
Testing Careflow Process Execution Conformance by
Translating a Graphical Language to Computational

Logic

Federico Chesani1, Paola Mello1, Marco Montali1, and Sergio Storari2

1 DEIS – Università di Bologna
viale Risorgimento, 2 – 40136 – Bologna, Italy

{fchesani|pmello|mmontali}@deis.unibo.it
2 ENDIF – Università di Ferrara

Via Saragat, 1 – 44100 – Ferrara, Italy
strsrg@unife.it

Abstract. Careflow systems implement workflow concepts in the clinical do-
main in order to administer, support and monitor the execution of health care
services performed by different health care professionals and structures. In this
work we focus on the monitoring aspects and propose a solution for the confor-
mance verification of careflow process executions.

Given a careflow model, we have defined an algorithm capable of translating it
to a formal language based on computational logic and abductive logic program-
ming in particular. The main advantage of this formalism lies in its operational
proof-theoretic counterpart, which is able to verify the conformance of a given
careflow process execution (in the form of an event log) w.r.t. the model.

The feasibility of the approach has been tested on a case study related to the
careflow process described in the cervical cancer screening protocol.

Keywords: Careflow management, Clinical practice guidelines, Conformance
verification, Computational logic.

1 Introduction

In modern health care organizations, clinical decisions are progressively based on ev-
idence-based care [1]. In order to achieve the goals of this approach, the adoption of
clinical practice guidelines and computer-based guideline management systems is con-
sidered very important. These guidelines are effectively used in practice if they are
managed by systems that are deeply integrated with the health care information sys-
tems and take care of the aspects related to the clinician’s workflow (namely careflow).

As described in [2], careflows focus on the behavioural aspects of medical work de-
scribed in clinical practice guidelines. Careflow systems implement workflow concepts
in the clinical domain, coordinating the execution of health care services performed by
different health care professionals and structures. The literature proposes several for-
malisms to represent workflows/careflows. Usually, they are graphical flow-charts that
clearly express the sequence of activities to be performed. This formalization is used
by the workflow management systems to administer, support and monitor the process
execution.

R. Bellazzi, A. Abu-Hanna, and J. Hunter (Eds.): AIME 2007, LNAI 4594, pp. 479–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

480 F. Chesani et al.

We focus on the monitoring aspects and present a preliminary result of our
research activity aimed to perform the conformance verification of careflow process
executions. We have developed a tool for describing careflow models in a graphical
language (named GOSpeL [3]). In this work we present an algorithm for translating a
GOSpeL model into a set of rules written in a declarative language based on compu-
tationl logic, named SCIFF [4]; careflow participants are mapped to agents, activities
to events and medical knowledge to a knowledge base. Such a formalization is used
by the operational proof-theoretic counterpart of the SCIFF language, which is able to
verify the conformance of a given careflow process execution (in the form of a log of
the events) w.r.t. the model. We discuss how the result of the verification step could be
used for better understanding the careflow model as well as for pointing out possibly
non-forecasted behaviours.

2 An Overview of GOSpeL

GOSpeL [3] is a software tool for specifying careflows by means of a graphical lan-
guage. In GOSpeL, a careflow is represented in terms of a (1) flow chart, which models
the process evolution; and (2) an ontology, which describes at a fixed level of abstrac-
tion the application domain and provides a semantics to the flow-chart.

Careflow process evolutions are described by means of blocks (shown in Table 1)
and relations between blocks. GOSpeL blocks accounts for activities (work units at
the desired abstraction level), gateways (to manage the convergence and the divergence
of control flows), and start/completion point of complex activities. A complex activ-
ity models a composite unit of work, defined at a lower abstraction level by a new
(sub)process, thus allowing a top-down approach for the careflow definition. GOSpeL
blocks can be connected by using order relations (that represent the flow path), or by
using temporal relations (to model temporal constraints among activities like e.g. dead-
lines and delays). GOSpeL ontologies follow a simple template, supporting mainly two
taxonomies: Activities to model the atomic ontological activities of the target domain;
Entities to model actors and objects involved in an activity execution.

3 A Brief Description of the SCIFF Framework

The SCIFF framework was originally developed in the context of the SOCS European
project [5] for the specification and verification of agents interaction protocols within
open and heterogeneous societies. The framework is based on abduction, a reason-
ing paradigm (well suitable in the medical field) which allows to formulate hypothe-
ses (called abducibles) accounting for observations. In most abductive frameworks,
integrity constraints are imposed over possible hypotheses in order to prevent incon-
sistent explanations. The idea behind the SOCS framework is to formalize domain
knowledge in terms of abductive logic programming and expectations about partici-
pants behaviour as abducibles, and to use Social Integrity Constraints (ICS) to de-
tect such behaviour that is not compliant with interaction protocols. It is assumed that
the ongoing social participants behaviour is accessible and represented by a set of
(ground) facts called events. Happened events are denotated by the functor H: e.g.,

Testing Careflow Process Execution Conformance 481

Table 1. GOSpeL elements

family type notation description

Activities

atomic activity single atomic unit of work within the guideline

complex activity
Non-atomic unit of work. It encapsulates a new
(sub)process definition.

iteration For-like cyclical complex activity
while While-like cyclical complex activity

Gateways

exclusive choice
Data-based choice; each outgoing relation is associated
to a logical guard, and at evaluation-time, one of the
path which has a a true condition is chosen.

deferred choice
Non-deterministic choice, without explict logical con-
ditions; the choice is delayed until one of the possible
paths is actually performed by participants.

parallel fork
Point at which multiple threads of execution are
spanned

parallel join Synchronization of multiple threads of control
Start/
Comple-
tion
Blocks

start Start point of a complex activity
cyclic start Start point of a cyclical complex activity
completion Completion point of a complex activity

abort Abort the entire guideline

H(enter(p, emergency ward), 7) represents the fact that p has entered into the hos-
pital’s emergency ward at time 7.

Generally speaking, the participants behaviour is unpredictable. However, interac-
tion protocols provides hints about which are the possible expectations about future
events. This represents in some sense the “ideal” behaviour. Events expected to hap-
pen are indicated by the functor E and have the same format as happened events but
they will typically contain variables, to indicate that expected events are not completely
specified. These variables may be constrained by using CLP constraints [6] or bound by
evaluating predicates defined in the SCIFF abductive knowledge base (named SOKB).

Given the happened events, ICs specifies how to generate expectations. An IC is a
rule of the form body → head, expressing that when body becomes true then head is
expected. Protocols are defined as sets of rules, relating happened events to expectations
about future events. E.g.:

H(enter(Pat, emergency ward), T1) ∧ high priority(Pat)
→E(examine(Phy,Pat), T2) ∧ T2 > T1 ∧ T2 < T1 + 15

(1)

states that, if a patient Pat enters into the emergency ward and it is evaluated as “high
priority”, then a physician Phy is expected to examine him/her within a quarter of an
hour (supposing that times are expressed in minutes). The high priority/1 predicate
is defined in the SOKB. Notice that temporal constraints can be imposed (in particular
deadlines).

Given a set of happened events (i.e. an event log or history), expectations are gen-
erated by he operational counterpart of the SCIFF language, namely the SCIFF Proof
Procedure [7]. The most distinctive feature of this proof procedure is the ability to check

482 F. Chesani et al.

that the generated expectations, considered as a particular class of abducibles, are ful-
filled by the actual participants behaviour. If a participant does not behave as expected
w.r.t. the model, the proof procedure detects and raises as soon as possible a violation.

Our approach is suitable for modeling the careflow aspects of a clinical practice
guideline, especially when the execution order and the appropriateness of the health ser-
vices should be strongly enforced (like for example screening protocols). In this context,
we are interested in detecting two different types of violation. The first one is raised when
a participant does not act as expected by the careflow model (i.e., an expectation is not
fulfilled by a corresponding happened event); the second one is raised when a participant
performs activities not expected by the model (i.e., a happened event is not explicitly
expected). When a violation is detected, two possible hypothesis could be given in order
to explain such a violation: either the participants exhibited a wrong behavior (w.r.t. the
careflow model), or the model itself has not been properly defined (hence it does not fit
well with the real guideline’s execution). Assuming the latter hypothesis, violations are
a useful to understand how and where the careflow model specification lacks.

4 Translation Algorithm

Intuitively, a careflow model specifies that, when an activity block is performed, other
activities should be performed in the right order and with the right attributes. From the
SCIFF viewpoint, this is equivalent to specify an IC that relates the happened event
with the future ones. Given an activity block A, the part of the diagram next to A is
considered as a description of the possible behaviours which the participants has to
exhibit. Therefore, the algorithm generates an IC whose body contains the happening
of eA and whose head is determined by the consequent diagram part. The notation eA

represents the event to which a generic block A has been ontologically mapped1; the
properties of this event, namely its name and its attributes, are respectively determined
by the name of the ontological activity and the set of formal participants associated to
A. Leaving A and going forward in the graphical model, for each branch a new activity
block will be detected (sooner or later), and will be mapped to an expectation about the
future participants behaviour. Afterward, these blocks will be considered (recursively)
as new starting points by the algorithm.

Note that start, return and end blocks are mapped to events too: even if they do not
really represent a concrete working step during the process application, they are used
as terminal points that identify the start and the conclusion of a (sub)process. In the
following, we will refer to the blocks which are mapped to events as event-blocks.

The algorithm visits a GOSpeL diagram partitioning it into special sub-sets (called
minimal windows) and translating each sub-set to a Social Integrity Constraint. In or-
der to define a minimal window, we introduce some other concepts: precursors and
successors sets, path, window and window’s source and fringe.

Definition 1 (Precursors and Successors Sets). Given a block b:

– Sucb is the set of blocks to which b is directly connected through its outgoing rela-
tions (successors set);

1 We adopt an atomic model for simple activities.

Testing Careflow Process Execution Conformance 483

– Preb is the set of blocks to which b is directly connected through its incoming
relations (precursors set).

Definition 2 (Path). A path P (s, d) is a sequence of blocks through which block s
and block d are connected, following the order relations. Defining the sequence as
b0 = s, b1, . . . , bn−1, bn = d, we have:

bj ∈ Sucbj−1 ∧ bj ∈ Prebj+1∀j = 1, . . . , n − 1

Definition 3 (Window). A subset W of GOSpeL blocks is a window if it is connected,
i.e.

∀b1 ∈ W∃b2 ∈ Ws.t.∃P (b1, b2) ∈ W ∨ ∃P (b2, b1) ∈ W

Note that P (s, d) ∈ W iff all the blocks of the sequence belong to W .

Definition 4 (Window Source and Fringe). The source and the fringe of a window W
are respectively:

SW = {b ∈ W |(∃b′ ∈ W s.t. ∃P (b′, b)}
FW = {b ∈ W |(∃b′ ∈ W s.t. ∃P (b, b′)}

Definition 5 (Minimal Window). A window W is minimal iff ∀b ∈ W the following
properties hold:

1. if b ∈ SW then b is an event-block;
2. else if b ∈ FW then b is an event-block;
3. else b is not an event-block (i.e. it is a split or merge);
4. if b is a split-block then Sucb ∈ W;
5. if b is a merge-block then Preb ∈ W .

Properties 4 and 5 of Def. 5 ensure that when a split-block (a merge-block respectively)
belongs to the minimal window, all the branches which diverge from (converge to, resp.)
it are included. Note also that, for a well-formed flow-chart, it is impossible to have a
window that contains a split-block followed by a merge one (each path that connects
two blocks of this type must include at least an activity-block between them).

4.1 Mapping of a Minimal Window to an IC

Figure 1(a) shows a minimal window and Figure 1(b) its translation. It’s easy to see a
tight similarity between the minimal window and the abstract parse tree of the corre-
sponding IC.

The translation procedure of a minimal window W , named in the following GENE-
RATE IC, operates as follows 2,3:

1. ∀b ∈ SW generates H(eb, Tb) (if b is a macroblock, its completion point is chosen);
2. creates a body of a rule by composing the happened events in a way that depends

on the merge-blocks in W ;
2 Remember that SW and FW contain only event-blocks (Property 1 and 2 of Definition 5).
3 For the sake of clarity, we make the assumption that each ontological activity is associated at

most to one activity block. The general algorithm does not require to state this assumption.

484 F. Chesani et al.

(a) (b)

Fig. 1. Minimal window and abstract parse tree of its translation

3. ∀b ∈ FW generates E(eb, Tb) (if b is a macroblock, its start point is chosen);
4. creates a head composing the expectations in a way that depends on the split-blocks

in W .

Let us consider for example a parallel join, the only merge-block defined in GOSpeL:
due to its synchronization semantics the generated IC must trigger (i.e., must have a
body that becomes true) only when all the previous events happen. Therefore, in pres-
ence of a parallel join the body will contain a conjunction of the happened events gener-
ated during the first step; Property 5 of Definition 5 ensures that all the previous events
are considered for the synchronization.

Similarly, split blocks determine how the expectations generated in the third step are
composed; as Figure 1 suggests, the parallel fork is mapped to a logical conjunction
among the expectations found on each outgoing branch, whereas the semantics of de-
ferred choice imposes mutual exclusion between branches, generating a rule that waits
for one among several events. Furthermore, the behaviour of an ex-or blocks is the
same as the deferred choice one, despite the fact that each alternative is associated to its
logical condition (i.e., it can be chosen iff the associated guard is evaluated to true).

4.2 General Algorithm

Giving the start block Start of a GOSpeL model, the translation algorithm operates
splitting the whole diagram into a set of minimal windows and mapping each window
to a an IC:

1: ics = ∅, visited = ∅, fringe ← Start
2: while fringe (= ∅ do
3: cur ← REMOV E ONE(fringe)
4: W ← CONSTRUCT MINIMAL WINDOW (cur)
5: ics ← ics ∪ GENERATE IC(W)
6: visited ← visited ∪ SW
7: fringe ← [fringe ∪ FW] − visited
8: end while

Testing Careflow Process Execution Conformance 485

The fringe set, which initially contains only Start, represents dynamically the fron-
tier of the already covered part. At each iteration step, one element is extracted from
fringe, say, cur. At line 4, the minimal window W s.t. cur ∈ SW is founded. Opera-
tionally, W is constructed starting from cur and visiting the diagram partially forward
and partially backward (when a merge block is encountered, Property 5 of Definition 5
says that all its previous branches should be included). The mapping of cur is then han-
dled by the GENERATE IC procedure, which has been described in the previous
paragraph. Finally, the visited and fringe sets are updated to avoid repetition: remem-
ber indeed that in GOSpeL different alternatives may converge to a single path. Figure 2
shows how a fragment of a simple diagram is partitioned into minimal windows.

Fig. 2. Example of a GOSpeL diagram fragment

5 A Case Study

As a case study for exploiting the potentialities of our approach we choose the cervical
cancer screening guideline proposed by the sanitary organization of the Emilia Ro-
magna region of Italy [8]. Cervical cancer is a disease where malignant (cancer) cells
grow in the tissues of the cervix. The screening program proposes several tests in order
to early detect and treat cervical cancer.

For the sake of space, we describe in this section its application to the careflow model
of a simplified cervical cancer screening protocol. In this careflow, a lab Lab analyses a
pap-test IDsample of patient Pat and sends a report PTres, containing a set of signs
on the sample, to the screening physician Phy. Phy evaluates PTres and classifies
IDsample as positive (cancer evidence found) or negative (normal). If positive, the
protocol prescribes that Pat should be invited, in parallel, for the cancer treatment and
for a psychological consult. Note that the treatment invitation should be sent to the
patient within a deadline of six days. In case of a negative evaluation a letter should be
sent to Pat reporting that the pap-test is normal.

The positive and negative flows converge in a single one which proposes as activity
the scheduling of the next pap-test.

The GOSpeL model of this careflow is composed by an extension of the base ontol-
ogy, which contains entities and activities specific of the screening domain, and by the
graphical model shown in Figure 2. This model is then translated, by the algorithm de-
scribed in Section 4, in a set of ICs starting from block A with fringe set to {A}. At the

486 F. Chesani et al.

first iteration step the algorithm extracts A and, launching a visit from it, individuates
W1, which has SW1 = {A} and FW1 = {B, C, D}. The following IC is produced:

H(analysePapTest(Lab,Pat, IDsample, Phy, PTres), Tana)
→positive(PTres)

∧ E(treatmentInvitation(Phy,Pat, IDsample), Ttre)
∧ Ttre > Tana ∧ Ttre < Tana + 6
∧ E(psyInvitation(Psy,Pat), Tpsy) ∧ Tpsy > Tana

∨not(positive(PTres))
∧ E(sendNegLetter(Phy,Pat, IDsample,PTres), Tsen) ∧ Tsen > Tana

(2)

Note that the temporal constraint between A and C is inserted as a CLP constraint
over Ttre and Tana. Other time constraints are automatically generated due to the par-
tial order imposed by order relations. The exclusive choice condition is mapped to the
evaluation of the predicate positive/1, contained in the SOKB. A pap-test is positive
if almost one cervical cancer type can be detected. Since each cancer type is charac-
terized by a specific set of laboratory results, the predicate positive/1 verifies if almost
one of three possible cancer types has more than an half of its supporting signs in
PTres. This is a trivial description used only in order to exploit the reasoning ca-
pabilities of the SOKB. Now the algorithm proceeds updating the fringe set, which
becomes fringe = {B, C, D}. Supposing B is extracted, the algorithm finds window
W2, whose translation is straightforward. After having translated W2 the fringe con-
tains C, D and E. If either block C or D are extracted, due to the presence of a parallel
join the algorithm finds a window which has SW2 = {C, D} and FW2 = {E}, and
generates the IC (3). The final set of ICs for the cervical cancer screening example is
composed by three rules.

H(treatmentInvitation(Phy,Pat, IDsample), Ttre)
∧ H(psyInvitation(Psy,Pat), Tpsy)

→E(screeningSchedule(Phy,Pat, InvDate), Tscr) ∧ Tscr > Ttre ∧ Tscr > Tpsy

(3)

Given this set of ICs, the SCIFF proof procedure is used by the SOCS-SI [9] tool
for verifying the conformance. Let us consider for example a simple execution of the
above careflow process represented by a set of happened events:

1. H(analysePapTest(lab,pat, 123, phy, [res1, . . . , resn]), 5)
2. H(psyInvitation(psy, pat),7)
3. H(treatmentInvitation(phy,pat, 123), 20)
4. H(screeningSchedule(phy, pat, 15apr2007), 30)

When the pap-test analysis is passed to the proof procedure, the first IC triggers
and, supposing that the predicate positive([res1, . . . , resn]) succeeds, we have two
pending expectations: E(treatmentInvitation(phy, pat, 123), Ttre) ∧ Ttre ∈ [6, 11]
and E(psyInvitation(Psy, pat), Tpsy) ∧ Tpsy > 5. Now we have that the second
happened event fulfills the second expectation, grounding Psy to psy and Tpsy to 20,

Testing Careflow Process Execution Conformance 487

whereas the treatment invitation event matches with the first one. Unfortunately, the
match implies that Ttre unifies with 30, which does not satisfy the deadline and causes
therefore a violation to be raised. The execution is then classified as non conformant.

This conformance verification approach has been evaluated by using the careflow
model of the cervical cancer screening process [8] and a database containing 1950 care-
flow executions. Some of them, representing incorrect behaviours, were introduced in
this database, in order to deeply test our approach and our tools. Each execution con-
tains several events: from the minimum of one (the screening invitation followed by
no response) to the maximum of 18 (the whole careflow). The total time occurred to
verify the conformance of the 1950 executions w.r.t. the careflow model was 12 min-
utes (average time of 369msec for each execution). 1091 executions resulted to be not
conformant w.r.t. the formalization we have initially proposed. These results were an-
alyzed by a screening expert which confirmed all the conformant classifications and
proposed some changes to the careflow model in order to consider as conformant some
particular cases, not allowed by the initial model. Using this revised model, we avoided
false non conformant classifications, reducing the number of executions classified as
non conformant to 44: this result agrees indeed with the “wrong behaviour” executions
we introduced in the database. The conformance results were considered useful by the
screening expert for the quality evaluation of the careflow process and its revision.

6 Related Works

Several medical guidelines support systems have been proposed to represent and man-
age clinical guidelines but, for the sake of space, we limit ourselves to only three:
GLARE [10], PROforma [11] and NewGuide [12]. GLARE [10] is a system for acquir-
ing, representing and executing clinical guidelines. It provides consistency checks, ad-
vanced temporal reasoning techniques, what-if functionalities and guideline properties
evaluation. PROforma [11] is a formal language capable to represent a clinical guide-
line in terms of a network of tasks and data items. NewGuide [12] puts together medical
knowledge formalization techniques and workflow management systems (named Care-
flow Management Systems CfMS). The system supports the definition (in a language
similar to Petri Nets), execution and monitoring of guidelines and careflows.

Comparing GLARE, PROforma and NewGuide with our approach we notice that
our approach can be considered complementary w.r.t the ones proposed by GLARE
and PROforma, since they do not tackle conformance verification issues on careflow
execution traces. With respect to NewGuide, we think that our approach may be useful
to add verification functionalities to the CfMS administration and monitoring tools [12].

7 Conclusions

In this work we have described a solution for the conformance verification of careflow
process executions. We have shown how a careflow model, defined through the GOSpeL
graphical language, could be automatically translated to the SCIFF language[4], based
on computational logic and abductive logic programming, and how this formalization
is then used by the proof-theoretic counterpart of the SCIFF language to verify the

488 F. Chesani et al.

conformance of a given careflow process execution w.r.t. the model. The feasibility of
this approach has been tested on a cervical cancer screening protocol.

We plan to investigate in future work whether our approach can be extended to the
workflow patterns discussed in other guideline support systems, like in [13]. Another
ongoing work is about the proof of “high level” properties on the formalized guideline
specification by using an extension of the SCIFF proof procedure (named g-SCIFF).
For instance, given the ICS representation of the above guideline fragment, we can ask
to g-SCIFF if a history exists s.t. a treatment invitation is sent to the patient. If this is the
case, g-SCIFF will produce a successful proof, generating the corresponding history.

Acknowledgments. This work has been partially supported by NOEMALIFE under the
“SPRING” regional PRRITT project, by the PRIN 2005 project “Specification and veri-
fication of agent interaction protocols” and by the FIRB project “TOCAI.IT”. We would
like to thank reviewers and participants of the ECAI 2006 workshop on AI techniques
in healthcare - evidence-based guidelines and protocols - for the fruitful discussions on
a preliminary version of this paper.

References

1. Muir, G.: Evidence-based Healthcare. Churchill Livingston, London (1997)
2. Careflow management systems

http://www.openclinical.org/briefingpaperStefanelli.html
3. Chesani, F., Matteis, P.D., Mello, P., Montali, M., Storari, S.: A framework for defining

and verifying clinical guidelines: A case study on cancer screening. In: Esposito, F., Raś,
Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 338–343.
Springer, Heidelberg (2006)

4. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and verification
of agent interactions using social integrity constraints. ENTCS 85(2) (2003)

5. Societies of computees (SOCS) Available at:
http://lia.deis.unibo.it/Research/SOCS/

6. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic Program-
ming 19-20, 503–582 (1994)

7. The SCIFF abductive proof procedure, Available at
http://lia.deis.unibo.it/Research/sciff/

8. Cervical cancer screening in emilia romagna (italy), Available at:
http://www.regione.emilia-romagna.it/screening/

9. SOCS-SI web site. Available at:
http://www.lia.deis.unibo.it/research/socs si/socs si.shtml

10. Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Correndo, G.: Applying
artificial intelligence to clinical guidelines: The GLARE approach. In: AI*IA. vol. 101, pp.
536–547 (2003)

11. Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge-the proforma ap-
proach. Artificial Intelligence in Medicine 14, 157–181 (1998)

12. Ciccarese, P., Caffi, E., Boiocchi, L., Quaglini, S., Stefanelli, M.: A guideline management
system. In: MEDINFO 2004, pp. 28–32. IOS Press, Amsterdam (2004)

13. Mulyar, N.A., v.d. Aalst, W.M.P., Peleg, M.: A pattern-based analysis of clinical computer-
interpretable guideline modelling languages. BPMcenter.org Technical Note (2006)

http://www.openclinical.org/briefingpaperStefanelli.html
http://lia.deis.unibo.it/Research/SOCS/
http://lia.deis.unibo.it/Research/sciff/
http://www.regione.emilia-romagna.it/screening/
http://www.lia.deis.unibo.it/research/socs_si/socs_si.shtml

	Testing Careflow Process Execution Conformance by Translating a Graphical Language to Computational Logic
	Introduction
	An Overview of GOSpeL
	A Brief Description of the SCIFF Framework
	Translation Algorithm
	Mapping of a Minimal Window to an IC
	General Algorithm

	A Case Study
	Related Works
	Conclusions

