontology, extended with the concept of maximum validity interval.

known. Unfortunately, this is done by exploiting assert and retract predicates, which do not have a
corresponding declarative semantics.

The complete ontology of CEC is summarized in Table 1.

3. The SCIFF Framework

The EC can be elegantly formalized in logic programming, but as we said above, that would be suitable
for top-down, “backward” computation. Runtime monitoring, intended as checking the behavior of in-
teracting entities during the execution, requires reactive EC frameworks, able to deal with a dynamically
growing narrative, reacting to the occurrence of new events and inferring new knowledge. For this rea-
son, we resort to a framework which reconciles backward with forward reasoning: the SCIFF language
and proof-procedure [2]. In this Section, we describe the main features of the framework, discussing the
language as well as the declarative and operational semantics; Section 4 will then show how a reactive
form of EC can be suitably formalized on top of this framework.

3.1. The SCIFF Language

SCIFF is an extension of Fung and Kowalski’s IFF proof-procedure for abductive logic programming
[17]. It has two primitive notions: events (represented as H atoms) and expectations (modeled by E/EN
atoms). H(Ev, T ) means that an event Ev occurs at time T , and it is a ground atom. H(Ev, T ) ex-
actly corresponds to the happens at predicate shown in Table 1. Instead E(Ev, T ) and EN(Ev, T ) can
contain variables with domains and CLP constraints [18], and they denote in the first case that an event
unifying with Ev is expected to occur at some time in the range of T (T existentially quantified), and in
the second case that all events unifying with Ev are expected not to occur, at all times belonging to the
domain of T (i.e., T is considered as universally quantified over its domain). SCIFF accommodates ex-
istential and universal variable quantification and quantifier restriction, CLP constraints, dynamic update
of event narrative and it has a built-in runtime protocol verification procedure.

A SCIFF specification is composed of a knowledge base KB, a set of ICs (integrity constraints)
IC, and a goal. KB consists of backward rules head ← body , whereas the ICs in IC are forward
implications body → head. As we will see, the reactive axiomatization of EC will exploit both kinds of
knowledge. ICs are interpreted in a reactive manner; the intuition is that when the body of an IC becomes
true (i.e., the involved events occur), then the rule fires, and the expectations in the head are generated
by abduction. For example, H(a, T )→ EN(b, T ′) defines a relation between events a and b, saying that
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if a occurs at time T , b should not occur at any time; H(a, T )→ E(b, T ′) ∧ T ′ ≤ T + 300 says that if a
occurs, then an event b should occur no later than 300 time units after a.

3.2. Declarative Semantics

We now briefly introduce the declarative semantics of SCIFF, discussing the two cases in which the
execution trace characterizing an instance of the system is complete or partial. For a comprehensive
description of SCIFF the reader can refer to [2].

SCIFF’s declarative semantics is given by interpreting the SCIFF specifications as Abductive Logic
Programs (ALP). In particular, a SCIFF specification is an Abductive Logic Program 〈KB,A, IC〉where:

• KB is the knowledge base, composed by a set of clauses.

• A ⊇ {E/2,EN/2,H/2} is the set of abducible predicates, i.e., predicates without definition that
are hypothesized/generated during the reasoning process – such a set always contains expectations
and happened events, but it could also be extended with other domain-specific abducibles.

• IC is the set of integrity constraints. Each integrity constraint is used to generate expectations
and/or (internal) events when a certain situation making its body true occurs.

The declarative semantics of SCIFF starts from the semantics of ALP introducing the notion of com-
pliance of an execution trace with the generated expectations. Therefore, it targets an instance of the
system, intended as a specific execution trace related to a specification. An execution trace collects the
set of events occurred so far (i.e., the partial narrative).

Definition 3.1. (Execution trace)
A SCIFF execution trace T is a set of (ground) atoms of the form H(e, t).

Definition 3.2. (Instance)
Given a SCIFF specification S and an execution trace T , ST = 〈S, T 〉 is the T -instance of S.

Roughly speaking, the declarative semantics states that each positive expectation must be fulfilled by
a corresponding event occurrence, while negative expectations must not have any corresponding occur-
rence in the execution trace. However, two different cases must be separately considered, depending on
whether the execution trace characterizing the instance of the system is partial or complete. In the first
case, called “open execution trace”, further events may still occur to fulfill a positive expectation or vio-
late a negative expectation, and therefore the knowledge about the narrative is incomplete; conversely, in
the latter case, called “closed execution trace”, no further event will occur to fulfill a positive expectation
or violate a negative one. In order to accommodate the open case, the declarative semantics relies on a
three-valued logic, i.e., |= will be always interpreted in a three-valued setting, as defined in [22]. In the
following, the term “open (closed resp.) instance” will denote an instance whose execution trace is open
(closed resp.). Note that, in the general case, open instances can evolve by means of events occurring in
the future but also referring to the past. For example, inside an active database a new event occurrence
referring to the past could be acquired in the future.

Let us now start with the concept of abductive explanation and goal achievement, used to respectively
characterize the admissible abducible sets related to a given instance and to state whether a goal can be
achieved or not.
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In the open situation, the execution trace is partial and incomplete, and can be possibly extended as
new event occurrences get to be known. Hence, abductive explanations are defined without applying the
completion to the (partial) execution trace, which reflects the fact that further events may occur to extend
it. In this respect, it could be the case that even if a desired goal has not yet been achieved, it will be
achieved in the future; therefore, the open situation is associated to the concept of goal “achievability”.

Definition 3.3. (open abductive explanation)
Given an open instance ST = 〈KB,A, IC〉T , the abducible set ∆o ⊆ A is an open abductive explanation
for ST iff

Comp (KB ∪∆o) ∪ T ∪ CET ∪ TX |= IC

where Comp is the completion of a theory [22], CET stands for Clark Equational Theory [12] and TX is
the constraint theory [18] (parametrized by the domain X ).

The X parameter allows us to keep the semantics of SCIFF general. In particular, it can be seamlessly
grounded to different domains, such as finite domains [13] or reals [19].

Definition 3.4. (goal achievability)
Let ST = 〈KB,A, IC〉T be an open instance and γ a conjunction of literals representing a goal. γ is
achievable by ST iff there exists an open abductive explanation ∆o for ST s.t.:

Comp (KB ∪∆o) ∪ T ∪ CET ∪ TX |= γ

In the closed situation, the execution trace is complete, and therefore it is subject to the three-valued
completion as well. Since further events cannot happen to change the state of affairs, there is complete
information to evaluate whether a desired goal is entailed or not, and therefore the closed situation is
associated to the concept of goal achievement.

Definition 3.5. (closed abductive explanation)
Given a closed instance ST = 〈KB,A, IC〉T , the abducible set ∆c ⊆ A is a closed abductive explana-
tion for ST iff

Comp
(
KB ∪∆c ∪ T

)
∪ CET ∪ TX |= IC

Definition 3.6. (goal achievement)
Given a closed instance ST = 〈KB,A, IC〉T , a goal γ is achieved by ST iff there exists a closed
abductive explanation ∆c for ST s.t.:

Comp
(
KB ∪∆o ∪ T

)
∪ CET ∪ TX |= γ

We now focus on the semantics of expectations. First of all, in both the open and the closed situation
an abductive explanation must be consistent w.r.t. the contained expectations, i.e., it must not state that
an event is expected to happen and not to happen at the same time.

Definition 3.7. (E-consistency)
An abductive explanation ∆ is E-consistent iff for each ground event e and ground time t:

{E(e, t),EN(e, t)} 6⊆ ∆
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Finally, expectations lead to the central notions of fulfillment and violation, which relate them with
the presence/absence of a corresponding occurred event, constituting the basis for defining the notion of
compliance. As with the other definitions, fulfillment and violation have different meanings depending
on whether we are in the open or in the closed situation. During the execution, i.e., in the open phase, the
information about the execution trace is incomplete, and therefore it is not always possible to evaluate
whether a certain expectation is violated or fulfilled. If this is the case, we say that the expectation is
pending. It is worth noting that the three possible expectations’ “status” exactly correspond to the three
possible truth values in three-valued logics.

Definition 3.8. (Fulfilled, violated and pending expectations)
Let us consider a ground (positive) expectation E(e1, t1) and a (ground) negative expectation EN(e2, t2).

Given an open execution trace T :

• E(e1, t1) is T -fulfilled iff H(e1, t1) ∈ T , pending otherwise;

• EN(e2, t2) is T -violated iff H(e2, t2) ∈ T , pending otherwise.

Given a closed execution trace T :

• E(e1, t1) is T -fulfilled iff H(e1, t1) ∈ T , T -violated otherwise;

• EN(e2, t2) is T -violated iff H(e2, t2) ∈ T , T -fulfilled otherwise.

We have now all the machinery to capture the notion of compliance.

Definition 3.9. (compliance)
Let us consider a SCIFF specification S and a goal γ. An open execution trace T is compliant with S and
γ iff there exists an E-consistent open abductive explanation ∆o s.t. no expectation in ∆o is T -violated
and γ is achievable. A closed execution trace T is compliant with S and γ iff there exists an E-consistent
closed abductive explanation ∆c s.t. all expectations in ∆c are T -fulfilled and γ is achieved.

3.3. Operational Semantics

The SCIFF proof procedure is an abductive proof procedure able to verify compliance of execution traces
with a SCIFF specification. In this respect, it represents the operational counterpart of the declarative
semantics described in the previous section, and of the notion of compliance in particular. Starting from
an initial (possibly empty) execution trace Ti and from a SCIFF specification S, the proof procedure
is able to dynamically fetch new events and compute abductive explanations for the evolving course of
interaction, checking if the expectations contained in such abductive explanations are E-consistent and
fulfilled by the occurred events.

Being the language and declarative semantics of the SCIFF framework closely related to the IFF ab-
ductive framework [17], the SCIFF proof procedure has taken inspiration from the IFF proof procedure.
The IFF proof procedure is one of the most well-known proof procedures that combine reasoning with
defined predicates together with reasoning with abducible predicates. While IFF is a general abductive
proof procedure, SCIFF is a general abductive proof procedure able to solve the specific problem of
compliance verification. In particular, SCIFF is a substantial extension of the IFF and adds, as described
in [2], the following features:
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• SCIFF supports the dynamic acquisition of events;

• SCIFF supports universally quantified variables in abducibles and quantifier restrictions, in order
to properly reason with negative expectations and E-consistency;

• SCIFF supports quantifier restrictions [4] and CLP constraints on variables;

• SCIFF supports the concepts of fulfillment and violation, executing a “hypotheses confirmation”
step in which the matching between expectations and the execution trace is evaluated.

In particular, as in the case of IFF, SCIFF is based on a rewriting system which transforms one node
into a successor node or a set of successor nodes by applying transitions, until quiescence is reached.
During the execution, quiescence means that the proof procedure has completed the reasoning phase
attesting that the current partial execution trace is compliant with the given specification; the proof then
waits for the acquisition of further events. In the closed situation, at quiescence SCIFF provides the
definitive evaluation about expectations’ status.

Transitions manipulate the integrity constraints of the specification by taking into account how they
are affected by the acquired occurred events. The transitions are briefly listed in the following; their
complete description is provided in [2].

Unfolding substitutes an atom with its definitions in KB;

Propagation given an implication (a(X) ∧ R) → Head and an abduced literal a(Y ), generates the
implication (X = Y ∧R)→ Head;

Case Analysis Given an implication (c(X) ∧ R) → Head in which c is a constraint (possibly the
equality constraint ‘=’), generates two children: c(X) ∧ (R→ Head) and ¬c(X);

Splitting distributes conjunctions and disjunctions;

Logical Equivalences performs usual replacements: true→ A with A, etc.;

Constraint Solving posts constraints to the constraint solver of choice (currently, CLP(R) and CLP(fd)
are supported);

Fulfillment declares that an expectation is fulfilled, according to Definition 3.8;

Violation declares a violated expectation: symmetrical to fulfillment (see Definition 3.8);

Consistency checks the E-consistency of the current set of expectations;

Happening fetches a new occurred event from an external queue and inserts it into the execution trace;

Closure is triggered when the execution reaches its end, and alerts the proof procedure that the evalua-
tion of fulfillment and violation must “switch” to the closed situation.

In [2], it has been shown that the SCIFF proof procedure is sound and complete with respect to
the declarative semantics highlighted in Sect. 3.2. Furthermore, it has been demonstrated that it also
terminates when the specification under study obeys to some syntactic restrictions, which is discussed in
Sect. 7.1.
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Figure 1. Internal and external events inREC.
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Figure 2. Overview ofREC.

4. The Reactive Event Calculus

The SCIFF axiomatization of EC that follows draws inspiration from Chittaro and Montanari’s CEC and
their idea of MVIs. Events and fluents are terms and times are integer or real (CLP) variables, 0 being
the initial time. REC uses the abduction mechanism to generate MVIs and define their persistence. It has
a fully declarative axiomatization (Axioms ax1 through ax7): no operational specifications are needed.

AREC specification is represented as a particular SCIFF specification, constituted by two parts:

• A general part, composed by a mixture of forward and backward rules (i.e., integrity constraints
and clauses in the knowledge base), which formalizes the EC ontology sketched in Table 1, e.g.,
defining the semantics of MVIs and the relationship between the occurrence of events and MVIs.
It uses two special internal events (denoted by the reserved clip/declip words, differently from
generic external events, that are “encapsulated” into the reserved term event) to model that a
fluent is terminated/initiated, respectively (see Figure 1).

• A domain-dependent part, which binds domain-related events with the initiation and termination of
domain-related fluents. This part is composed by clauses that are added to the general knowledge
base, completing it with the domain-specific knowledge.

The overall picture is depicted in Figure 2. It shows that a REC specification is obtained by combining
the general axiomatization of the calculus and a specific theory reflecting the domain under study, while
SCIFF is used as the underlying reasoning machinery.
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4.1. Axiomatization of the Calculus

We now give a more precise definition of aREC specification, and then focus our attention to the general
axioms.

Definition 4.1. (REC specification)
REC is a SCIFF specification

〈KBREC , {E/2,EN/2,H/2,mvi/2}, ICREC〉

where:

• KBREC = {ax1,ax7} ∪ KBdomain, being KBdomain the domain-specific set of clauses, following
the schemas of Axioms ec3 and ec4 in Section 2;

• ICREC = {ax2,ax3,ax4,ax5,ax6}.

Axiom ax1 is a backward rule (clause), as well as Axiom ax7, whereas Axiom ax2 through Axiom ax6

are forward implications (ICs). Such a mixture of backward and forward inference rules is enabled by
ALP [20] and it represents the backbone ofREC’s reactive behaviour.

Axiom 1. (Holding of fluent)
A fluent F holds at time T if an MVI containing T has been abduced for F . Note that a fluent does not
hold at the time it is declipped, but holds at the time it is clipped, i.e., MVIs are left-open and right-closed.

holds at(F, T )← mvi(F, [Ts, Te]) ∧ T > Ts ∧ T ≤ Te. (ax1)

Axiom 2. (MVI semantics)
If (Ts, Te] is an MVI for F , then F must be declipped at time Ts and clipped at time Te, and no further
declipping/clipping must occur in between.

mvi(F, [Ts, Te])
→E(declip(F ), Ts) ∧ E(clip(F ), Te)

∧ EN(declip(F ), Td) ∧ Td > Ts ∧ Td ≤ Te
∧ EN(clip(F ), Tc) ∧ Tc ≥ Ts ∧ Tc < Te.

(ax2)

Axiom 3. (Initial status of fluents)
If a fluent initially holds, a corresponding declipping event is generated at time 0.

initially(F )→ H(declip(F ), 0). (ax3)

Axiom 4. (Fluents initiation)
If an event Ev occurs at time T which initiates fluent F , either F already holds or it is declipped.

H(event(Ev), T ) ∧ initiates(Ev, F, T )

→H(declip(F ), T )

∨ E(declip(F ), Td) ∧ Td < T

∧ EN(clip(F ), Tc) ∧ Tc > Td ∧ Tc < T.

(ax4)
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CEC REC
New event occurrence Assertion of the event occurrence,

and propagation of its effects by in-
voking specific clauses

Acquisition of the event occurrence
and triggering of a set of transitions,
starting from happening

Generation of a new MVI Assertion of the MVI Abduction of the MVI
Revision of the generated
MVIs

Retraction and proper re-assertion
of the affected MVIs

Backtracking

Table 2. Comparison between CEC andREC.

(ax4) does not use the holds at predicate to test if F holds at time T , but employs instead a mixture of
positive and negative expectations to test this.

Axiom 5. (Impact of initiation)
The happening of a declip(F) event causes the beginning of a new MVI for F , which starts from the time
at which the event happens and will terminate sometime in the future.

H(declip(F ), Ts)→ mvi(F, [Ts, Te]) ∧ Te > Ts. (ax5)

Axiom 6. (Fluents termination)
If an event Ev occurs which terminates a fluent F , F is clipped.

H(event(Ev), T )

∧terminates(Ev, F, T )→ H(clip(F ), T ).
(ax6)

Axiom 7. (Final clipping of fluents)
All fluents are terminated by the special complete event.

terminates(complete, F, ). (ax7)

(ax7) models the “impact” of the complete event (used to indicate that the execution is terminated) on
fluents: at the end of the execution, all fluents are terminated, i.e., the time at which the complete event
happens fixes the upper limit of the final MVIs. This idea exactly reflects the switch from the open to the
closed situation, as described in Section 3: when the special complete event occurs, transition closure is
applied by the proof procedure.

As we have previously sketched, REC draws inspiration from Chittaro and Montanari’s CEC. The
main difference is that while reasoning in CEC is provided by a Prolog engine managing the assertion
and retraction of MVIs, REC relies on the SCIFF proof procedure, which natively supports reactive
reasoning. While CEC looses its declarative semantics due to the use of assert and retract predicates,
REC is fully declarative. Table 2 briefly summarizes the comparison between the two approaches2.

2“Revision of the generated” MVIs is needed when event occurrences are not ordered: the acquisition of a new event occurrence
referring to the past could lead to modify the inferred MVIs.
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4.2. Compliance inREC and Pure Monitoring

Let us now focus on the SCIFF specification formalizing REC. We suppose that REC monitors the
execution by dynamically acquiring the sequence of occurred events, which are collected in a partial
open execution trace. When the execution terminates, the special complete event is used to alert REC
that the execution trace must be now considered as closed. Obviously, complete is associated to an
execution time which is greater than all the times associated to the other event occurrences.

As summarized in Figure 1, inREC abductive explanations contain MVIs and expectations concern-
ing the internal clip/declip events:

• Positive expectations are employed to delimit MVIs - each MVI starts with a corresponding declip
event and terminates with a corresponding clip one.

• Negative expectations are used to state that each MVI is an uninterruptible validity interval for
its fluent, i.e., inside an MVI it is expected that no declip nor clip events for the fluent will hap-
pen. These expectations are not used to assess compliance, but only to properly delimit MVIs,
by imposing the selection of the nearest declipping and clipping event occurrences as matching
candidates against the positive expectations.

If we do not consider a goal, i.e., the goal is true, REC is used as a “pure” monitor: it will dynamically
collect the occurring events tracking and reporting the fluents’ evolution, but it will always evaluate the
execution trace as compliant. In fact,

• declipping expectations are automatically fulfilled: fluents are generated only in response of an
external event occurrence which leads to the generation of a corresponding (implicit) declipping
event occurrence;

• clipping expectations are fulfilled by the special complete event at last.

5. REC illustrated: a personnel monitoring facility

The following real-world case study has been proposed by a local medium-sized enterprise. A company
wants to monitor its personnel’s time-sheets. Each employee punches the clock when entering or leaving
the office. The system recognizes two events:

• check in(E): employee E has checked in;

• check out(E): employee E has checked out.

The following requirements on employee behavior need a monitoring facility:

(R1) after check in, an employee must check out within 8 hours;

(R2) as soon as a deadline expiration is detected, a dedicated alarm fires at an operator’s desk. It reports
the employee ID, and an indication of the time interval elapsed between deadline expiration and
its detection. The alarm is turned off when the operator decides to handle it.

We assume that the following actions are available to the operator:
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• handle(E) states that the operator wants to handle the situation concerning the employee identi-
fied by E;

• tic is used to take a snapshot of the current situation of the system, by updating the current time.

We capture requirements (R1) and (R2), using three fluents:

• in(E): E is currently in;

• should leave(E, Td): E is expected to leave her office by Td;

• alarm(E, delay(D)): E has not left the office in time – D represents the difference between the
time a deadline expiration is detected and the deadline expiration time itself. In the general case,
fluent alarm(E,A) states that an alarm A is currently active for E.

It is possible to model such requirements declaratively using initiates and terminates predicate defi-
nitions. We assume hour time granularity.

Let us first focus on the in(E) fluent. E is “in” as of the time she checks in. She ceases to be “in” as
of the time she checks out:

initiates(check in(E), in(E), T ). (1)

terminates(check out(E), in(E), T ). (2)

When E checks in at Tc, a should leave fluent is activated, expressing that E is expected to leave the
office by Tc + 8:

initiates(check in(E), should leave(E, Td), Tc)← Td is Tc + 8. (3)

Note that Tc is ground at body evaluation time, due to ax4.
Such a fluent can be terminated in two ways: eitherE correctly checks out within the 8-hour deadline,

or the deadline expires. In the latter case, termination is imposed at the next tic action.

terminates(check out(E),should leave(E, Td), Tc)← (4)

holds at(should leave(E, Td), Tc) ∧ Tc ≤ Td.
terminates(tic,should leave(E, Td), T )← (5)

holds at(should leave(E, Td), T ) ∧ T > Td.

The same tic action also causes an alarm to go off:

initiates(tic,alarm(E, delay(D), T )← (6)

holds at(should leave(E, Td), T ) ∧ T > Td ∧D is T − Td.

Note that in these rules the time of event termination/start (Tc and T ) is the same time present in their
respective body’s holds at atoms. This is perfectly normal, but it is not a requirement. In particular,
times could be different, as long as the times of holds at atoms do not follow event termination/start
times. That again would be allowed, but it would amount to define fluents that depend on future events:
fluents that are thus not suitable for runtime monitoring. For that reason, we assume that well-formed
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Figure 3. Fluents tracking withREC.

theories do not contain such kind of clauses. More details on this matter will be given below when we
discuss the irrevocability property in a formal way.

Finally, each alarm related to an employee is turned off when the operator handles that employee:

terminates(handle(E), alarm(E,A), T ). (7)

Based on such a theory, REC becomes able to dynamically reason from the employees’ flow inside
the company. In particular, REC tracks the status of each employee, and generates an alarm as soon as
a tic action detects a deadline expiration. As we have seen, alarms are represented by specific fluents,
which are initiated by SCIFF when the corresponding exceptional situation is encountered.

Let us consider an event narrative (execution trace) involving two employees e1 and e2, where e2

respects the required deadline while e1 does not:

H(event(check in(e1)), 9), H(event(tic), 10), H(event(check in(e2)), 11),

H(event(tic), 14), H(event(tic), 16), H(event(tic), 18).

Figure 3 shows the global state of fluents at 18, whenREC generates an alarm because e1 was expected
to leave the office no later than 17, but she has not left yet. The operator can check all pending alarms, and
pick an employee to handle in case. Note that, at time 18, there are four pending expectations concerning
clipping events, which correspond to four “open” MVIs (i.e., MVIs for which the upper limit is not yet
known) related to four different fluents: alarm(e1, delay(1)), in(e1), in(e2) and should leave(e2, 19).
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The execution now proceeds as follows:

H(event(check out(e2)), 19), H(event(handle(e1)), 22),

H(event(check out(e1)), 23), H(event(complete), 32).

e2 correctly leaves the office within the deadline, bringing her corresponding in and should leave fluents
to termination. At 22 the operator handles an alarm involving e1, who eventually leaves her office at 23.

6. REC and Negation As Failure

We now discuss the impact of using negated holds at predicates inside the definition of the fluents’
initiation/termination. The term “negation” will denote, in the following, Negation As Failure. In par-
ticular, we show that the standard treatment of negative literals in integrity constraints is inadequate to
capture the intended meaning; we then propose a slightly different treatment of negative literals which
overcomes these issues while remaining, at the same time, fully declarative. To this purpose, we ground
the discussion considering an extended version of the case study described in Section 5.

Let us firstly recall how negation is handled by SCIFF. The SCIFF proof procedure inherits the treat-
ment of negative literals from the IFF proof procedure, through the application of the logical equivalences
transition. In particular, when a negative literal is encountered by the proof procedure, it is rewritten as
follows:

• an integrity constraint ¬a(X)→ b(Y ) is rewritten as true→ b(Y ) ∨ a(X);

• a negated atom in the head ¬b(Y ) is removed and replaced by inserting a new integrity constraint
b(Y )→ ⊥.

To show the inadequacy of such a treatment, we extend our case study with a new requirement, used
to handle the anomalous case in which an employee forgets to punch in, i.e., she punches out two times
in a row without performing a check in inbetween. When this situation occurs, a specific alarm is raised,
which can be then handled by the operator as in the case of delay.

Using the terminology adopted in Section 5, we can rephrase such a requirement as follows: “A
specific alarm is initiated when an employee E checks out, but she does not turn out to be in office (i.e.,
fluent in(E) does not hold)”. The corresponding straightforward formalization is:

initiates(check out(E),alarm(E, forg(check in)), T )← ¬holds at(in(E, T )). (8)

Suppose that we have the following (partial) execution trace:

H(event(check in(e1)), 6), H(event(check out(e1)), 10).

We focus on the last event, occurring at time 10, discussing the transitions of the SCIFF proof procedure.
The expected outcome is that fluent in(e1) maximally holds from time 6 to time 10, and that no alarm is
generated.
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First of all, a transition happening is applied, adding the H(check out(e1), 10) event occurrence to
the current execution trace. Then, a sequence of transitions (starting from propagation) is applied in
order to match this happened event with some integrity constraints. In particular, the event matches with
the body ofREC’s Axiom ax4, eventually leading to:

initiates(check out(e1), F, 10)→H(declip(F ), 10)

∨ E(declip(F ), Td) ∧ Td < 10

∧ EN(clip(F ), Tc) ∧ Tc > Td ∧ Tc < 10.

(9)

Transition unfolding is then applied to substitute the initiates predicate in the body with its possible
definitions (the integrity constraints is replicated for each possible definition of the predicate). Among
the unfolded integrity constraints, we find the one obtained by considering clause (8), which leads to
rewrite the integrity constraint as:

¬holds at(in(e1), 10)→H(declip(alarm(e1, forg(check in)), 10)

∨ E(declip(alarm(e1, forg(check in)), Td) ∧ Td < 10

∧ EN(clip(alarm(e1, forg(check in)), Tc) ∧ Tc > Td ∧ Tc < 10.

(10)

Let us now consider only the first disjunct in the head. In fact, the other one expects that a previous declip
of the alarm occurred, which is not the case; therefore, the latter disjunct will surely lead to a failure. By
applying the logical equivalences transition on negation, the final result is therefore:

true→H(declip(alarm(e1, forg(check in)), 10)

∨ holds at(in(e1), 10).
(11)

This rule states that the alarm is raised at time 10 (inclusive) or that fluent in(e1) must hold at time 10.
The problem related to the treatment of negation is now clear: the two disjuncts in the head can be both
chosen as suitable candidates for a possible successful derivation; however, while the second disjunct
reflects the intended meaning (fluent in(e1) indeed holds at time 10)3, the first one leads to generate the
alarm, which is a completely “wrong” behavior.

In [29], Sadri and Toni provide different motivating examples to point out such issue, and propose a
different treatment of negation to properly deal with them. In particular, they find two separate problems
related to the standard treatment of negation when applied to an abducible4 in the body. Let us consider
again the sample rule ¬a(X)→ b(Y ), rewritten as true→ b(Y ) ∨ a(X). The issues are:

• Abducible a(X) is moved to the head as a new disjunct; therefore, it will be hypothesized by the
reasoning machinery, which could be an unexpected behavior or a source of inefficiency.

• The rewritten integrity constraint does not impose mutual exclusion between the head’s disjuncts,
and therefore it is possible to abduce b(Y ) even if a(X) can be successfully abduced. This clashes
with the intuitive meaning of the integrity constraints, which sounds like “abduce b(Y) if a(X) is
false”.

3Remember that MVIs are considered as closed on the left and open on the right.
4Or a predicate defined in the KB by means of an abducible, as in the case of holds at.
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To overcome these limits, Sadri and Toni propose to rewrite ¬a(X)→ b(Y ) as

true→ b(Y ) ∧
(
¬a(X) ∨ provable(a(X))

)
Negation in the head is then handled in the standard way. Mutual exclusion is imposed by adding ¬a(X)
to the first disjunct, while the second disjunct makes use of the provable meta-predicate, which, roughly
speaking, is true when a(X) is abduced by some other rule.

The main problem of this treatment is that provable does not have a declarative semantics, but only
an operational definition. We therefore propose to adopt an intermediate treatment, which allows us to
overcome the limits of the standard one but without undermining declarativeness. The idea is to apply
mutual exclusion while avoiding the use of provable: rule ¬a(X)→ b(Y ) is rewritten as

true→ b(Y ) ∧
(
¬a(X) ∨ a(X)

)
We show that this treatment is logically equivalent with the standard one. We discuss the simple case
of an integrity constraint containing only a negated abducible in the body and a single abducible in the
head; the general case is a straightforward extension.

Theorem 6.1. (Logical equivalence of negation’s treatment)
The standard treatment of negative literals

¬a(X)→ b(Y ). ⇔ true→ b(Y ) ∨ a(X).

is equivalent to

¬a(X)→ b(Y ). ⇔ true→
(
¬a(X) ∧ b(Y )

)
∨ a(X).

Proof:
Trivially provable, by taking into account the tautology ¬a(X)→ ¬a(X). Indeed, it holds that

¬a(X)→ b(Y ).⇐⇒

{
¬a(X)→ b(Y ).

¬a(X)→ ¬a(X).

}
⇐⇒ ¬a(X)→ ¬a(X) ∧ b(Y ).

and the standard treatment of the last formulation is exactly true→
(
¬a(X) ∧ b(Y )

)
∨ a(X). ut

By adopting this new treatment of negation, rule (11) is rewritten as

true→ ¬holds at(in(e1), 10) ∧H(declip(alarm(e1, forg(check in)), 10)

∨ holds at(in(e1), 10).
(12)

which captures the intended meaning: the disjunction is interpreted as exclusive, and only the second
disjunct can be chosen to have a successful derivation, since in(e1) holds at time 10.

7. Formal properties ofREC

We discuss various formal properties ofREC, ranging from general properties (soundness, completeness
and termination) to specific properties related to the monitoring setting.
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7.1. Soundness, Completeness and Termination

As we have seen in Def. 4.1, a REC specification is a special kind of SCIFF specification. Reasoning is
therefore carried out by using the SCIFF proof procedure without any modification. As a consequence,
all the formal properties already proven for SCIFF also hold in the specific case of REC. In particular,
REC inherits both the soundness and completeness properties of the SCIFF’s operational semantics
with respect to the declarative semantics. Hence, the operational behavior of REC is faithful to its
axiomatization.

Termination of the SCIFF proof procedure has been proven for acyclic and bounded specifications.
We briefly recall the concepts of acyclicity and boundedness, and then discuss their impact onREC.

Since SCIFF specifications are abductive logic programs, the acyclicity conditions are extensions of
the classical acyclicity conditions defined for logic programs [3]. In particular, the acyclicity conditions
defined in [3] apply to the knowledge base of a SCIFF specification, while integrity constraints must
obey to the extended conditions defined by Xanthakos in [35]5.

Definition 7.1. (Level mapping)
Let P be a logic program. A Level mapping for P is a function which maps⊥ to 0 and each ground atom
in BP to a positive integer:

| · | : BP −→ N\{0}

where BP is the Herbrand base of P . Given A ∈ BP , |A| denotes the level of A.

Definition 7.2. (Boundedness)
Given a level mapping | · |, a literal L is bounded with respect to | · | iff | · | is bounded on the set of
ground instances of L. In this case, we assume

|L| , max{|Lg| such that Lg is a ground instance of L}

Definition 7.3. (Acyclic logic program)
Given a logic program P , a clause C ∈ P is acyclic with respect to the level mapping | · | iff, for every
ground instance H ← B1 ∧ . . . ∧Bn of C, it holds that: ∀ i ∈ {1, . . . , n}, |H| > |Bi|. The entire logic
program P is acyclic if all its clauses are acyclic with respect to some level mapping.

Definition 7.4. (Acyclic SCIFF specification)
A SCIFF specification S = 〈KB,A, IC〉 is acyclic iff there exists a level mapping | · | such that

1. KB is acyclic with respect to | · |;

2. each IC ∈ IC is acyclic with respect to |·|: for each ground instanceB1∧. . .∧Bn → H1∨. . .∨Hm

of an integrity constraint in IC, it holds that ∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . ,m}, |Bi| > |Hj |.

The following theorem states that SCIFF is guaranteed to terminate the computation if the specifi-
cation under study is acyclic and bounded. This, in turn, implies that SCIFF terminates when reasoning
upon aREC specification, provided that the domain-dependent knowledge base is acyclic and bounded.

5In the following, we will consider only the case of positive literals; for negative literals, the interested reader can refer to [35].
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Figure 4. Dependency graph showing the level mapping’s constraints among the literals contained in the axiom-
atization ofREC

Theorem 7.1. (Termination of the SCIFF proof procedure [2])
Given a SCIFF instance ST , if S = 〈KB, IC〉 is acyclic and all the literals occurring in IC are bounded,
then every derivation of the SCIFF proof procedure for ST is finite.

Theorem 7.2. (REC termination)
Let SR be a REC specification having KBREC as domain-dependent knowledge base. The SCIFF proof
procedure terminates when reasoning upon SR if KBREC is acyclic and does not contain contradicting
predicates holds at(F, T ) and ¬ holds at(F, T ) in the definition of a initiates/3 or terminates/3
predicate.

Proof:
Let us first consider the general axiomatization of REC alone. The combination of the general axioms
of the calculus, listed in Sect. 4.1, is acyclic and bounded. In particular, even if the ICs of REC contain
happened events both inside the body and inside the head, such happened events are different: happened
events in the body refer to event/1 terms, while happened events in the head refer to clip/1 and declip/1
terms. The dependency graph representing all constraints among the level mapping of each literal is
shown in Fig. 4. The figure shows that acyclicity is respected and that all the ground versions of each
literal can be mapped onto the same level, thus ensuring that boundedness is guaranteed as well.

Let us now focus on the interplay between the general axiomatization of REC and the domain-
dependent knowledge base KBREC : the only possible source of cyclicity is the adoption of a positive
and a negative holds at/3 predicate in the definition of the same initiates/3 or terminates/3 predi-
cate. Indeed, due to Axioms (ax4) and (ax6) and to the treatment of negation presented in Sec. 6, the
positive holds at/3 belongs to the body of the axiom, while the negative one is moved to the head, thus
introducing a cyclic dependency between holds at/3 and itself. Fortunately, acyclicity and boundedness
are still guaranteed provided that the two predicates refer to different fluent or time variables. This is
ensured by the noncontradiction hypothesis. ut

The next results concern uniqueness and irrevocability, and they are instead relative to the special
kind of reasoning needed for the monitoring applications. We thus need to introduce some information
about the SCIFF’s operational behavior.

7.2. Open, Closed and Semi-Open Reasoning

In general, SCIFF features two main forms of inference, called open and closed derivation. A derivation
starts from a (possibly empty) goal and the integrity constraints, and it generates a list of nodes according
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to the operational semantics [2], i.e., by applying a SCIFF transition rule at a time. It terminates when
no transition is applicable. Open and closed derivations differ by one such transition.

Given a specification S and two execution traces (sets of H events) Hi and Hf ⊇ Hi, if there exists
an open successful derivation for a goal G that leads from Hi to Hf we write SHi∼Hf

∆ G, where ∆ is
the computed abductive explanation6. If S is aREC specification, ∆ includes the abduced MVIs. When
SCIFF executes an open derivation, it assumes that the acquired execution trace is partial. Thus E atoms
without a matching H atom are not considered as violated but only as pending: further events may still
occur to fulfill them. EN atoms can instead be evaluated, because they must never have a matching
H atom. This approach is used when SCIFF is used for runtime verification, when the narrative is
incomplete and events occur dynamically.

SCIFF can also perform closed derivations, to reason from narratives known to be complete, or to
close the inference process when a dynamic execution comes to an end. In that case, both E and EN
atoms are evaluated: a closed world assumption is made on the collected execution trace, and positive
(negative resp.) pending expectations are considered as violated (fulfilled), because no further event will
occur to fulfill (violate) them.

SCIFF is sound and complete independently of the order of events. However, there are many impor-
tant domains in which we can safely assume that events are acquired in increasing order of time. In that
case, reasoning is partially open: open on the future, when events may still occur, but closed on the past.
Expectations on the past can thus be evaluated immediately. To enable this form of semi-open reasoning,
the SCIFF proof-procedure is equipped with an additional rule, which states that if the execution trace
has reached time t, then all pending expectations must be fulfilled at a time t′ ≥ t. We denote such a
semi-open derivation by ∼.

7.3. Irrevocability ofREC

Monitoring applications enable semi-open derivation. It is required that the generated MVIs are never
retracted, but only extended or terminated as new events occur, and that newly generated MVIs do not
refer to the past. If that is the case, the reasoning process is called irrevocable. Some target applications
need irrevocable tracking procedures, which can give a continuously updated view of the status of all
fluents. Fluttering behaviours must be by all means avoided. This is true, e.g., when the modeled fluents
carry a normative meaning. It would be undesirable, for instance, to attach a certain obligation to an
agent at runtime, and see it disappear later only because the calculus revises its computed status.

Two potential sources of irrevocability can be identified:

• the occurring events are not acquired in ascending order, i.e., it could be the case that a happened
event referring to the past is analyzed by SCIFF;

• theREC specification contains nondeterministic choices.

While the first cause is independent from SCIFF, we must guarantee that when the happened events are
delivered to SCIFF in ascending order, REC exhibits an irrevocable behavior. Thus we need to isolate
“good” sets of specifications. Once we have them, we must ensure that the reasoning machinery does not
make unjustified retractions. In other words, we must guarantee irrevocability as long as the execution
traces evolve by ascending times.
6Note that ∆ only depends on Hf , because Hf includes Hi. Therefore, in the following we will omit Hi when possible.
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In the reminder of this section, we first define a class of “well-formed” REC theories, then we show
that semi-open reasoning on the resulting REC specifications is irrevocable. Note that when monitoring
the execution,REC is used with goal true.

Definition 7.5. (Well-formedREC theory)
A knowledge base KB is well-formed iff

1. KB is bounded and acyclic;

2. for each clause of the form initiates(Ev, F, T )← body, fluent F must always be resolved with a
ground substitution;

3. by considering all the clauses of the form

initiates(Ev, F, T )← body. terminates(Ev, F, T )← body.

for each [¬]holds at(F2, T2) ∈ body, it must hold that T2 ≤ T .

Roughly speaking, the first condition ensures that the SCIFF proof procedure will terminate when reason-
ing upon a REC specification with a well-formed domain-dependent theory. REC theories that violate
the second or the third condition would instead introduce choice points that hinder irrevocability.

In particular, the second condition prevents non-determinism due to case analysis: when a fluent
containing a variable is declipped, it could be the case that its future clipping is non-deterministic. For
example, let us consider the following knowledge base:

initiates(check in(e1), in(X), T ). (13)

terminates(check out(e1), in(e1), T ). (14)

This is an ambiguous specification since it does not clearly state which employee should change status
as a consequence of e1 checking in. When e1 checks in, the generic fluent in(X) is generated. When e1

checks out, two possible alternatives are explored by SCIFF: in the first one, it hypothesizes that X/e1,
and thus the fluent is terminated; in the second one, it applies case analysis, supposing that X 6= e1 and
maintaining the fluent valid.

Finally, the third condition restricts us to reasoning on stable, past conditions. If the initiation or
termination of a fluent depends on future conditions, then SCIFF must speculate on such conditions,
exploring the alternative in which they will hold and the possibility in which they will not hold. One of
the two choices will eventually lead to a failure. Let us for example consider the following clause:

initiates(tic,alarm(delay(E,D), T )← (15)

holds at(should leave(E, Td), T1) ∧D is T − Td ∧ T1 > T.

The meaning would be that an action is a consequence of an alarm which has not fired yet. Only specula-
tions are possible in that case, and no runtime monitoring algorithm could provide deterministic answers
(save freezing until the alarm fires, but in that case the application would no longer be called “runtime”).

A well-formedREC specification S brings a twofold advantage:

1. given a trace T , there exists exactly one SCIFF semi-open successful derivation for ST ;
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2. if the execution trace is extended with new happened events occurring in ascending order, then the
newly computed result satisfies the irrevocability principle.

We discuss both results. The proofs of the presented theorems can be found in [24].

Theorem 7.3. (Uniqueness of derivation [24])
For each well-formedREC theory T and for each execution traceH, there exists exactly one successful
semi-open derivation computed by SCIFF for the goal true, i.e. ∃1∆ s.t. T ∼H∆true.

Theorem 7.3 ensures that exactly one ∆ is produced by a semi-open derivation of SCIFF. This, in turn,
means that there exists exactly one “configuration” for the MVIs of each fluent. We give a precise
definition of this notion of state, which is the one of interest when evaluating the irrevocability of the
reasoning process, and define the notion of progressive extension between states, which gives a formal
account to irrevocability.

Definition 7.6. (Current time)
The current time of an execution traceH, ct(H), is the latest time of its events:

ct(H) ≡ max
{
t | H(event(e), t) ∈ H

}
Definition 7.7. (MVI State)
Given a REC specification R and an execution trace H the resulting MVI state at time ct(H) is the set
of mvi abducibles contained in the computed explanation generated by SCIFF with goal true:

MVI(RH) ≡ {mvi(F, [Ts, Te]) ∈ ∆}, whereR ∼H∆true

Definition 7.8. (State sub-sets)
Given a REC specification R and a (partial) execution trace H, the current state MVI(RH) is split into
two sub-sets:

• MVI$(RH), is the set of (closed) MVIs, terminating at a ground time:

MVI$(RH) = {mvi(F, [s, e]) ∈ MVI(RH) | s, e ∈ N, F variable};

• MVI (RH), is the set of (open) MVIs, terminating at a variable time:

MVI (RH) = {mvi(F, [s, T ]) ∈ MVI(RH) | s ∈ N, F and T variables}.

Definition 7.9. (Trace extension)
Given two execution tracesH1 andH2,H2 is an extension ofH1, writtenH1 ≺ H2, iff

∀ H(e, t) ∈ H2\H1, t > ct(H1)

Definition 7.10. (State progressive extension)
Given a well-formed REC specification R and two execution traces H1 and H2, the state of RH2 is a
progessive extension of the state ofRH1 , written MVI(RH1) E MVI(RH2), iff

1. the set of closed MVIs is maintained in the new state: MVI$(RH1) ⊆ MVI$(RH2)
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2. if the set of MVIs is extended with new MVIs, these are declipped after the maximum time ofH1:
∀ mvi(f, [s, t]) ∈ MVI(RH2)\MVI(RH1), s > ct(H1)

3. ∀ mvi(f, [s, Te]) ∈ MVI (RH1), either

(a) it remains untouched in the new state: mvi(f, [s, Te]) ∈ MVI (RH2), or

(b) it is clipped after the maximum time ofH1: mvi(f, [s, e]) ∈ MVI$(RH2), e > ct(H1).

Progressive extensions capture the intuitive notion that a state extends another one if it keeps the already
computed closed MVIs and affects the status of fluents only after the time at which the first state was
recorded. The extension is determined by adding new MVIs and by clipping fluents which hold at the
previous state. We can state the main result leading to irrevocability, namely that extending a trace results
in a progressive extension of the MVI state.

Lemma 7.1. (Trace extension leads to a state progressive extension [24])
Given a well-formedREC specificationR and two execution tracesH1 andH2,

H1 ≺ H2 ⇒ MVI(RH1) E MVI(RH2)

Theorem 7.4. (Irrevocability ofREC [24])
Given a well-formed REC specification with goal true and a temporally ordered narrative, each time
SCIFF processes a new event, the new MVI state is a progressive extension of the previous one.

8. Conclusion

EC is a powerful framework for reasoning about time and events. We identified the problem of applying
the EC in order to provide runtime monitoring facilities, to track the dynamics of the system under study
and promptly detect exceptional and undesired situations. We observed that there is no satisfactory
solution to it in the state of the art. Specifically, related approaches mainly boil down to ad-hoc, tailored
procedures that are not easily modifiable and whose formal properties are not easy to determine. We
therefore provided the first formal and operational approach to the problem, a REC implementation
in SCIFF. While literature flourishes with procedural implementations of monitoring systems, we have
shown how to solve this seemingly procedural problem declaratively, discussing several formal properties
of the resulting framework. Particular attention has been given to negative holds at predicates, pointing
out that the standard treatment of negation by the state of the art abductive proof procedures must be
revised to reflect the intended meaning.
REC is currently subject of different practical research lines and applications. In the Multi-Agent

Systems setting, REC is being investigated to realize a monitoring infrastructure for commitment-based
interaction protocols [6]. Social commitments [5, 33] have been already mapped onto EC [36]; an ex-
tended version of this already formalization has been encoded in REC to provide monitoring support,
showing the evolution of commitments in response to the occurring events, and enabling new features
such as the possibility of modeling and verifying timed commitments and compensations triggered by
the expiration of deadlines [6, 34, 8]. In the Service-Oriented Computing research field, we are apply-
ing REC for monitoring service interaction. In particular, in [25] we have shown that the DecSerFlow
language [27, 26], a declarative graphical language for modeling control-flow constraints on the service
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behavior, can be formalized on top of REC. This makes it possible to dynamically collect the mes-
sages exchanged by the interacting services and check how they affect the choreographic DecSerFlow
constraints, supporting quantitative time conditions such as delays and deadlines.

Finally, a JAVA-based application is being developed in order to wrapREC and give a graphical feed-
back about the outcome produced by the monitoring framework. A preliminary report on this research
line can be found in [7, 8].

It is worth noting that REC adopts the standard EC ontology. In particular, domain-dependent REC
theories are in fact standard EC theories, possibly extended with the use of CLP constraints. This feature
is of utmost importance, because it guarantees that REC can be seamlessly applied to monitor arbitrary
EC-based specifications. For example, in [11], the authors propose to adopt EC in order to formalize
and execute workflows. To this aim, they integrate the main EC axioms with a set of activity execution
dependency rules and a set of agent assignment rules, showing that the basic control-flow routing mech-
anisms (sequence, concurrency, alternatives, iteration) can be easily expressed in a declarative way. The
obtained formalization could be seamlessly considered as a REC domain-dependent knowledge base,
enabling run-time monitoring facilities. In particular, REC could be used to infer the current state of
affairs, showing which activities have been already completed and which activities are expected to be
executed next, according to the control-flow routing elements.
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